Ribosomal protein S19 expression during erythroid differentiation

Blood ◽  
2003 ◽  
Vol 101 (1) ◽  
pp. 318-324 ◽  
Author(s):  
Lydie Da Costa ◽  
Goutham Narla ◽  
Thiébaut-Noel Willig ◽  
Luanne L. Peters ◽  
Marilyn Parra ◽  
...  

Abstract The gene encoding ribosomal protein S19 (RPS19) has been shown to be mutated in 25% of the patients affected by Diamond-Blackfan anemia (DBA), a congenital erythroblastopenia. As the role of RPS19 in erythropoiesis is still to be defined, we performed studies on RPS19 expression during terminal erythroid differentiation. Comparative analysis of the genomic sequences of human and mouse RPS19genes enabled the identification of 4 conserved sequence elements in the 5′ region. Characterization of transcriptional elements allowed the identification of the promoter in the human RPS19 gene and the localization of a strong regulatory element in the third conserved sequence element. By Northern blot and Western blot analyses of murine splenic erythroblasts infected with the anemia-inducing strain Friend virus (FAV cells), RPS19 mRNA and protein expression were shown to decrease during terminal erythroid differentiation. We anticipate that these findings will contribute to further development of our understanding of the contribution of RPS19 to erythropoiesis.

2004 ◽  
Vol 24 (9) ◽  
pp. 4032-4037 ◽  
Author(s):  
Hans Matsson ◽  
Edward J. Davey ◽  
Natalia Draptchinskaia ◽  
Isao Hamaguchi ◽  
Andreas Ooka ◽  
...  

ABSTRACT The ribosomal protein S19 (RPS19) is located in the small (40S) subunit and is one of 79 ribosomal proteins. The gene encoding RPS19 is mutated in approximately 25% of patients with Diamond-Blackfan anemia, which is a rare congenital erythroblastopenia. Affected individuals present with decreased numbers or the absence of erythroid precursors in the bone marrow, and associated malformations of various organs are common. We produced C57BL/6J mice with a targeted disruption of murine Rps19 to study its role in erythropoiesis and development. Mice homozygous for the disrupted Rps19 were not identified as early as the blastocyst stage, indicating a lethal effect. In contrast, mice heterozygous for the disrupted Rps19 allele have normal growth and organ development, including that of the hematopoietic system. Our findings indicate that zygotes which are Rps19 −/− do not form blastocysts, whereas one normal Rps19 allele in C57BL/6J mice is sufficient to maintain normal ribosomal and possibly extraribosomal functions.


Blood ◽  
2003 ◽  
Vol 101 (12) ◽  
pp. 5039-5045 ◽  
Author(s):  
Lydie Da Costa ◽  
Gil Tchernia ◽  
Philippe Gascard ◽  
Annie Lo ◽  
Joerg Meerpohl ◽  
...  

AbstractRibosomal protein S19 (RPS19) is frequently mutated in Diamond-Blackfan anemia (DBA), a rare congenital hypoplastic anemia. Recent studies have shown that RPS19 expression decreases during terminal erythroid differentiation. Currently no information is available on the subcellular localization of normal RPS19 and the potential effects of various RPS19 mutations on cellular localization. In the present study, using wild-type and mutant RPS19 cDNA, we explored the subcellular distribution of normal and mutant proteins in a fibroblast cell line (Cos-7 cells). RPS19 was detected primarily in the nucleus, and more specifically in the nucleoli, where RPS19 colocalized with the nucleolar protein nucleolin. Using various N-terminal and C-terminal deletion constructs, we identified 2 nucleolar localization signals (NoSs) in RPS19: the first comprising amino acids Met1 to Arg16 in the NH2-terminus and the second comprising Gly120 to Asn142 in the COOH-terminus. Importantly, 2 mutations identified in DBA patients, Val15Phe and Gly127Gln, each of which localized to 1 of the 2 NoS, failed to localize RPS19 to the nucleolus. In addition to their mislocalization, there was a dramatic decrease in the expression of the 2 mutant proteins compared to the wild type. This decrease in protein expression was specific for the mutant RPS19, since expression of other proteins was normal. The present findings enable us to document the nucleolar localization signals in RPS19 and help define the phenotypic consequences of some mutations in RPS19 in DBA.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 719-719
Author(s):  
Johan Flygare ◽  
Thomas Kiefer ◽  
Koichi Miyake ◽  
Taiju Utsugisawa ◽  
Isao Hamaguchi ◽  
...  

