JAK inhibition in the myeloproliferative neoplasms: lessons learned from the bench and bedside

Hematology ◽  
2013 ◽  
Vol 2013 (1) ◽  
pp. 529-537 ◽  
Author(s):  
Jason Gotlib

AbstractThe discovery of the JAK2 V617F mutation in the classic BCR-ABL1–negative myeloproliferative neoplasms in 2005 catalyzed a burst of research efforts that have culminated in substantial dividends for patients. Beyond JAK2 V617F, a more detailed picture of the pathobiologic basis for activated JAK-STAT signaling has emerged. In some patients with myelofibrosis (MF), next-generation sequencing technologies have revealed a complex clonal architecture affecting both genetic and epigenetic regulators of cell growth and differentiation. Although these bench-top findings have informed the clinical development of JAK inhibitors in MF, they have also provided scientific context for some of their limitations. The JAK1/JAK2 inhibitor ruxolitinib is approved for treatment of MF in North America and Europe and other lead JAK inhibitors discussed herein (fedratinib [SAR302503], momelotinib [CYT387], and pacritinib [SB1518]), have entered advanced phases of trial investigation. Uniformly, these agents share the ability to reduce spleen size and symptom burden. A major challenge for practitioners is how to optimize dosing of these agents to secure clinically relevant and durable benefits while minimizing myelosuppression. Suboptimal responses have spurred a “return to the bench” to characterize the basis for disease persistence and to inform new avenues of drug therapy.

Hematology ◽  
2013 ◽  
Vol 2013 (1) ◽  
pp. 529-537 ◽  
Author(s):  
Jason Gotlib

The discovery of the JAK2 V617F mutation in the classic BCR-ABL1–negative myeloproliferative neoplasms in 2005 catalyzed a burst of research efforts that have culminated in substantial dividends for patients. Beyond JAK2 V617F, a more detailed picture of the pathobiologic basis for activated JAK-STAT signaling has emerged. In some patients with myelofibrosis (MF), next-generation sequencing technologies have revealed a complex clonal architecture affecting both genetic and epigenetic regulators of cell growth and differentiation. Although these bench-top findings have informed the clinical development of JAK inhibitors in MF, they have also provided scientific context for some of their limitations. The JAK1/JAK2 inhibitor ruxolitinib is approved for treatment of MF in North America and Europe and other lead JAK inhibitors discussed herein (fedratinib [SAR302503], momelotinib [CYT387], and pacritinib [SB1518]), have entered advanced phases of trial investigation. Uniformly, these agents share the ability to reduce spleen size and symptom burden. A major challenge for practitioners is how to optimize dosing of these agents to secure clinically relevant and durable benefits while minimizing myelosuppression. Suboptimal responses have spurred a “return to the bench” to characterize the basis for disease persistence and to inform new avenues of drug therapy.


Hematology ◽  
2017 ◽  
Vol 2017 (1) ◽  
pp. 480-488 ◽  
Author(s):  
Alessandro M. Vannucchi ◽  
Paola Guglielmelli

Abstract Polycythemia vera (PV) and essential thrombocythemia (ET) are chronic myeloproliferative neoplasms that are characterized by thrombohemorrhagic complications, symptom burden, and impaired survival mainly due to thrombosis, progression to myelofibrosis, and transformation to acute leukemia. In this manuscript, we will review the most recent changes in diagnostic criteria, the improvements in risk stratification, and the “state of the art” in the daily management of these disorders. The role of conventional therapies and novel agents, interferon α and the JAK2 inhibitor ruxolitinib, is critically discussed based on the results of a few basic randomized clinical studies. Several unmet needs remain, above all, the lack of a curative approach that might overcome the still burdensome morbidity and mortality of these hematologic neoplasms, as well as the toxicities associated with therapeutic agents.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 180-180
Author(s):  
Meng Ling Choong ◽  
Christian Pecquet ◽  
Shi Jing Tai ◽  
Jacklyn WY Yong ◽  
Vishal Pendharkar ◽  
...  

