Motukoreaite, a new hydrated carbonate, sulphate, and hydroxide of Mg and Al from Auckland, New Zealand

1977 ◽  
Vol 41 (319) ◽  
pp. 389-390
Author(s):  
K. A. Rodgers ◽  
J. E. Chisholm ◽  
R. J. Davis ◽  
C. S. Nelson

Motukoreaite occurs as relatively abundant, white, clay-like cement in both beach-rock and basaltic volcanic tuffs on the flanks of a small, extinct, late Pleistocene, basaltic cone at Brown's Island (Motukorea), within Waitemata Harbour, Auckland, New Zealand (36° 50′ S., 174° 35′ E.). The occurrence was originally recorded by Bartrum (1941) as ‘beach limestone’ found at two places of the island's shore. The beach-rock consists of a grain-supported fabric of poorly sorted, well-rounded, alkali-olivine basalt pebbles and granules, subangular to sub-rounded fresh olivine sand and abraded sand- and gravel-sized bioclasts in a colourless to pale yellow-green aphanocrystalline matrix of motukoreaite. Additional detritals include quartz, feldspar, and sedimentary rock fragments. Stereoscan examination of the surface of pieces of the cement prised from the beach-rock showed a box-work of plate-like crystals with a hexagonal form in which individuals measured about 3×3×0·02 microns (fig. 1).Wet-chemical analysis of a separate of the cement containing some 5 % quartz and traces of calcite and goethite gives SiO2 5·55, Al2O3 17·87, Fe2O3 0·73, CaO 0·92, MgO 22·98, MnO 0·70, ZnO 0·56, Na2O 0·71, K2O 0·10, CO2 9·32, SO3 10·00, H2O+ 19·62, H2O- 10·35, sum 99·41 %. The unit-cell formula using obtained unit-cell constants and measured specific gravity 1·43) is (Na0·73K0·07)∑0·80(Mg18·13Mn0·32Zn0·21)∑18·66Al11·15(CO3)6·22(SO4)3·97 (OH)51·1927·20H2O. Of several idealized formulae that may be proposed NaMg19Al12(CO3)6.5 (SO4)4(OH)54·28H2O is preferred.

1985 ◽  
Vol 49 (354) ◽  
pp. 623-642 ◽  
Author(s):  
B. G. J. Upton ◽  
D. Stephenson ◽  
A. R. Martin

AbstractThe Older Giant Dyke Complex is a differentiated alkaline intrusion of Proterozoic age (1154±16 Ma) and is the earliest of the late Gardar intrusions in the Tugtutôq-Ilímaussaq region. The dyke is approximately 20 km long by 0·5 km broad and comprises (i) marginal ‘border group’ rocks of alkali olivine gabbro, grading inwards to ferro-syenogabbro and (ii) an axial ‘central group’ of salic rocks ranging from augite syenite in the WSW to sodalite foyaite in the ENE.Chilled margins contain plagioclase (An53), olivine (Fo53), magnetite, ilmenite, and apatite as liquidus phases and later-crystallized augite (Di69Hd27Ac4) and biotite (Annite32). The coexisting Fe-Ti oxides indicate fO2 and T values just below the synthetic QFM buffer curve. In the border group, plagioclase cores zone into anorthoclase and soda-sanidine rims, olivines reach Fo16, pyroxenes Di32Hd59Ac9, and biotites Annite86. Interstitial pargasitic amphibole appears close to the innermost margins. In the central group, feldspars are all perthitic alkali feldspars and nepheline becomes a major, early crystallizing phase. Olivines range from Fo10-Fo4, in the augite-syenites where they coexist with ferro-salites Di50Hd47Ac3, but olivine is absent from foyaitic assemblages in which the pyroxenes range through aegirine-augite to pure aegirine. Interstitial amphiboles range from ferro-pargasite or hastingsite to katophorite and thence towards arfvedsonite, but are absent from the most differentiated rocks, whereas biotite occurs throughout the entire group in the range Annite71-Annite100.The parental magma, represented by the chilled margins, was a relatively anhydrous alkali olivine-basalt with an initial 87Sr/86Sr ratio of 0.70326. Its high Ti, P, Ba, and F contents are inferred to be features inherited from a primary magma, derived from the mantle as a small partial melt fraction which involved significant amounts of fluor-apatite and phlogopite. While all lithologies are considered as differentiates from this parental magma, there is both a well-defined field junction and a compositional hiatus between the border group and the central group rocks. Mineralogical considerations and REE patterns suggest that the later, more salic (?benmoreitic) magma from which the central group crystallized, related to the parental magma by ol-fsp-ap-FeTi oxide fractionation. Congelation in both border group and central group occurred by side-wall crystallization, but the salic magma became compositionally stratified, with upward concentration of alkalis and volatiles to produce a phonolitic upper facies which is preserved at the ENE end of the intrusion owing to subsequent axial tilting.


