Cord blood transplantation provides better reconstitution of hematopoietic reservoir compared with bone marrow transplantation

Blood ◽  
2003 ◽  
Vol 102 (3) ◽  
pp. 1138-1141 ◽  
Author(s):  
Francesco Frassoni ◽  
Marina Podestà ◽  
Rita Maccario ◽  
Giovanna Giorgiani ◽  
Gabriele Rossi ◽  
...  

Abstract Delayed hematopoietic recovery is the main factor precluding a wider use of cord blood (CB) transplants. We hypothesized that this delayed engraftment might not be related to an insufficient number of stem cells in the graft, but to an intrinsic difficulty of these cells to undergo differentiation. To test our hypothesis, 2 groups of children were compared; 12 received a CB transplant and 12 an adult bone marrow (BM) transplant. We studied neutrophil and platelet recovery and, at a median time of approximately 1 year after transplantation, the frequency of colony-forming cells (CFCs) and long-term culture initiating cells (LTC-ICs) in the BM of the 2 groups. Recipients of BM transplants received 1-log more cells and had significantly faster neutrophil and platelet recovery. Conversely, the frequency of committed and early progenitors was significantly higher in the BM of children given CB cells compared with BM transplant recipients (median count of CFC/2 × 104 BM mononuclear cells, 20 versus 11, P = .007; median count of LTC-IC/106 BM mononuclear cells, 8.2 versus 0.2 P = .001). CB, but not adult BM stem cells, can better restore the host hematopoietic progenitor cell reservoir; the delayed engraftment after CB transplantation may reflect the difficulty of CB progenitors to reprogram themselves toward differentiation.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4949-4949
Author(s):  
Tao Du ◽  
George F. Atweh ◽  
Yelena Galperin ◽  
Rona Singer Weinberg

Abstract Cord blood is being used at an increasing frequency as a source of stem and progenitor cells in human hematopoietic transplantation. However, very little is known about the kinetics of engraftment of cord blood relative to bone marrow derived stem cells. We have used a murine model of newborn/cord blood transplantation to address this question. Our studies demonstrated that murine NB can provide long-term engraftment in primary, secondary, and tertiary transplant recipients. Although NB engrafts more slowly than BM, at one year, engraftment was similar in both types of recipients. We compared the rate of recovery of blood counts, hematopoietic progenitor counts and putative stem cell [SC] counts (i.e. Sca-1+, c-kit+, Lin- cells) in recipients of NB and BM transplantation. Interestingly, the SC ratio in mononuclear cells from donor NB/donor BM was 3.25 ± 0.8 (range = 2.45 – 4.75, n=15). Similarly, donor NB mononuclear cells contained approximately 30% of the number of megakaryocytic progenitors, 12% of the myeloid progenitors and 5% of the erythroid progenitors of donor BM mononuclear cells. The repopulation kinetics in recipients of donor BM and NB transplantation were analyzed at regular intervals, up to 8 months after transplantation. During the first two weeks, NB recipients had lower hemoglobin, WBC and platelet counts than BM recipients. However, by 1 month, the hemoglobin and WBC counts were at similar levels in NB and BM recipients. In contrast, NB transplantation recipients required 2 to 3 months to achieve platelet counts similar to those in BM recipients. These results are reminiscent of the well-known delayed platelet recovery following human cord blood transplantation. Progenitor cell counts in the bone marrow of recipients paralleled the hematological recovery described above. At 2 weeks post-transplantation, progenitor counts of all lineages in NB recipients were 25 to 35% of those in BM recipients. By 1 month, erythroid and myeloid progenitor numbers were similar in NB and BM recipients. In contrast, the appearance of megakaryocytic progenitors was delayed following NB transplantation and did not reach the same level as BM recipients until about 2 months after transplantation. During recovery, the number of SC in the bone marrow of both types of recipients increased gradually over time. At one month after transplantation, the number of SC in BM recipients was significantly greater than that in NB recipients, with a ratio of 4.2 ± 0.2. This SC ratio decreased gradually during the next several months. At 2, 4, and 8 months following transplantation, the ratios of SC in BM recipients/NB recipients were 3.5 ± 0.4, 2.6 ± 0.5, and 2.2 ± 0.3, respectively (n=5). This gradual decrease in the ratio of BM/NB SC suggests that NB SC increase more rapidly than BM SC. In conclusion, these data demonstrate that the kinetics of hematopoietic and stem cell recovery following NB and BM transplantation are significantly different. Although hematopoietic recovery after NB transplantation is slow at first, final engraftment is similar following NB and BM transplantation. Furthermore, the number of SC in NB recipients increases at a faster rate than the number of SC in BM recipients. These differences in SC recovery may be a reflection of differences either in the homing capacity or in the functional maturity of NB relative to BM SC. Further investigation is required to distinguish between these two possibilities.


