Lucchesiite, CaFe2+3Al6(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup

2017 ◽  
Vol 81 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Ferdinando Bosi ◽  
Henrik Skogby ◽  
Marco E. Ciriotti ◽  
Petr Gadas ◽  
Milan Novák ◽  
...  

AbstractLucchesiite, CaFe32+Al6(Si6O18)(BO3)3(OH)3O, is a new mineral of the tourmaline supergroup. It occurs in the Ratnapura District, Sri Lanka (6°35'N, 80°35'E), most probably from pegmatites and in Mirošov near Strážek, western Moravia, Czech Republic, (49°27'49.38"N, 16°9'54.34"E) in anatectic pegmatite contaminated by host calc-silicate rock. Crystals are black with a vitreous lustre, conchoidal fracture and grey streak. Lucchesiite has a Mohs hardnessof ∼7 and a calculated density of 3.209 g/cm3(Sri Lanka) to 3.243 g/cm3(Czech Republic). In plane-polarized light, lucchesiite is pleochroic (O = very dark brown and E = light brown) and uniaxial (–). Lucchesiite is rhombohedral, space groupR3m,a≈ 16.00 Å,c≈ 7.21 Å,V≈ 1599.9 Å3,Z= 3. The crystal structure of lucchesiite was refined toR1 ≈ 1.5% using ∼2000 unique reflections collected with MoKα X-ray intensity data. Crystal-chemical analysis for the Sri Lanka (holotype) and Czech Republic (cotype) samples resulted in the empirical formulae, respectively:X(Ca0.69Na0.30K0.02)∑1.01Y(Fe1.442+Mg0.72Al0.48Ti0.334+V0.023+Mn0.013+Zn0.01)∑3.00Z(Al4.74Mg1.01Fe0.253+)∑6.00[T(Si5.85Al0.15)∑6.00O18](BO3)3V(OH)3W[O0.69F0.24(OH)0.07]∑1.00andX(Ca0.49Na0.45□0.05K0.01)∑1.00Y(Fe1.142+Fe0.953+Mg0.42Al0.37Mn0.03Ti0.084+Zn0.01)∑3.00Z(Al5.11Fe0.383+Mg0.52)∑6.00[T(Si5.88Al0.12)∑6.00O18](BO3)3V[(OH)2.66O0.34]∑3.00W(O0.94F0.06)∑1.00.Lucchesiite is an oxy-species belonging to the calcic group of the tourmaline supergroup. The closest end-member composition of a valid tourmaline species is that of feruvite, to which lucchesiite is ideally related by the heterovalent coupled substitutionZAl3++O1O2–↔ZMg2++O1(OH)1–. The new mineral was approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification (IMA 2015-043).

2015 ◽  
Vol 79 (1) ◽  
pp. 89-101 ◽  
Author(s):  
Ferdinando Bosi ◽  
Giovanni B. Andreozzi ◽  
Giovanna Agrosi ◽  
Eugenio Scandale

AbstractFluor-tsilaisite, NaMn3Al6(Si6O18)(BO3)3(OH)3F, is a new mineral of the tourmaline supergroup. It occurs in an aplitic dyke of a LCT-type pegmatite body from Grotta d'Oggi, San Piero in Campo, Elba Island, Italy, in association with quartz, K-feldspar, plagioclase, elbaite, schorl, fluor-elbaite and tsilaisite. Crystals are greenish yellow with a vitreous lustre, sub-conchoidal fracture and white streak. Fluor-tsilaisite has a Mohs hardness of ∼7 and a calculated density of 3.134 g/cm3. In plane-polarized light, fluor-tsilaisite is pleochroic (O = pale greenish yellow and E = very pale greenish yellow), uniaxial negative. Fluor-tsilaisite is rhombohedral, space group R3m, a = 15.9398(6), c = 7.1363(3) Å, V = 1570.25(11) Å3, Z = 3. The crystal structure of fluor-tsilaisite was refined to R1 = 3.36% using 3496 unique reflections collected with MoKα X-ray intensity data. Crystal-chemical analysis resulted in the empirical formula: X(Na0.69〈0.29Ca0.02)Σ1.00Y(Mn2+1.29Al1.21Li0.56Ti0.03)Σ6.00ZAl6T(Si5.98Al0.03)Σ6.00B2.92O27V(OH)3W[F0.39(OH)0.25O0.36]Σ1.00.Comparisons were performed between fluor-tsilaisite and a tsilaisitic tourmaline from the same locality as the holotype specimen. This latter tourmaline sample was selected for this study due to its remarkable composition (MnO = 11.63 wt.%), the largest Mn content found in tourmaline so far.Fluor-tsilaisite is related to tsilaisite through the substitution WF ↔ W(OH) and with fluor-elbaite through the substitution Y(Al + Li) ↔ 2YMn2+, and appears to be a stepwise intermediate during tourmaline evolution from tsilaisite to fluor-elbaite.