1970 ◽  
Vol 107 (6) ◽  
pp. 523-529 ◽  
Author(s):  
M. J. LeBas ◽  
P. A. Mohr

SummaryThe Ethiopian Cainozoic volcanics associated with the African rift system comprise one of the world's most voluminous alkaline igneous provinces. The Simien Mountains are the remnants of a Miocene alkali olivine-basalt volcanic centre in the north-western part of this province. The end-phase activity at Simien featured intrusion of dyke-swarms of two trends, one parallel to the rift system, the other almost perpendicular to it. Dykes of the rift trend are typically alkaline, but a dyke sampled from the other trend proves to be an olivine-tholeiite. Its presence is interpreted, along with similar rocks from the Harar region in eastern Ethiopia, in terms of upper mantle rifting extending from the Gulf of Aden and Red Sea under the continental blocks of the Ethiopian swell.


Nature ◽  
1967 ◽  
Vol 215 (5099) ◽  
pp. 381-382 ◽  
Author(s):  
WILLIAM G. MELSON ◽  
EUGENE JAROSEWICH ◽  
RICHARD CIFELLI ◽  
GEOFFREY THOMPSON

2011 ◽  
Vol 287 (1-4) ◽  
pp. 31-42 ◽  
Author(s):  
Mark E. Dickson ◽  
Paul S. Kench ◽  
Michael S. Kantor

1999 ◽  
Vol 90 (4) ◽  
pp. 273-285 ◽  
Author(s):  
R.J. Preston ◽  
M.J. Hole ◽  
J. Still

AbstractThe Cnoc Rhaonastil dolerite boss on Islay, NW Scotland represents a body of alkali-olivine basalt magma which differentiated at low pressure and in situ, from dolerite through teschenite to minor nepheline-syenite. The syenites occur as isolated pods and pegmatitic schlieren within the leucodolerite, and have an exotic mineralogy including Zr-aegirine, Zr-arfvedsonite, Ca-catapleiite, zirconolite and aenigmatite. Fluor-apatite occurs as an accessory phase in the dolerite, but becomes more abundant within the teschenite and syenites. Total REE contents within apatites in the dolerites are typically low (σREE = 0·57–3·21 wt.% oxide), the highest REE contents occurring in irregular, deuterically altered rims and internal patches. The REE-enriched rims also have slightly elevated SiO2 contents at 0·81–0·95 wt.%, suggesting that the substitution scheme Ca2++P5+ ⇔ REE3++Si4+ was operating. These apatites have up to 0·08 wt.% Cl and 3·7 wt.% F, with most being almost pure end-member fluor-apatite. The majority of the teschenite apatites show the least REE-enrichment (σREE = 0·27–0·45 wt.%), coupled with low Na (<0·12 wt.%) and low SiO2 (<0·39 wt.%) contents. However, within the syenites two distinct populations of apatite exist. The first, most common, variety consists of unzoned, low-REE apatites (max. 3·1 wt.% σREE, again in irregular rims and patches), whereas the second variety is often complexly zoned, and has variably enriched zones up to a maximum σREE content of 42 wt.%; this is by far the most REE-enriched natural fluor-apatite so far reported from the British Isles. The REE-enriched zones are often less than 3 μm wide, and have Na content up to 5·4 wt.% Na2O, implying that the substitution scheme Na+ + REE3+⇔2Ca2+ dominated over the more typical scheme involving Si4+ which operated in the dolerites and teschenite. Other zones are either variably enriched in Y (up 2·1 wt.% Y2O3) or Th (up to 0·85 wt.% ThO2). However, there is no correlation between Y and REE contents, suggesting that crystallographic factors were involved in apatite Y and REE partitioning. The REE-rich apatites have very low Cl content (<0·04 wt.%), but high F concentrations (<2·8 wt.%). It is believed that these strongly enriched apatites crystallised under disequilibrium conditions from isolated, variably REE-enriched domains, within the fluid-rich residual syenitic magma. These domains may have been generated by the prior crystallisation of monazite, Ca-catapleiite or zirconolite, which can be found as small inclusions within albite and interstitial analcime. The dynamic process of slumping of the denser teschenite back into the leucodolerite crystal mush is believed to have played an important role in the release of deuteric fluids and the concentration of residual magmas.


1991 ◽  
Vol 128 (1) ◽  
pp. 51-66 ◽  
Author(s):  
Sally A. Gibson ◽  
Adrian P. Jones

AbstractDetailed sampling of the Little Minch Sill Complex reveals that it is composed of both single and multiple sills. These are formed of three main, genetically related units: picrite, picrodolerite and crinanite, which are the result of differentiation of an alkali-olivine basalt magma (approximately 10% MgO) in an upper-crustal magma chamber. Variations in igneous stratigraphy and the presence of internal chills in the Trotternish sills suggest that they were emplaced by multiple intrusion and subsequently differentiated in situ. Changes in petrography adjacent to pegmatite veins and textures within picrite units indicate compaction and filter-pressing were important processes after emplacement. Rhythmic layering (1 cm to 1 m thick) is conspicuous in the sills near contacts but does not involve cryptic mineral variation. Such modal layering may be more common than realised in relatively small-scale intrusions and maybe modelled in terms of in situ differentiation under conditions of significant undercooling in a changing thermal gradient at the synthetic for-sterite-diopside-anorthite eutectic.


Sign in / Sign up

Export Citation Format

Share Document