Blood ◽  
2004 ◽  
Vol 104 (12) ◽  
pp. 3813-3820 ◽  
Author(s):  
Satoshi Takahashi ◽  
Tohru Iseki ◽  
Jun Ooi ◽  
Akira Tomonari ◽  
Kashiya Takasugi ◽  
...  

Unrelated cord blood transplantation (CBT) has now become more common, but as yet there have been only a few reports on its outcome compared with bone marrow transplantation (BMT), especially for adults. We studied the clinical outcomes of 113 adult patients with hematologic malignancies who received unrelated BM transplants (n = 45) or unrelated CB transplants (n = 68). We analyzed the hematopoietic recovery, rates of graft-versus-host disease (GVHD), risks of transplantation-related mortality (TRM) and relapse, and disease-free survival (DFS) using Cox proportional hazards models. The time from donor search to transplantation was significantly shorter among CB transplant recipients (median, 2 months) than BM transplant recipients (median, 11 months; P < .01). Multivariate analysis demonstrated slow neutrophil (P < .01) and platelet (P < .01) recoveries in CBT patients compared with BMT patients. Despite rapid tapering of immunosuppressants after transplantation and infrequent use of steroids to treat severe acute GVHD, there were no GVHD-related deaths among CB transplant recipients compared with 10 deaths of 24 among BM transplant recipients. Unrelated CBT showed better TRM and DFS results compared with BMT (P = .02 and P < .01, respectively), despite the higher human leukocyte antigen mismatching rate and lower number of infused cells. These data strongly suggest that CBT could be safely and effectively used for adult patients with hematologic malignancies.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1199-1199
Author(s):  
Alma J. Nauta ◽  
Alwine B. Kruisselbrink ◽  
Roelof Willemze ◽  
Willem E. Fibbe

Abstract Umbilical cord blood (UCB) is considered as an attractive alternative source of hematopoietic stem cells for allogeneic stem cell transplantations in patients who lack HLA-matched donors. However, the low cell dose adversely affects the speed of hematopoietic recovery and therefore limits the application of UCB transplantation in adults. Although ex-vivo expansion of cord blood cells has been explored as a strategy to increase the cell dose, compromised engraftment potential of expanded cells has been demonstrated. Another approach to overcome cell dose limitations is transplantation of multiple, unrelated UCB units. To investigate the effect of multiple cord transplantation on engraftment, NOD/SCID mice were transplanted with human hematopoietic progenitor cells (CD34+) derived from two UCB units with HLA disparity. During the first six weeks after transplantation the number of human platelets in peripheral blood was quantified by flow cytometry. Six weeks after transplantation, the mice were sacrificed and the percentage and donor origin of human CD45+ cells in blood, and in bone marrow was determined by flow cytometry. Transplantation of CD34+ cells derived from two UCB donors resulted in significantly higher number of human platelets in peripheral blood than transplantation of CD34+ cells from either donor alone, ranging from 3.92x106/ml to 10.29x106/ml (mean 6.4x106 ± 2.55x106/ml) and 0.11x106/ml to 3.12.106/ml (mean 1.42x106 ± 1.17x106/ml), respectively. Furthermore, the overall human cell engraftment level in bone marrow after double cord blood transplantation ranged from 7.01% to 64.34% (mean 29.6 ± 21.5%) a nearly 7-fold increase compared to single cord blood transplantation ranging from 0.27% to 13.5% (mean 4.6 ± 3.8%) Although consistently higher engraftment levels were reached after double cord blood transplantation, two different patterns were observed: in 2 out of 4 experiments cells from one donor predominated the engraftment (ratio 3:1), while in two other experiments the two units contributed equally to BM engraftment. The mechanism underlying these effects are <S>is</S> not yet clear. It is not very likely that the single donor predominance results from an unequal amount of hematopoietic stem cells in the cord blood units because each cord blood showed comparable levels of engraftment as a single unit. Alternatively, the unequal engraftment may result from an immunological competition or a graft versus graft stimulatory effect between the cords during the engraftment process and further studies are required to determine if the contribution of both units is dependent on the degree of HLA matching between the two cords. Taken together, these results demonstrate that double cord blood transplantation may represent a means of achieving increased engraftment, making multiple cord blood transplantation a promising strategy to improve the outcome of UCB transplantation. Studies are underway to unravel the mechanisms underlying the enhanced engraftment.


Blood ◽  
1997 ◽  
Vol 89 (3) ◽  
pp. 1089-1099 ◽  
Author(s):  
Andromachi Scaradavou ◽  
Luis Isola ◽  
Pablo Rubinstein ◽  
Yelena Galperin ◽  
Vesna Najfeld ◽  
...  