2018 ◽  
Vol 82 (4) ◽  
pp. 993-1005 ◽  
Author(s):  
Richard Pažout ◽  
Jiří Sejkora

ABSTRACTA new mineral species, staročeskéite, ideally Ag0.70Pb1.60(Bi1.35Sb1.35)Σ2.70S6, has been found at Kutná Hora ore district, Czech Republic. The mineral occurs in the late-stage Bi-mineralization associated with other lillianite homologues (gustavite, terrywallaceite, vikingite, treasurite, eskimoite and Bi-rich andorite-group minerals) and other bismuth sulfosalts (izoklakeite, cosalite and Bi-rich jamesonite) in quartz gangue. The mineral occurs as lath shaped crystals or anhedral grains up to 80 µm × 70 µm, growing together in aggregates up to 200 µm × 150 µm across. Staročeskéite is steel-grey in colour and has a metallic lustre, the calculated density is 6.185 g/cm3. In reflected light staročeskéite is greyish white; bireflectance and pleochroism are weak with greyish tints. Anisotropy is weak to medium with grey to bluish grey rotation tints. Internal reflections were not observed. The empirical formula based on electron probe microanalyses and calculated on 11 apfu is: (Ag0.68Cu0.01)Σ0.69(Pb1.56Fe0.01Cd0.01)Σ1.58(Bi1.32Sb1.37)Σ2.69(S6.04Se0.01)Σ6.05. The ideal formula is Ag0.70Pb1.60(Bi1.35Sb1.35)Σ2.70S6, which requires Ag 7.22, Pb 31.70, Bi 26.97, Sb 15.72 and S 18.39 wt.%, total 100.00 wt.%. Staročeskéite is a member of the lillianite homologous series with N = 4. Unlike gustavite and terrywallaceite, staročeskéite, similarly to lillianite, is orthorhombic, space group Cmcm, with a = 4.2539(8), b = 13.3094(8), c = 19.625(1) Å, V = 1111.1(2) Å3 and Z = 4. The structure of staročeskéite contains four sulfur sites and three metal sites: one pure Pb site and two mixed sites, M1 (0.52Bi + 0.356Ag + 0.124Sb) and M2 (0.601Sb + 0.259Pb + 0.14Bi). The mineral is characterized by the Bi:Sb ratio 1:1 (Bi/(Bi + Sb) = 0.50) and the Ag+ + Bi3+, Sb3+ ↔ 2 Pb2+ substitution (L%) equal to 70%. Thus the mineral lies between two series of the lillianite structures with N = 4, between the lillianite–gustavite series and the andorite series.


2020 ◽  
Vol 58 (3) ◽  
pp. 381-394
Author(s):  
Leonid A. Pautov ◽  
Mirak A. Mirakov ◽  
Fernando Cámara ◽  
Elena Sokolova ◽  
Frank C. Hawthorne ◽  
...  