Abstract Abstract 180 Background and Aims. The main pathogenic molecular events associated with myeloproliferative neoplasms (Polycythemia Vera, Essential Thrombocytosis, and Primary Myelofibrosis) are mutations in Janus kinase 2 (JAK2) or in the thrombopoietin receptor that arise in the hematopoietic stem/progenitor cells. Both type of mutations lead to constitutive activation of the JAK2 signaling pathways. The approved JAK2 inhibitor (Ruxolitinib) is not expected to be selective for the mutant JAK2/receptor signaling or to completely suppress the multiple signaling pathways activated by the aberrant JAK2 signaling. We postulate that myeloproliferative neoplasms can be treated more effectively if we target the constitutive JAK2 signaling by a JAK2 inhibitor together with another kinase inhibitor targeting a specific pathway that is co-activated by the aberrant JAK2 signaling. This should increase targeting specificity, reduce JAK2 inhibitor dosages, and minimize potential side effects of these drugs. To this end, we constructed cell line models of myeloproliferative neoplasms and tested the models using a JAK2 inhibitor in combination with a panel of kinase inhibitors to identify combination pairs that give the best synergism. The synergistic pair was further confirmed in mouse models of myeloproliferative neoplasms. Methods. Mouse Ba/F3 cells were engineered to express either JAK2 WT, or JAK2 V617F, or TpoR W515L, or TpoR JAK2 WT, or TpoR JAK2 V617F, or Bcr-Abl. The effect of two JAK2 inhibitors (Ruxolitinib and TG101348) in combination with a panel of 15 various kinase inhibitors (one JNK, one B-Raf, one ROCK-1, one TIE-2, one PI3K, two CDK, two MAPK, three p38, and three mTOR inhibitors). An 8×8 constant ratio Latin square design were used for testing inhibition of cell proliferation/survival in these cell line models. Calculations were carried out using the Chou-Talalay method to determine which drug-pair demonstrated synergism in inhibiting cell growth. Further eight PI3K inhibitors were acquired and tested when we found strong synergism between the JAK2 inhibitors and the PI3K inhibitor ZSTK474 in the first panel. The engineered Ba/F3 cells were also inoculated into female BALB/c nude mice to generate the JAK2 mutant mouse model. These mice were treated intravenously with Ruxolitinib and the PI3K inhibitor GDC0941. Blood profile and physical parameters of the mice were measured for 14 days post treatment. Bone marrow cells from mice reconstituted with bone marrow from JAK2 V617F knock-in mice were plated for colony formation in the presence or absence of Ruxolitinib and the PI3K inhibitor GDC0941. Primary Epo-independent colonies from CD34+ cells of one PV patient were assessed in two independent experiments in the presence or absence of combination drugs. Results. Out of 15 kinase inhibitors tested, three PI3K inhibitors (ZSTK474, GDC0941 and BEZ235), synergized with JAK2 inhibitors (Ruxolitinib and TG101348) in inhibiting cell growth. The combination index was less than 0.5 in all 8×8 dose combination ratios. The JAK2-PI3K inhibitors combination was specific for JAK2 signaling as growth of Ba/F3 cells expressing Bcr-Abl (at equivalent STAT5 activation levels) was unaffected by this combination treatment. Balb/c mice inoculated with Ba/F3 cells expressing TpoR JAK2 V617F were found to have increased spleen weight due to proliferation of autonomous cells. Our combination treatment using Ruxolitinib and GDC0941 could drastically reduce spleen weight compared to treatment with either compound alone. Endogenous erythroid colony forming unit (CFU-E) and burst forming unit (BFU-E) formation from JAK2 V617F knock-in bone marrow cells was reduced significantly by the combined use of Ruxolitinib and GDC0941 compared to individual drugs. Similarly, Epo-independent BFU-E colony formation from peripheral CD34+ cells of one JAK2 V617F-positive PV patient was reduced significantly by the drug combination. Conclusions. Our findings of strong synergy between the JAK2 inhibitors and PI3K inhibitors suggested that we may be able to administer these drugs at lower concentrations than when the drugs are used individually. It provides a framework for combination trials using compounds in these two classes in patients with myeloproliferative neoplasms. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4198-4198 ◽  
Author(s):  
Garima Pandey ◽  
Nathan Horvat ◽  
Narmin E. Amin ◽  
Afua A. Akuffo ◽  
Christelle Colin ◽  
...  