Abstract The purposes of the research reported here were first to explore a murine model for human placental and umbilical cord blood transplantation and second to evaluate the engraftment ability of ex vivo cultured hematopoietic cells. Murine near-term fetal and neonatal peripheral blood (FNPB) cells, genetically marked with the human multiple drug resistance transgene (MDR1) were used for syngeneic transplants into sublethally irradiated adult mice. Donor cells were transplanted either fresh and untreated, or after ex vivo culture in the presence of the hematopoietic growth factors recombinant murine stem cell factor, recombinant human interleukin-3 (rHu IL-3), and rHu IL-6, in a liquid culture system. To evaluate, count, and characterize FNPB progenitor cell-derived colonies, neonatal mouse mononuclear cells were cultured directly in methylcellulose with growth factors. To assess their ex vivo expansion ability, FNPB mononuclear cells were first cultured in liquid medium for 3 to 8 days and then transferred to semisolid assay plates. Evaluation of the cell counts after liquid culture showed a 1.4- to 11.6-fold increase, and the numbers of colonies observed in methylcellulose were similar to those produced by fresh FNPB cells. Donor-type engraftment was demonstrated by polymerase chain reaction (PCR) amplification of the human MDR1 transgene in the peripheral blood of all surviving animals (5 of 7 recipients of the fresh, and 3 of 8 recipients of the ex vivo–cultured cells) 2 to 4 months after transplantation. The proportion of donor leukocytes in the peripheral blood of the recipients (chimerism) was evaluated using fluorescence in situ hybridization (FISH) analysis 4 to 6 months after transplantation and ranged from 2% to 26%. In addition, bone marrow cultures were obtained from two recipient animals: one had received fresh-untreated cells and was evaluated 8 months after transplant, the other had received ex vivo cultured cells and was tested 14 months after grafting. The derived hematopoietic colonies were tested by PCR and the transgene was detected, conclusively proving long-term engraftment of donor cells. These results indicate that FNPB transplants can be successfully performed in sublethally irradiated mice with and without ex vivo culture. Long-term donor-type engraftment with sustained chimerism has been demonstrated. Thus, murine neonatal blood grafts can be used as an animal model for cord blood transplantation for gene therapy studies where complete myeloablation is not desirable and partial replacement of defective marrow may be sufficient. Furthermore, the possibility of numerically expanding hematopoietic progenitor cells contained in neonatal blood without affecting their engraftment ability could facilitate use of cord blood grafts in adult recipients.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 723-723
Author(s):  
Martino Introna ◽  
Marta Franceschetti ◽  
Alice Ciocca ◽  
Gianmaria Borleri ◽  
Elena Conti ◽  
...  

Abstract Cytokine induced killer cells (CIK) are CD3+/CD56+ T/NK cells with cytotoxic potential against leukemic and other tumor cells but not normal bone marrow in vitro and in vivo. They are expanded in vitro with rhIL-2 after stimulation of peripheral blood mononuclear cells with OKT3 and IFN-γ. We have shown in a recent phase I study that 107/kg allogeneic CIK cells can be safely given to patients relapsing after allogeneic bone marrow transplantation and show evidence of anti-leukemic activity in vivo with very little GVHD. Cord blood (CB) transplantation is progressively becoming an extensively used treatment for patients with malignant disorders. One major limitation of this procedure is the lack of donor derived cells to perform donor lymphocyte infusions in case of relapse. In order to be able therefore to extend the use of CIK cells to the CB transplantation setting, we have standardised a 21 days expansion protocol to produce CIK cells starting from very small amounts of nucleated cells isolated from cord blood. Using this protocol, 15x106 mononuclear cells (MNC) from CB containing a mean 0.3x106 CD3+/CD56+ yielded on average 805 x 106 MNC (50 fold expansion) containing 630 x106 CD3+/CD56+ cells (corresponding to a fold expansion of 1860 for CIK). In order to transfer the method to a clinical setting, we explored the possibility of expanding the residual cells recovered from the empty bags after CB transplantion. Three used CB bags were returned to the laboratory after transplantation and repeatedly washed. An average of 22 x106 nucleated cells could be recovered, yielding a mean 473 x106 CD3/CD56+ cells at the end of the culture period (1485 fold expansion of CIK cells). CIK cells generated from CB showed strong cytotoxic activity against a variety of tumor target cell lines including B and T lymphomas and myeloid leukemias (42–72% killing at a 30:1 E:T ratio). More importantly, they were cytotoxic against AML blasts isolated from 2 patients (41% lysis). During expansion CB derived CIK cells upregulated the NKG2D marker from a mean fluorescence intensity of 49 to 209. Furthermore they expressed perforin and granzyme molecules in >90% of cells. These observations open up the possibility of a future clinical application of this protocol, performed in GMP conditions. Patients relapsing following cord blood transplantation may be treated with CIK cells expanded from the same cord blood unit, where donors would not be anymore available for cell mediated immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document