Abstract Diamond-Blackfan anemia (DBA) is a congenital red cell aplasia in which 25% of the patients have a mutation in the ribosomal protein S19 (RPS19) gene. It is unknown how the ribosomal protein deficiency leads to anemia. We previously developed three lentiviral vectors expressing siRNA against RPS19 and one scramble control vector. All vectors also express GFP. We have previously shown that transduction of CD34+ bone marrow (BM) cells with the siRNA vectors reduced RPS19 mRNA levels, resulting in formation of fewer erythroid colonies. In the present study, we have demonstrated downregulation of RPS19 protein in siRNA treated cells. RPS19 protein levels decreased over time and were reduced to 40-60% of normal in cells transduced with all three siRNA vectors 5 days after transduction. We asked which stage of erythroid development is most affected by RPS19 deficiency. After 7 days in liquid culture supporting erythroid differentiation Glycophorin A (GlyA) and CD71 expression was examined by FACS. RPS19-silenced as well as DBA patient CD34+ cells exhibited a block in erythroid differentiation seen as an increased fraction of GlyAneg CD71low cells while the fractions of CD71high GlyAintermediate and GlyAhigh cells decreased. We cultured untransduced CD34+ cells in liquid culture for 7 days and isolated CD71high GlyA intermediate cells that are highly enriched in CFU-E and do not contain BFU-E. These cells were transduced with RPS19 siRNA vectors. Further erythroid maturation from CFU-E (CD71high GlyAintermediate) to more mature erythroid cells (GlyAhigh) was not affected by RPS19 silencing suggesting that the main block in erythroid development occurs prior to the CFU-E formation. The failure of erythroid differentiation correlated with the decrease in RPS19 protein levels. Transduction with a lentivirus expressing an siRNA-resistant RPS19 transcript rescued both the erythroid progenitor proliferation and differentiation, showing that the DBA-like phenotype is specific to the RPS19 deficiency. Finally we cultured the cells in liquid medium supporting both erythroid and myeloid differentiation. Proliferation decreased while the ratio of mature myeloid to erythroid cells increased 3 fold in cells transduced with the 2 most efficient siRNA-vectors, meaning that erythroid development is more sensitive to low RPS19 levels than myeloid development. When RPS19 is downregulated to intermediate levels, erythroid differentiation and proliferation of erythroid progenitors is severely reduced. More severe reduction of RPS19 impairs proliferation of myeloid progenitors as well, leading to a reduced output of myeloid progeny. Although our data cannot rule out hypothetical extraribosomal mechanisms we suggest that the major clinical findings in RPS19 deficient DBA can be explained by insufficient protein translation. This study shows for the first time that RPS19 protein downregulation decreases the proliferative capacity of hematopoietic progenitors leading to an early defect in erythroid development.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1684-1684
Author(s):  
Corinne Hurtaud ◽  
Aurore Cretien ◽  
Valerie Clayette ◽  
Didier Pisani ◽  
Stephane Giraudier ◽  
...  