Philadelphia chromosome negative myeloproliferative neoplasms (MPNs) are JAK2-driven disorders resulting from mutations in JAK2, MPL, or CALR. Ruxolitinib, the only FDA-approved JAK2 inhibitor for MPNs, alleviates patient symptomology and improves quality of life, but has little effect on reducing mutant allele burden. This persistent survival of MPN cells in the face of ruxolitinib, as well as other JAK2 inhibitors that have been clinically tested, is a major clinical bottleneck to the development of an effective targeted therapy for MPN patients. Identifying new therapeutic targets which play critical roles in MPN cells and/or in JAK2 inhibitor persistence may lead to improved MPN therapies. SHP2 is an oncogenic tyrosine phosphatase that is an effector of growth factor and cytokine receptor signaling. SHP2 plays a critical role in the activation of the RAS-ERK pathway and regulates JAK-STAT signaling via numerous phosphatase-dependent mechanisms. Activating mutations of SHP2(PTPN11) have been identified in leukemia, including 8% of MPN patients whose disease progressed to acute myeloid leukemia (AML). In addition, SHP2 has been shown to mediate adaptive resistance to targeted therapies in several cancers. Given the role of SHP2 in cytokine and JAK-STAT signaling, we envisaged a potential role of SHP2 in MPN cell growth and/or survival and ruxolitinib persistence. Treatment of JAK2-V617F-driven MPN model cell lines (UKE1, SET2, and BaF3-JAK2-V617F) with ruxolitinib blocked constitutive tyrosine phosphorylation of SHP2, including phosphorylation of Y542, a marker for activated SHP2. This phosphorylation, however, was restored in ruxolitinib persistent cells. Combination treatment of the allosteric SHP2 inhibitor RMC-4550 (Revolution Medicines) with ruxolitinib prevented the development of ruxolitinib persistent cells and pre-established persistent cells remained sensitive to SHP2 inhibition. RMC-4550 treatment led to significantly reduced levels of pERK consistent with the role of SHP2 in RAS signaling. Interestingly, pERK levels in persistent cells were more sensitive to SHP2 inhibition compared to drug naïve cells suggesting pERK was more dependent on SHP2 in ruxolitinib persistent cells. SHP2 inhibitor treatment increased pSTAT5(Y694) in drug naïve cells but this increase was not observed in similarly treated persistent cells. Furthermore, while ruxolitinib inhibited pERK levels in UKE1 and SET2 cells, pERK levels recovered within 24 hrs of treatment. SHP2 inhibition prevented the recovery of pERK in the presence of ruxolitinib. Collectively, these data suggest that signaling pathways in MPN cells treated with ruxolitinib can become rewired, gaining greater dependence on SHP2, concomitant with sustained pERK and cell survival/growth. Interestingly, we identified a known activating SHP2 mutation (F71L) in UKE1 cells obtained from two independent sources - consistent with the presence of PTPN11 mutations in post-MPN AML. The persistent survival of UKE1 cells in ruxolitinib was antagonized by CRISPR-mediated reduction of SHP2 expression, providing further evidence that SHP2 contributes to ruxolitinib persistence. To assess the effects of a SHP2 inhibitor on MPN progression in vivo, we employed the MPLW515Lbone marrow transplant mouse model of MPN. Initial assessment of therapeutic treatment of mice with an established MPN phenotype indicated that once daily treatment of RMC-4550 (10 or 30 mg/kg) antagonized the MPN phenotype. Complete blood counts indicated a significant reduction in white blood cells, monocytes, and neutrophils compared to vehicle treated mice, while flow cytometry analysis indicated RMC-4550 diminished CD11b+ cell numbers to near that observed in mice transplanted with MPLWT-transduced bone marrow. RMC-4550 improved the overall health of diseased mice, as indicated by increased weight, and significantly reduced organomegaly of the spleen and liver compared to vehicle treated MPN mice. Finally, erythropoietin independent erythroid colony formation of JAK2V617F-positive MPN patient cells was suppressed following SHP2 inhibition, which synergized or enhanced the inhibition induced by ruxolitinib in this assay. In summary, our results suggest that SHP2 inhibition may represent a potential MPN therapy in both ruxolitinib naïve and resistant patients and is an attractive therapeutic target for future clinical investigation. Disclosures Epling-Burnette: Incyte Corporation: Research Funding; Forma Therapeutics: Research Funding; Celgene Corporation: Patents & Royalties, Research Funding. Reuther:Incyte Corporation: Research Funding.