ABSTRACT Badakhshanite-(Y), ideally Y2Mn4Al(Si2B7BeO24), is a tetrahedral sheet-structure mineral found in the Dorozhny (Road) miarolitic granitic pegmatite within the Kukurt pegmatite field 45 km E of Murghab, Eastern Pamir, Gorno-Badakhshan Autonomous Oblast, Tajikistan. Badakhshanite-(Y) occurs in medium- to coarse-grained non-graphic albite-microcline-quartz pegmatites in close association with smoky quartz, Sc-bearing spessartine, Sc-bearing tusionite, and schorl. It often grows together with Sc-bearing tusionite and occurs as single columnar crystals ranging from 50 to 400 μm in length, as inclusions in spessartine and tourmaline, and rarely as crystals in blebs along boundaries between garnet, tourmaline, and quartz. Badakhshanite-(Y) is yellow brown and has a white streak and a vitreous luster. It is brittle, with a conchoidal fracture, Mohs hardness of 6.5–7, and calculated density of 4.41 g/cm. In thin section it is transparent and pale yellow, non-pleochroic, biaxial (–), with α = 1.805(2), βcalc = 1.827, γ = 1.835(3) (λ = 590 nm); 2V (meas.) = –60(10)°. Dispersion is weak, r > v. Extinction is straight, elongation is negative. FTIR spectra show the absence of (OH) and H2O groups. Chemical analysis by electron microprobe using WDS (6 points), SIMS, and ICP-OES for B and Be gave SiO2 11.96, ThO2 0.12, Sm2O3 0.17, Gd2O3 0.30, Tb2O3 0.10, Dy2O3 0.73, Ho2O3 0.19, Er2O3 1.34, Tm2O3 0.54, Yb2O3 8.82, Lu2O3 2.32, Y2O3 16.60, Sc2O3 1.57, Al2O3 3.06, B2O3 22.06, FeO 0.94, MnO 23.33, CaO 0.58, BeO 2.84, total 97.57 wt.%.The empirical formula based on 24 O apfu is (Y1.21REE0.78Th0.01)Σ2(Mn3.47Y0.34Ca0.11Fe2+0.08)Σ4(Al0.63Sc0.24Fe2+0.06□0.07)Σ1[(Si2.10B6.69Be1.20)Σ9.99O24], where REE = (Yb0.47Lu0.12Dy0.04Er0.07Tm0.03 Ho0.01Gd0.02Sm0.01Tb0.01)Σ0.78. Badakhshanite-(Y) is orthorhombic, space group Pnma, a 12.852(1), b 4.5848(5), c 12.8539(8) Å, V 757.38(7) Å3, Z = 2. The crystal structure was refined to R1 = 4.31% based on 1431 unique [F > 4σF] reflections. In the crystal structure of badakhshanite-(Y), a layer of tetrahedra parallel to (010) is composed of four different tetrahedrally coordinated sites: Si, B(1), B(2), and T (<Si–O> = 1.623 Å, <B(1)–O> = 1.485 Å, <B(2)–O> = 1.479 Å, <T–O> = 1.557 Å), which form four-, five-, and eight-membered rings, having the composition (Si2B7BeO24). Between the sheets of tetrahedra, there are three cation sites: M(1), M(2), and M(3) (<M(1)–O> = 2.346 Å, <M(2)–O> = 2.356 Å, <M(3)–O> = 2.016 Å) occupied by Y(REE), Mn2+(Y, Ca, Fe2+), and Al(Sc), respectively. The M(1,2) sites ideally give Y2Mn4apfu; the M(3) site ideally gives Al apfu. Badakhshanite-(Y) is an Al- and Be-analogue of perettiite-(Y).


Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 467 ◽  
Author(s):  
Luca Bindi ◽  
John A. Jaszczak

