ribosomal protein s19
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 10)

H-INDEX

26
(FIVE YEARS 1)

Development ◽  
2021 ◽  
Author(s):  
Alicia McCarthy ◽  
Kahini Sarkar ◽  
Elliot T. Martin ◽  
Maitreyi Upadhyay ◽  
Seoyeon Jang ◽  
...  

Gamete formation from germline stem cells (GSCs) is essential for sexual reproduction. However, the regulation of GSC differentiation are incompletely understood. Set2, which deposits H3K36me3 modifications, is required for GSC differentiation during Drosophila oogenesis. We discovered that the H3K36me3 reader Male-specific lethal 3 (MSL3) and histone acetyltransferase complex Ada2a-containing (ATAC) cooperate with Set2 to regulate GSC differentiation in female Drosophila. MSL3, acting independent from the rest of the male specific lethal complex, promotes transcription of genes including a germline enriched ribosomal protein S19 paralog, RpS19b. RpS19b upregulation is required for translation of RNA-binding Fox protein 1 (Rbfox1), a known meiotic cell cycle entry factor. Thus, MSL3 regulates GSC differentiation by modulating translation of a key factor that promotes transition to an oocyte fate.


2021 ◽  
Vol 22 (10) ◽  
pp. 5150
Author(s):  
Nehal Gupta ◽  
Shreyas Gaikwad ◽  
Itishree Kaushik ◽  
Stephen E. Wright ◽  
Maciej M. Markiewski ◽  
...  

A major contributing factor in triple-negative breast cancer progression is its ability to evade immune surveillance. One mechanism for this immunosuppression is through ribosomal protein S19 (RPS19), which facilitates myeloid-derived suppressor cells (MDSCs) recruitment in tumors, which generate cytokines TGF-β and IL-10 and induce regulatory T cells (Tregs), all of which are immunosuppressive and enhance tumor progression. Hence, enhancing the immune system in breast tumors could be a strategy for anticancer therapeutics. The present study evaluated the immune response of atovaquone, an antiprotozoal drug, in three independent breast-tumor models. Our results demonstrated that oral administration of atovaquone reduced HCC1806, CI66 and 4T1 paclitaxel-resistant (4T1-PR) breast-tumor growth by 45%, 70% and 42%, respectively. MDSCs, TGF-β, IL-10 and Tregs of blood and tumors were analyzed from all of these in vivo models. Our results demonstrated that atovaquone treatment in mice bearing HCC1806 tumors reduced MDSCs from tumor and blood by 70% and 30%, respectively. We also observed a 25% reduction in tumor MDSCs in atovaquone-treated mice bearing CI66 and 4T1-PR tumors. In addition, a decrease in TGF-β and IL-10 in tumor lysates was observed in atovaquone-treated mice with a reduction in tumor Tregs. Moreover, a significant reduction in the expression of RPS19 was found in tumors treated with atovaquone.


2021 ◽  
Vol 5 (01) ◽  
pp. 37-41
Author(s):  
Quazi Smita Haque ◽  
Md. Maruf Al Hasan ◽  
Muhammad Shahidul Islam Sikder ◽  
Sazzad Zayed Chowdhury ◽  
Masba Uddin Chowdhury ◽  
...  

Diamond Blackfan Anaemia (DBA) is a rare disorder which presents with anaemia in early childhood. This heterogenous disorder is mainly autosomal dominantly inherited. Significantproportions of the cases are associated with craniofacial anomalies and some cases may end up developing malignancy. The diagnosis is established by blood investigations, and bone marrow studies in which red cell precursors are reduced or absent. Screening for the mutations including those encoding for ribosomal proteins in the patient and the family members is confirmatory for diagnosis. Human Leukocyte Antigen (HLA) matched hemopoietic stem cell transplantation is the definitive treatment of choice. In other cases, corticosteroids have been tried. The haemoglobin level is maintained with packed red cell transfusion. We are presenting here a male baby who had anaemia soon after birth and was brought to us at the age of 1 year 3 months. The diagnosis of DBA was made since the patient presented with anaemia and supportive biochemical and histological evidence. Genetic screening revealed mutation in ribosomal protein S19 (RPS19) gene in the baby.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 597
Author(s):  
Haoran Zhang ◽  
Qiuxiang Zhou ◽  
Chenyun Guo ◽  
Liubin Feng ◽  
Huilin Wang ◽  
...  

Multidrug-resistant tuberculosis (TB) is a serious threat to public health, calling for the development of new anti-TB drugs. Chaperon protein RimM, involved in the assembly of ribosomal protein S19 into 30S ribosomal subunit during ribosome maturation, is a potential drug target for TB treatment. The C-terminal domain (CTD) of RimM is primarily responsible for binding S19. However, both the CTD structure of RimM from Mycobacterium tuberculosis (MtbRimMCTD) and the molecular mechanisms underlying MtbRimMCTD binding S19 remain elusive. Here, we report the solution structure, dynamics features of MtbRimMCTD, and its interaction with S19. MtbRimMCTD has a rigid hydrophobic core comprised of a relatively conservative six-strand β-barrel, tailed with a short α-helix and interspersed with flexible loops. Using several biophysical techniques including surface plasmon resonance (SPR) affinity assays, nuclear magnetic resonance (NMR) assays, and molecular docking, we established a structural model of the MtbRimMCTD–S19 complex and indicated that the β4-β5 loop and two nonconserved key residues (D105 and H129) significantly contributed to the unique pattern of MtbRimMCTD binding S19, which might be implicated in a form of orthogonality for species-dependent RimM–S19 interaction. Our study provides the structural basis for MtbRimMCTD binding S19 and is beneficial to the further exploration of MtbRimM as a potential target for the development of new anti-TB drugs.


2020 ◽  
Vol 13 (6) ◽  
pp. 1173-1177
Author(s):  
Kazuya Kimura ◽  
Kazuhiro Shimazu ◽  
Tsutomu Toki ◽  
Momoko Misawa ◽  
Koji Fukuda ◽  
...  

Author(s):  
Hidetsugu Torihara ◽  
Sayomi Nakamine-Higa ◽  
Shiho Okitsu ◽  
Hideyuki Yamamoto

2019 ◽  
Author(s):  
Alicia McCarthy ◽  
Kahini Sarkar ◽  
Elliot T Martin ◽  
Maitreyi Upadhyay ◽  
Joshua R James ◽  
...  

SummaryGamete formation from germline stem cells (GSCs) is essential for sexual reproduction. However, the regulation of GSC differentiation and meiotic entry are incompletely understood. Set2, which deposits H3K36me3 modifications, is required for differentiation of GSCs during Drosophila oogenesis. We discovered that the H3K36me3 reader Male-specific lethal 3 (MSL3) and the histone acetyltransferase complex Ada2a-containing (ATAC) cooperate with Set2 to regulate entry into meiosis in female Drosophila. MSL3 expression is restricted to the mitotic and early meiotic stages of the female germline, where it promotes transcription of genes encoding synaptonemal complex components and a germline enriched ribosomal protein S19 paralog, RpS19b. RpS19b upregulation is required for translation of Rbfox1, a known meiotic cell cycle entry factor. Thus, MSL3 is a master regulator of meiosis, coordinating the expression of factors required for recombination and GSC differentiation. We find that MSL3 is expressed during mouse spermatogenesis, suggesting a conserved function during meiosis.


Sign in / Sign up

Export Citation Format

Share Document