2016 ◽  
Vol 61 ◽  
pp. 61-68 ◽  
Author(s):  
Ronan Flippot ◽  
Gabriel G. Malouf ◽  
Xiaoping Su ◽  
David Khayat ◽  
Jean-Philippe Spano

Blood ◽  
2012 ◽  
Vol 119 (12) ◽  
pp. 2721-2730 ◽  
Author(s):  
Ayalew Tefferi

Abstract On November 16, 2011, the Food and Drug Administration approved ruxolitinib (a JAK1 and JAK2 inhibitor) for use in the treatment of high and intermediate risk myelofibrosis. This is welcome news for those patients in whom such therapy is indicated and treatment benefit outweighs attendant risk. The question is who are these patients, what should they expect in terms of both short-term effects and long-term impact, and why would they choose ruxolitinib over other JAK inhibitors that are freely available for use in a research setting. Ruxolitinib and most other JAK inhibitors exert a salutary effect on constitutional symptoms and splenomegaly but have yet to produce histopathologic or cytogenetic remissions, reverse bone marrow fibrosis, or improve survival over best supportive care. Furthermore, the palliative value of JAK inhibitors is diminished by notable side effects, including anemia, thrombocytopenia, gastrointestinal disturbances, metabolic abnormalities, peripheral neuropathy, and hyperacute relapse of symptoms during treatment discontinuation. Therefore, risk-benefit balance favors use of currently available JAK inhibitors in only a select group of patients with myelofibrosis, and their potential value in polycythemia vera, outside of special circumstances (eg, intractable pruritus), is undermined by the absence of evidence for a disease-modifying effect and presence of arguably superior alternatives.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1429-1429
Author(s):  
Nadja Kopp ◽  
Jordy C. Van der Zwet ◽  
Jacob Layer ◽  
Oliver Weigert ◽  
Eric Vangrevelinghe ◽  
...  