The new mineral richardsite occurs as overgrowths of small (50–400 μm) dark gray, disphenoidal crystals with no evident twinning, but epitaxically oriented on wurtzite–sphalerite crystals from the gem mines near Merelani, Lelatema Mountains, Simanjiro District, Manyara Region, Tanzania. Associated minerals also include graphite, diopside, and Ge,Ga-rich wurtzite. It is brittle, dark gray in color, and has a metallic luster. It appears dark bluish gray in reflected plane-polarized light, and is moderately bireflectant. It is distinctly anisotropic with violet to light-blue rotation tints with crossed polarizers. Reflectance percentages for Rmin and Rmax in air at the respective wavelengths are 23.5, 25.0 (471.1 nm); 27.4, 28.9 (548.3 nm); 28.1, 29.4 (586.6 nm); 27.7, 28.9 (652.3 nm). Richardsite does not show pleochroism, internal reflections, or optical indications of growth zonation. Electron microprobe analyses determine an empirical formula, based on 8 apfu, as (Zn1.975Cu0.995Ga0.995Fe0.025Mn0.010Ge0.005Sn0.005)Σ4.010S3.990, while its simplified formula is (Zn,Cu)2(Cu,Fe,Mn)(Ga,Ge,Sn)S4, and the ideal formula is Zn2CuGaS4. The crystal structure of richardsite was investigated using single-crystal and powder X-ray diffraction. It is tetragonal, with a = 5.3626(2) Å, c = 10.5873(5) Å, V = 304.46(2) Å3, Z = 2, and a calculated density of 4.278 g·cm−3. The four most intense X-ray powder diffraction lines [d in Å (I/I0)] are 3.084 (100); 1.882 (40); 1.989 (20); 1.614 (20). The refined crystal structure (R1 = 0.0284 for 655 reflections) and obtained chemical formula indicate that richardsite is a new member of the stannite group with space group I 4 ¯ 2 m . Its structure consists of a ccp array of sulfur atoms tetrahedrally bonded with metal atoms occupying one-half of the ccp tetrahedral voids. The ordering of the metal atoms leads to a sphalerite(sph)-derivative tetragonal unit-cell, with a ≈ asph and c ≈ 2asph. The packing of S atoms slightly deviates from the ideal, mainly due to the presence of Ga. Using 632.8-nm wavelength laser excitation, the most intense Raman response is a narrow peak at 309 cm−1, with other relatively strong bands at 276, 350, and 366 cm−1, and broader and weaker bands at 172, 676, and 722 cm−1. Richardsite is named in honor of Dr. R. Peter Richards in recognition of his extensive research and writing on topics related to understanding the genesis of the morphology of minerals. Its status as a new mineral and its name have been approved by the Commission of New Minerals, Nomenclature and Classification of the International Mineralogical Association (No. 2019-136).


2009 ◽  
Vol 73 (1) ◽  
pp. 43-50 ◽  
Author(s):  
R. G. Yusupov ◽  
C. J. Stanley ◽  
M. D. Welch ◽  
J. Spratt ◽  
G. Cressey ◽  
...  

Mavlyanovite, ideally Mn5Si3, is a new mineral from a lamproite diatreme close to the upper reaches of the Koshmansay river, Chatkal ridge, Uzbekistan. It occurs together with unnamed manganese siliciphosphide and manganese silicicarbide minerals in round to ovoid segregations, up to 10 cm in diameter, in volcanic glass. Segregations of hexagonal prismatic mavlyanovite up to 1–2 mm occur in interstices in the matrix and tiny inclusions (1–2 μm) of alabandite and khamrabaevite occur within mavlyanovite. It is opaque with a metallic lustre, has a dark-grey streak, is brittle with a conchoidal fracture and a near-perfect basal cleavage. VHN100 is 1029–1098 kg/mm2 (Mohs hardness ~7). In plane-polarized reflected light, mavlyanovite is a pale-brownish-grey against the accompanying unnamed manganese silicicarbide (white). Reflectance values and colour data are tabulated. Average results of 19 electronmicroprobe analyses give Mn70.84, Fe 6.12, Si 22.57, Ti 0.15, P 0.18, total 99.86 wt.% leading to an empirical formula of (Mn4.66Fe0.40)5.06(Si2.91Ti0.01P0.02)2.94 based on8 a.p.f.u. The calculated density is 6.06 g/cm3, (on the basis of the empirical formula and unit-cell parameters from the structure determination). Mavlyanovite is hexagonal (P63/mcm) with a 6.8971(7), c 4.8075(4) Å, V 198.05(3) Å3 and Z = 2. The structure has been determined and refined to R1 = 0.017, wR2 = 0.044, GoF = 1.16. Mavlyanovite is the naturally-occurring analogue of synthetic Mn5Si3 which is the parent aristotype structure of the Nowotny intermetallic phases studied extensively by the material-science community. It is also the Mn-dominant analogue of xifengite Fe5Si3. The mineral name honours Academician Gani Arifkhanovich Mavlyanov (1910–1988), for his contributions to the understanding of the geology of Uzbekistan.


2020 ◽  
Vol 114 (5) ◽  
pp. 435-442
Author(s):  
Federica Zaccarini ◽  
Luca Bindi ◽  
Basilios Tsikouras ◽  
Tassos Grammatikopoulos ◽  
Christopher J. Stanley ◽  
...  