Abstract Mutations in gene encoding Ribosomal protein S19 (rps19) have been identified in 25% of patients affected by Diamond-Blackfan anemia, the rare congenital erythroblastopenia. Recently, mutations in yet another gene encoding for a ribosomal protein, the rps24 gene, have been found in approximately 3% of DBA cases. These findings imply a role for impaired ribosomal assembly due to mutant ribosomal proteins in the pathophysiology of DBA. We have previously implicated the ubiquitin-proteasome pathway (UPP) in degrading unstable RPS19 mutant proteins. Three different proteasome inhibitors, lactacystin, MG132 and bortezomib were shown to be able to restore both RPS19 protein expression level and nucleolar localization of several mutants (V15F, G127E, L131P, and truncated RPS19 containing more than 80 aminoacids). Bortezomib, the only proteasome inhibitor currently approved for use in humans, is a Nuclear factor-κB (NF-κB) pathway inhibitor. Indeed, UPP inhibition by proteasome inhibitors is the result of either a direct inhibition of the 20S core of the proteasome or an indirect inhibition of NF-κB pathway through the IκB UPP degradation pathway. At steady state, NF-κB binds to IκB, the natural NF-κB inhibitor in the cytoplasm. Under stress or stimulation, IκB is phosphorylated and degraded by the UPP. NF-κB, free of its inhibitor is translocated to the nucleus and acts as an efficient transcription factor regulating expression of a number of genes. In the present study, we analyzed the effects of direct inhibition of NF-κκB pathway on expression level and subcellular localization of several RPS19 mutants using a Migr-NF-κB super-repressor retroviral vector, corresponding to IκB, in which two amino acids have been mutated in order to prevent phosphorylation of IκB. Following retroviral infection, IκB can not be degraded and hence NF-κB can not translocate to the nucleus. Following transient transfection of Cos-7 with mutant GFP- RPS19, which are degraded by UPP and retrovirus infection, we found that RPS19 decreased expression level was restored to normal. Specific inhibitors of p50 and p65 (NF-κB subunits) failed to restore RPS19 expression levels suggesting that the degradation of unstable RPS19 is dependent solely on IκB. By gel shift assay, we were able to show that p50-p65 heterodimers, p50 homodimers and p65 NF-κB subunits bound to rps19 gene promoter upstream of the ATG start site. These NF-κB subunits have been found to repress rps19 gene promoter activity (Da Costa and al., Blood 2003). In conclusion, NF-κB pathway regulates RPS19 expression level by two different mechanisms: IκB regulated proteasomal degradation of the unstable mutant RPS19 proteins; and transcriptional repression of rps19 gene promoter by p50 homodimers, p50-p65 heterodimers and p65, which act as transcription factors. These findings suggest potential therapeutic strategies for DBA involving modulation of NF-κB pathway.


Blood ◽  
2011 ◽  
Vol 118 (23) ◽  
pp. 6087-6096 ◽  
Author(s):  
Pekka Jaako ◽  
Johan Flygare ◽  
Karin Olsson ◽  
Ronan Quere ◽  
Mats Ehinger ◽  
...  

Abstract Diamond-Blackfan anemia (DBA) is a congenital erythroid hypoplasia caused by a functional haploinsufficiency of genes encoding for ribosomal proteins. Among these genes, ribosomal protein S19 (RPS19) is mutated most frequently. Generation of animal models for diseases like DBA is challenging because the phenotype is highly dependent on the level of RPS19 down-regulation. We report the generation of mouse models for RPS19-deficient DBA using transgenic RNA interference that allows an inducible and graded down-regulation of Rps19. Rps19-deficient mice develop a macrocytic anemia together with leukocytopenia and variable platelet count that with time leads to the exhaustion of hematopoietic stem cells and bone marrow failure. Both RPS19 gene transfer and the loss of p53 rescue the DBA phenotype implying the potential of the models for testing novel therapies. This study demonstrates the feasibility of transgenic RNA interference to generate mouse models for human diseases caused by haploinsufficient expression of a gene.


10.1038/5951 ◽  
1999 ◽  
Vol 21 (2) ◽  
pp. 169-175 ◽  
Author(s):  
Natalia Draptchinskaia ◽  
Peter Gustavsson ◽  
Björn Andersson ◽  
Monica Pettersson ◽  
Thiébaut-Noël Willig ◽  
...  

1999 ◽  
Vol 105 (5) ◽  
pp. 496-500 ◽  
Author(s):  
H. Matsson ◽  
J. Klar ◽  
N. Draptchinskaia ◽  
P. Gustavsson ◽  
B. Carlsson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document