Abstract Approximately 50% of myeloproliferative neoplasms (MPNs) harbor the JAK2 V617F mutation while approximately 50% of B-cell acute lymphoblastic leukemias (B-ALLs) with CRLF2 rearrangements harbor JAK2 exon 16 mutations that primarily involve R683. Multiple enzymatic inhibitors of JAK2 are in clinical development for the treatment of patients with malignant and nonmalignant conditions that depend on constitutive JAK2 signaling. Most of these drugs are ATP-mimetics that block JAK2 signaling in the active conformation (so-called “type I JAK2 inhibitors”). Resistance to type I JAK2 inhibitors can occur through heterodimerization between activated JAK2 and either JAK1 or TYK2 (Koppikar et al. Nature 2012). In addition, E864K, Y931C, and G935R mutations in the kinase domain of JAK2 (JH1 domain) confer resistance to a panel of type I JAK2 inhibitors (including ruxolitinib, tofacitinib, TG101348, JAK inhibitor I) without drastically affecting signaling by JAK2 (Weigert et al. J Exp Med 2012). Resistance caused by these mutations is independent of whether in the context of CRLF2 with JAK2 R683G or EPOR with JAK2 V617F (Weigert et al. J Exp Med 2012). In contrast to type I inhibitors, type II JAK2 inhibitors bind to and stabilize the inactive confirmation of JAK2 and prevent the activation loop from being phosphorylated. Thus, transphosphorylation of JAK2 by JAK1 or TYK2 does not confer resistance to the type II JAK2 inhibitor NVP-BBT594 (BBT594) (Koppikar et al. Nature 2012). In this study we report the first evidence that mutation of JAK2 can also confer resistance to type II Jak2 inhibitors. BBT594 had similar potency to the type I JAK2 inhibitor NVP-BVB808 (BVB808) in murine lymphoblast BaF3 cells dependent on CRLF2 with JAK2 R683G (IC50 8.5nM vs 15.7nM) or EPOR with JAK2 V617F (IC50 29nM vs 10nM). In contrast, the Y931C mutation conferred >3-fold resistance to BVB808 in BaF3 cells expressing CRLF2 with JAK2 R683G but no significant change in sensitivity to BBT594. Thus, type II JAK2 inhibitors can overcome genetic resistance to type I JAK2 inhibitors. We performed a random mutagenesis screen of JAK2 R683G and expressed the mutagenized library in BaF3 cells that express CRLF2. Selecting in the presence of 3uM BBT594 resulted in a large number of clones, of which all screened (n>30) harbored the same JAK2 L884P mutation. Structural modeling of this mutation predicted changes in the JH1 domain that may impact the conformation of the P-loop and helix C, and thereby compromise the sub-pocket required for type II inhibitor binding. In contrast to mutations that confer resistance to type I JAK2 inhibitors, the L884P mutation only conferred resistance to BBT594 in the context of CRLF2/JAK2 R683G (IC50 504nM versus 8.5nM for R683G alone) and not EPOR/JAK2 V617F. To our knowledge, this is the first mechanism of resistance specific to JAK2 R683G. BaF3 cells expressing CRLF2 with JAK2 R683G L884P Y931C remained resistant to BBT594. Transduction of the mutagenized JAK2 R683G library into BaF3 cells expressing CRLF2 followed by selection in both BVB808 and BBT594 did not yield any resistant colonies. In conclusion, mutations that affect the binding of type I JAK2 inhibitors do not affect the potency of the type II JAK2 inhibitor BBT594. The L884P mutation confers resistance to BBT594 when co-occurring with the activating mutation R683G but not with V617F. Thus, combinations of multiple JAK2 inhibitors with distinct mechanisms may be useful in overcoming de novo and acquired resistance to JAK2 inhibitors. Disclosures: Vangrevelinghe: Novartis: Employment. Radimerski:Novartis: Employment. Weinstock:Novartis: Consultancy, Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4575-4575 ◽  
Author(s):  
Que T. Lambert ◽  
Anuradha Pradhan ◽  
Gary W. Reuther

Abstract Myeloproliferative neoplasms (MPNs) are a group of hematopoietic stem cell disorders characterized by the abnormal production of various myeloid cells. Aberrant JAK2 signaling (e.g. induced by JAK2-V617F) plays an etiological role in MPN formation. While JAK2 inhibitors improve patient symptoms, they do not induce cell death as neoplastic cells appear to be rather insensitive to JAK2 inhibition and effectively rapidly become resistant to treatment. Therefore, the development of additional therapeutic approaches for MPNs is needed. Pim kinases are serine/threonine kinases that protect hematopoietic cells from apoptosis and also play a role in regulating hematopoietic stem cell growth. In mouse models, elevated Pim expression contributes to the development of lymphoma. Pims are constitutively active and thus regulated by protein expression, which is controlled by Pim gene expression and Pim protein stability. Pim1 gene expression is normally induced by JAK2/STAT5 signaling in response to extracellular growth factor stimulation, as Pim1 is a direct transcriptional target of STAT5. The deregulated JAK2 signaling in MPNs also induces Pim expression. STAT5 is required for MPN disease in mouse models, suggesting genes transcriptionally regulated by STAT5 are required for MPN disease formation. Together with the anti-apoptotic signaling and transforming properties of Pims, this suggests Pims may play a role in MPNs. We hypothesized that Pim kinases may offer a therapeutic target for MPNs and that Pim kinase inhibitors in combination with JAK inhibitors may cause neoplastic cytotoxicity, improving on current JAK2-inhibitor mono-therapy for MPNs. JAK2-V617F-dependentMPN model cells (HEL, SET2, Uke1, and BaF3/JAK2-V617F, including cells that are resistant to the JAK2 inhibitor ruxolitinib) as well as MPN patient cells, were treated with Pim kinase inhibitors, SGI-1776 and AZD1208, and the JAK2 inhibitor, ruxolitinib. The effects on cell growth, cell cycle, viability, and cell signaling were studied. High concentration SGI-1776 (10 μM) inhibited cell growth and viability of MPN model cells while lower doses (1 and 3 μM) had little effect on the growth and viability of these cells. Combination of 3 μM SGI-1776 with low dose ruxolitinib significantly enhanced growth inhibition and cell death of HEL and SET2 cells. Similar results were obtained with the much more effective and selective Pim inhibitor, AZD1208. We show that ruxolitinib inhibits Pim expression in MPN cells, and Pim expression is restored in ruxolitinib-resistant cells. Importantly, low dose SGI-1776 or AZD1208 (100 nM) re-sensitized ruxolitinib-resistant MPN cells to ruxolitinib treatment. Significantly, as single agents, both SGI-1776 and AZD1208 inhibited erythropoietin-independent erythroid colony formation of primary cells from MPN patients, but not erythroid colonies of normal controls. The combination of AZD1208 and ruxolitinib exhibited enhanced inhibition of colony formation of primary cells from MPN patients compared to treatment with either drug alone. These data indicate that Pim kinase inhibitors in combination with a JAK2 inhibitor may offer a more efficacious therapeutic approach over JAK2 inhibitor mono-therapy for MPNs. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 156 (Supplement_1) ◽  
pp. S136-S136
Author(s):  
T Lynn ◽  
A Campbell ◽  
Y Ding