Abstract Arsenotučekite, Ni18Sb3AsS16, is a new mineral discovered in the abandoned chromium mine of Tsangli, located in the eastern portion of the Othrys ophiolite complex, central Greece. Tsangli is one of the largest chromite deposit at which chromite was mined since 1870. The Tsangli chromitite occurs as lenticular and irregular bodies. The studied chromitites are hosted in a strongly serpentinized mantle peridotite. Arsenotučekite forms anhedral to subhedral grains that vary in size between 5 μm up to 100 μm, and occurs as single phase grains or is associated with pentlandite, breithauptite, gersdorffite and chlorite. It is brittle and has a metallic luster. In plane-polarized light, it is creamy-yellow, the bireflectance is barely perceptible and the pleochroism is weak. In crossed polarized reflected light, the anisotropic rotation tints vary from pale blue to brown. Internal reflections were not observed. Reflectance values of arsenotučekite in air (Ro, Re′ in %) are: 41.8–46.4 at 470 nm, 47.2–50.6 at 546 nm, 49.4–52.3 at 589 nm, and 51.3–53.2 at 650 nm. The empirical formula of arsenotučekite, based on 38 atoms per formula unit, and according to the structural results, is (Ni16.19Co1.01Fe0.83)Σ18.03Sb3(As0.67Sb0.32)Σ0.99S15.98. The mass density is 6.477 g·cm−3. The simplified chemical formula is (Ni,Co,Fe)18Sb3(As,Sb)S16. The mineral is tetragonal and belongs to space group I4/mmm, with a = 9.7856(3) Å, c = 10.7582(6) Å, V = 1030.2(6) Å3 and Z = 2. The structure is layered (stacking along the c-axis) and is dominated by three different Ni-coordination polyhedral, one octahedral and two cubic. The arsenotučekite structure can be considered as a superstructure of tučekite resulting from the ordering of Sb and As. The name of the new mineral species indicates the As-dominant of tučekite. Arsenotučekite occurs as rims partly replacing pentlandite and irregularly developed grains. Furthermore, it is locally associated with chlorite. These observations suggest that it was likely precipitated at relatively low temperatures during: 1) the late hydrothermal stages of the ore-forming process by reaction of Sb- and As-bearing solutions with magmatic sulfides such as pentlandite, or 2) during the serpentinization of the host peridotite. The mineral and its name have been approved by the Commission of New Minerals, Nomenclature, and Classification of the International Mineralogical Association (number 2019–135).


Minerals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 245 ◽  
Author(s):  
Luca Bindi ◽  
Federica Zaccarini ◽  
Paola Bonazzi ◽  
Tassos Grammatikopoulos ◽  
Basilios Tsikouras ◽  
...  

The new mineral species, eliopoulosite, V7S8, was discovered in the abandoned chromium mine of Agios Stefanos of the Othrys ophiolite, located in central Greece. The investigated samples consist of massive chromitite hosted in a strongly altered mantle tectonite, and are associated with nickelphosphide, awaruite, tsikourasite, and grammatikopoulosite. Eliopoulosite is brittle and has a metallic luster. In plane-reflected polarized light, it is grayish-brown and shows no internal reflections, bireflectance, and pleochroism. It is weakly anisotropic, with colors varying from light to dark greenish. Reflectance values of mineral in air (Ro, Re’ in %) are: 34.8–35.7 at 470 nm, 38–39 at 546 nm, 40–41.3 at 589 nm, and 42.5–44.2 at 650 nm. Electron-microprobe analyses yielded a mean composition (wt.%) of: S 41.78, V 54.11, Ni 1.71, Fe 1.1, Co 0.67, and Mo 0.66, totali 100.03. On the basis of Σatoms = 15 apfu and taking into account the structural data, the empirical formula of eliopoulosite is (V6.55Ni0.19Fe0.12Co0.07Mo0.04)Σ = 6.97S8.03. The simplified formula is (V, Ni, Fe)7S8 and the ideal formula is V7S8, which corresponds to V 58.16%, S 41.84%, total 100 wt.%. The density, based on the empirical formula and unit-cell volume refined form single-crystal structure XRD data, is 4.545 g·cm−3. The mineral is trigonal, space group P3221, with a = 6.689(3) Å, c = 17.403(6) Å, V = 674.4(5) Å3, Z = 3, and exhibits a twelve-fold superstructure (2a × 2a × 3c) of the NiAs-type subcell with V-atoms octahedrally coordinated by S atoms. The distribution of vacancies is discussed in relation to other pyrrhotite-like compounds. The mineral name is for Dr. Demetrios Eliopoulos (1947–2019), a geoscientist at the Institute of Geology and Mineral Exploration (IGME) of Greece and his widow, Prof. Maria Eliopoulos (nee Economou, 1947), University of Athens, Greece, for their contributions to the knowledge of ore deposits of Greece and to the mineralogical, petrographic, and geochemical studies of ophiolites, including the Othrys complex. The mineral and its name have been approved by the Commission of New Minerals, Nomenclature, and Classification of the International Mineralogical Association (No. 2019-96).


2002 ◽  
Vol 66 (2) ◽  
pp. 301-311 ◽  
Author(s):  
F. C. Hawthorne ◽  
M. A. Cooper ◽  
J. D. Grice ◽  
A. C. Roberts ◽  
N. Hubbard

AbstractBobkingite, ideally is a new mineral from the New Cliffe Hill Quarry, Stantonunder-Bardon, Leicestershire, England. It occurs as very thin (⩽5 µm) transparent plates up to 0.2 mm across, perched on a compact fibrous crust of malachite and crystalline azurite attached to massive cuprite. Crystals are tabular on {001} with dominant {001} and minor {100} and {110}. Bobkingite is a soft pale blue colour with a pale-blue streak, vitreous lustre and no observable fluorescence under ultraviolet light. It has perfect {001} and fair {100} cleavages, no observable parting, conchoidal fracture, and is brittle. Its Mohs' hardness is 3 and the calculated density is 3.254 g/cm3. Bobkingite is biaxial negative with α = 1.724(2), β = 1.745(2), γ = 1.750(2), 2Vγmeas = 33(6)°, 2Vcalc = 52°, pleochroism distinct, X = very pale blue, Z = pale greenish blue, X^a = 22° (in β obtuse), Y = c, Z = b. Bobkingite is monoclinic, space group C2/m, unit-cell parameters (refined from powder data): a = 10.301(8), b = 6.758(3), c = 8.835(7)Å, β = 111.53(6)°, V = 572.1(7)Å3, Z = 2. The seven strongest lines in the X-ray powder-diffraction pattern are [d (Å), I, (hkl)]: 8.199, 100, (001); 5.502, 100, (110); 5.029, 40, (2̄01); 2.883, 80, (310); 2.693, 40, (1̄13); 2.263, 40, (113), (4̄03); 2.188, 50, (2̄23). Chemical analysis by electron microprobe and crystal-structure solution and refinement gave CuO 70.46, Cl 12.71, H2O 19.19, O≡Cl –2.87, sum 99.49 wt.%, where the amount of H2O was determined by crystal-structure analysis. The resulting empirical formula on the basis of 12 anions (including 8 (OH) and 2H2O) is Cu4.99Cl2.02O10H12. The crystal structure was solved by direct methods and refined to an R index of 2.6% for 638 observed reflections measured with X-rays on a single crystal. Three distinct (Cuϕ6) (ϕ = unspecified anion) octahedra share edges to form a framework that is related to the structures of paratacamite and the Cu2(OH)3Cl polymorphs, atacamite and clinoatacamite. The mineral is named for Robert King, formerly of the Department of Geology, Leicester University, prominent mineral collector and founding member of the Russell Society. The mineral and its name have been approved by the Commission on New Minerals and Mineral Names of the International Mineralogical Association.


2014 ◽  
Vol 78 (3) ◽  
pp. 757-774 ◽  
Author(s):  
F. Cámara ◽  
M. E. Ciriotti ◽  
E. Bittarello ◽  
F. Nestola ◽  
F. Massimi ◽  
...  