Abstract Introduction/Objective In patients with suspicion of Myeloproliferative neoplasm (MPN) and negative for BCR-ABL1, NCCN guideline currently recommends two molecular workup pathways in peripheral blood: 1) a multi-step reflex mutation testing algorithm including JAK2 V617F, CALR, MPL, JAK2 exon12 or 2) a multigene Next Generation Sequencing (NGS) panel that includes at least JAK2, CALR and MPL genes. Here we report the clinical utilization and impact of a NGS based MPN diagnosis assay. Methods/Case Report Total of 690 consecutive cases at Geisinger between 2019 and 2021 were included in this study. Patient’s CBC showed chronic cytosis in either single or multi-lineage myelopoiesis and was clinically suspicious for MPNs. For BCR-ABL1 negative cases, NGS based MPN diagnostic assay was performed, which include the four disease defining genes recommended by NCCN guideline: JAK2, CALR, MPL, CSF3R as well as three additional genes NRAS, PPM1D and TP53. Variants are classified in to four tiers based on their level of clinical significance. Results (if a Case Study enter NA) Among all cases tested, 25 out of 690 cases (3.6%) were positive for BCR-ABL1 transcript. 20.9% (139 out of 665 BCR-ABL1 negative cases) had at least one variant detected, which included 73 variants in Tier I category (11.0%), 6 variants in Tier II (0.9%), 57 variants in Tier III (8.6%) and 3 variants in Tier IV(0.5%). Among all disease defining mutations, JAK2 V617F was the most commonly detected mutation (59 cases and 8.8%), followed by CALR indel mutations (13 cases and 2.0%). In addition, double variants were detected in total 7 cases (1.0%). Conclusion Comparing to the conventional multi-step sequential workup for MPN diagnosis, the multi-gene NGS panel provides a cost-effective and time- saving solution. When detected concurrently with the disease defining mutations, NRAS, PPM1D and TP53 could provide not only additional prognostic information but also may suggest pending progression in myeloproliferative neoplasms.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2106-2106
Author(s):  
Brady Stein ◽  
Jerry L. Spivak ◽  
Alison R Moliterno

Introduction: Host modifiers contribute to variation in disease pathogenesis and clinical features in the myeloproliferative neoplasms (MPN), essentialthrombocytosis (ET), polycythemia vera (PV), and myelofibrosis (MF).Gender modifies the JAK2 V617F allele burden (women had lower levels and lower annual increases), influences PV gene expression (men had twice as many differentially-regulated genes as women) and influences thrombotic events (a predominance of abdominal vein thrombosis in women). The MPN symptom burden also appears to differ by gender. In this analysis, we describe gender differences in disease presentation and outcome in relation tomutational status. Methods: We analyzed a prospective cohort of 612 PV, ET and MF patients enrolled between 2005 and 2013 to study genomic modifiers of the MPN and disease outcomes. We stratified disease evolution and survival by both gender and mutational status. Results: In this cohort, 26% were newly diagnosed, and 61% were female. The current median follow-up is 8 years (> 4800 patient-years) and 110 have died. Prevalence of Molecular lesions JAK2 V617F was identified in 468/612 MPN patients (76%; 61% female), and comprised the majority of ET (62%; 70% female), PV (99.5%; 59% female), MF (62%; 39% female) and post MPN AML (80.7%; 38% female) patients. CALR mutations were identified in 81/612 MPN patients (13%; 58% female), representing 23% of all ET (59% female), and 21 % of all MF (52% female) and 3.8% of post MPN AML. MPL mutations were identified in 9 MPN patients (1.5%): 7 females with ET, and 2 males with MF. Disease presentation Among JAK2 V617F positive patients, more females presented with ET compared to males (43% vs 29%; p=0.002) and more males presented with MF (21% vs 9%; p=0.001). Gender differences in presentation were less apparent in those with CALR -mutated ET (59% women) and MF (53% women). Disease transformation By gender, among 197 women with an original diagnosis of ET, 62% retained their phenotype, whereas 20%, 17%, and 1.5% evolved to PV, MF, and AML, respectively. Among men with ET, 63% retained their phenotype, while 16%, 20%, and 1.1% evolved to PV, MF, and AML. Among MF patients, regardless of mutational status, 1 (3%) women and 5 (10%) men evolved to AML (p=0.39). With regard to transformations by gender, rates of MF (16% in both) and AML (2.6% and 5.5%p=0.083) were similar between women and men. Among 123 JAK2V617F- positive ET women, during the follow-up period, 66 (54%) retained an ET phenotype, while 32%, 14%, and 0.8% evolved to PV, MF, and AML, respectively. Among 53 JAK2V617F-positive ET men, 54% retained an ET phenotype; 25%, 17%, and 4% evolved to PV, MF, and AML, respectively. Among 141 JAK2V617F-positive PV females, 109 (77%) retained PV, 26 (18%) evolved to MF, and 6 (4%) evolved to AML (1 via MF, 5 PV to AML); among 100 JAK2V617F-positive males, 73% retained a PV phenotype, 20% evolved to MF, and 7% to AML (3 PV to AML, 4 via MF phase). Among JAK2V617F -positive patients with an original MF diagnosis, 1/20 (5%) and 3/31 (10%) women and men evolved to AML (p=NS); 22% vs. 18% of JAK2V617F -positive men versus women evolved to MF or AML (p=0.28). No CALR -mutated ET patient evolved to PV. Of 38 CALR- ET women, 27 (71%) retained their phenotype, 10 evolved to MF (26%), and 1 to AML (3%). Among the 26 CALR -mutated ET men, 81% retained their phenotype, while 19% evolved to MF (no AML transformations). Survival The proportion of deaths differed by gender; of the 612 patients, despite the predominance of females in the cohort, at the time of last follow-up, there were 110 deaths (18%): 50/375 women died, compared to 60/237 men (13% vs. 25%; p value=0.0002). A larger proportion of male deaths were due to MF and MF to AML, but this was not statistically different (male deaths in MF/AML phase: 54/60; (90%); women 38/50 (75%); p=0.0692)). Conclusion: We identified a gender influence on disease distribution at presentation, particularly in the JAK2V617F-positive subset with females presenting more commonly with ET and males more commonly with MF. Despite the predominance of females in this MPN cohort, the distribution of females at presentation and evolution into more indolent phenotypes compared to males and a trend toward lower rates of AML evolution may have accounted for longer disease duration and fewer deaths in females compared to males. This trend in MPN evolution complements a theme of gender differences in symptom burden, clinical consequences, and genomic changes. Disclosures Stein: Incyte Corporation: Consultancy, Membership on an entity's Board of Directors or advisory committees. Spivak:Incyte: Membership on an entity's Board of Directors or advisory committees. Moliterno:Incyte: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document