AbstractThe new mineral species grandaite, ideally Sr2Al(AsO4)2(OH), has been discovered on the dump of Valletta mine, Maira Valley, Cuneo province, Piedmont, Italy. Its origin is related to the reaction between the ore minerals and hydrothermal solutions. It occurs in thin masses of bright orange to salmon to brown coloured crystals, or infrequently as fan-like aggregates of small (<1 mm) crystals, with reddish-brown streak and waxy to vitreous lustre. Grandaite is associated with aegirine, baryte, braunite, hematite, tilasite, quartz, unidentified Mn oxides and Mn silicates under study.Grandaite is biaxial (+) with refractive indices α = 1.726(1), β = 1.731(1), γ = 1.752(1). Its calculated density is 4.378 g/cm3. Grandaite is monoclinic, space groupP21/m, witha= 7.5764(5),b= 5.9507(4),c= 8.8050(6) Å, β = 112.551(2)°,V= 366.62(4) Å3andZ= 2. The eight strongest diffraction lines of the observed X-ray powder diffraction pattern are [din Å, (I), (hkl)]: 3.194 (100)(11), 2.981 (50.9)(020), 2.922 (40.2)(03), 2.743 (31.4)(120), 2.705 (65.2)(112), 2.087 (51.8) (23), 1.685 (24.5)(321), 1.663 (27.7)(132). Chemical analyses by electron microprobe gave (wt.%) SrO 29.81, CaO 7.28, BaO 1.56, Al2O37.07, Fe2O32.34, Mn2O31.88, MgO 1.04, PbO 0.43, As2O544.95, V2O50.50, P2O50.09, sum 96.95; H2O 1.83 wt.% was calculated by stoichiometry from the results of the crystal-structure analysis. Raman and infrared spectroscopies confirmed the presence of (AsO4)3−and OH groups. The empirical formula calculated on the basis of 9 O a.p.f.u., in agreement with the structural results, is (Sr1.41Ca0.64Ba0.05Pb0.01)∑=2.11(Al0.68Fe0.143+Mn0.123+Mg0.13)∑=1.07[(As0.96V0.01)∑=0.97O4]2(OH), the simplified formula is (Sr,Ca)2(Al,Fe3+)(AsO4)2(OH) and the ideal formula is Sr2Al(AsO4)2(OH).The crystal structure was solved by direct methods and found to be topologically identical to that of arsenbrackebuschite. The structure model was refined on the basis of 1442 observed reflections toR1= 2.78%. In the structure of grandaite, chains of edge-sharingM3+octahedra run along [010] and share vertices with T5+tetrahedra, building up [M3+(T5+O4)2(OH, H2O)] units, which are connected through interstitial divalent cations. Grandaite is named after the informal appellation of the province where the type locality is located. The new mineral was approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification (IMA2013-059). The discovery of grandaite and of other members of the group (description still in progress) opens up the possibility of exploring the crystal chemistry of the brackebuschite supergroup.


2021 ◽  
Vol 33 (1) ◽  
pp. 1-8
Author(s):  
Thomas Witzke ◽  
Martin Schreyer ◽  
Benjamin Brandes ◽  
René Csuk ◽  
Herbert Pöllmann

Abstract. The new mineral species freitalite, C14H10, corresponding to the aromatic hydrocarbon anthracene, has been discovered on the mine dump of the Königin Carola shaft (also named Paul Berndt Mine), Freital, near Dresden, Saxony, Germany. The mineral forms thin blades or flakes of irregular shape up to a few millimetres in size and shows an intense violet or whitish-violet to white colour. Freitalite is a product of pyrolysis of coal at low oxygen fugacity and was formed by sublimation from a gas phase. The mineral is associated with sulfur and hoelite. Elemental analysis gave (in wt. %, average of three analyses) C 94.07, H 5.571 and total 99.641. The empirical formula is C14.00H9.88 (calculated for C = 14). The identity with anthracene was confirmed by infrared and Raman spectroscopy, high-performance liquid chromatography, gas chromatography with mass spectrometry, 1H and 13C NMR spectrometry, and X-ray powder diffraction. Freitalite is monoclinic, P21∕a, with lattice parameters a=8.5572(9), b=6.0220(5), c=11.173(1) Å, β=124.174(1)∘ and V=476.34(3) Å3 refined from powder data. The calculated density of 1.242 g cm−3 (for Z=2) is very close to the measured density of 1.240 g cm−3. Freitalite was accepted as a new mineral by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA 2019-116).


Sign in / Sign up

Export Citation Format

Share Document