Superoxide dismutase-3 promotes full expression of the EPO response to hypoxia

Blood ◽  
2004 ◽  
Vol 104 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Hagir B. Suliman ◽  
Mervat Ali ◽  
Claude A. Piantadosi

Abstract Extracellular superoxide dismutase (SOD3) is the primary extracellular enzymatic scavenger of superoxide (\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(^{{\cdot}}\mathrm{O}_{2}^{-}\) \end{document}). SOD3's expression is highest in the kidney, but its distribution and biologic functions there are unknown. To investigate the function of renal SOD3, we colocalized it with erythropoietin (EPO) to proximal tubules using in situ hybridization and immunohistochemistry. We then exposed wild-type (Wt) and SOD3 knock-out (KO) mice to hypoxia and found a late hematocrit response in the KO strain. EPO mRNA expression was attenuated in KO mice during the first 6 hours of hypoxia preceded at 2 hours by less accumulation of nuclear hypoxia-inducible transcription factor 1 α (HIF-1α) protein. Meanwhile KO mice exposed to hypoxia showed increases in renal mRNA for superoxide-producing nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX4) and early significant increases in glutathione disulfide (GSSG)/glutathione (GSH), a marker of oxidative stress, compared with Wt mice. Plasma nitrite/nitrate and renal 3-nitrotyrosine (3-NTyr), indicating peroxynitrite formation, increased later in hypoxia, and renal endothelial nitric oxide synthase protein induction was similar in both strains. These data show that hypoxic activation of HIF-1α and its target gene EPO in mouse kidney is regulated closely by the oxidant/antioxidant equilibrium involving SOD3, thus identifying renal SOD3 as a regulatory element in the body's innate adaptation to hypoxia.

2010 ◽  
Vol 113 (6) ◽  
pp. 1376-1384 ◽  
Author(s):  
Matthias Lange ◽  
Atsumori Hamahata ◽  
Daniel L. Traber ◽  
Yoshimitsu Nakano ◽  
Aimalohi Esechie ◽  
...  

Background Recent evidence suggests that nitric oxide produced via the neuronal nitric oxide synthase is involved mainly in the early response to sepsis, whereas nitric oxide derived from the inducible nitric oxide synthase is responsible during the later phase. We hypothesized that early neuronal and delayed inducible nitric oxide synthase blockade attenuates multiple organ dysfunctions during sepsis. Methods Sheep were randomly allocated to sham-injured, nontreated animals (n = 6); injured (48 breaths of cotton smoke and instillation of Pseudomonas aeruginosa into the lungs), nontreated animals (n = 7); and injured animals treated with a neuronal nitric oxide synthase inhibitor from 1 to 12 h and an inducible nitric oxide synthase inhibitor from 12 to 24 h postinjury (n = 6). Results The injury induced arterial hypotension, vascular leakage, myocardial depression, and signs of renal and hepatic dysfunctions. The treatment significantly attenuated, but did not fully prevent, the decreases in mean arterial pressure and left ventricular stroke work index. Although the elevation of creatinine levels was partially prevented, the decreases in urine output and creatinine clearance were not affected. The injury-related increases in bilirubin levels, international normalized ratio, and lipid peroxidation in liver tissue were significantly attenuated. Although plasma nitrite/nitrate levels were significantly increased versus baseline from 12-24 h in controls, plasma nitrite/nitrate levels were not increased in treated animals. Conclusions The combination treatment shows potential benefit on sepsis-related arterial hypotension and surrogate parameters of organ dysfunctions in sheep. It may be crucial to identify the time course of expression and activation of different nitric oxide synthase isoforms in future investigations.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Mohamed A. Morsy ◽  
Salwa A. Ibrahim ◽  
Entesar F. Amin ◽  
Maha Y. Kamel ◽  
Rehab A. Rifaai ◽  
...  

Gentamicin, an aminoglycoside antibiotic, is used for the treatment of serious Gram-negative infections. However, its usefulness is limited by its nephrotoxicity. Sildenafil, a selective phosphodiesterase-5 inhibitor, was reported to prevent or decrease tissue injury. The aim of this study is to evaluate the potential protective effects of sildenafil on gentamicin-induced nephrotoxicity in rats. Male Wistar rats were injected with gentamicin (100 mg/kg/day, i.p.) for 6 days with and without sildenafil. Sildenafil administration resulted in nephroprotective effect in gentamicin-intoxicated rats as it significantly decreased serum creatinine and urea, urinary albumin, and renal malondialdehyde and nitrite/nitrate levels, with a concomitant increase in renal catalase and superoxide dismutase activities compared to gentamicin-treated rats. Moreover, immunohistochemical examination revealed that sildenafil treatment markedly reduced inducible nitric oxide synthase (iNOS) expression, while expression of endothelial nitric oxide synthase (eNOS) was markedly enhanced. The protective effects of sildenafil were verified histopathologically. In conclusion, sildenafil protects rats against gentamicin-induced nephrotoxicity possibly, in part, through its antioxidant activity, inhibition of iNOS expression, and induction of eNOS production.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Paulina M. Getsy ◽  
Sripriya Sundararajan ◽  
Walter J. May ◽  
Graham C. von Schill ◽  
Dylan K. McLaughlin ◽  
...  

AbstractThe roles of endothelial nitric oxide synthase (eNOS) in the ventilatory responses during and after a hypercapnic gas challenge (HCC, 5% CO2, 21% O2, 74% N2) were assessed in freely-moving female and male wild-type (WT) C57BL6 mice and eNOS knock-out (eNOS-/-) mice of C57BL6 background using whole body plethysmography. HCC elicited an array of ventilatory responses that were similar in male and female WT mice, such as increases in breathing frequency (with falls in inspiratory and expiratory times), and increases in tidal volume, minute ventilation, peak inspiratory and expiratory flows, and inspiratory and expiratory drives. eNOS-/- male mice had smaller increases in minute ventilation, peak inspiratory flow and inspiratory drive, and smaller decreases in inspiratory time than WT males. Ventilatory responses in female eNOS-/- mice were similar to those in female WT mice. The ventilatory excitatory phase upon return to room-air was similar in both male and female WT mice. However, the post-HCC increases in frequency of breathing (with decreases in inspiratory times), and increases in tidal volume, minute ventilation, inspiratory drive (i.e., tidal volume/inspiratory time) and expiratory drive (i.e., tidal volume/expiratory time), and peak inspiratory and expiratory flows in male eNOS-/- mice were smaller than in male WT mice. In contrast, the post-HCC responses in female eNOS-/- mice were equal to those of the female WT mice. These findings provide the first evidence that the loss of eNOS affects the ventilatory responses during and after HCC in male C57BL6 mice, whereas female C57BL6 mice can compensate for the loss of eNOS, at least in respect to triggering ventilatory responses to HCC.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Keiichiro Kataoka ◽  
Masaya Fukuda ◽  
Eiichiro Yamamoto ◽  
Taishi Nakamura ◽  
Hisao Ogawa ◽  
...  

Background: Copper/zinc SOD (SOD1) is a major enzyme which deactivates superoxide radicals (O2−), and endothelial nitric oxide synthase (eNOS) synthesizes nitric oxide (NO) in endothelial cells. Reduction of each enzyme can increase oxidative stress, leading to cardiovascular dysfunction. Herein, we established SOD1 and eNOS double deficient mice, and examined their physiological and pathological cardiovascular phenotypes to clarify the function of eNOS in cardiovascular system in the case of SOD1 deficiency. Methods and Results: SOD1 deficient mice (SOD-KO) were crossbred with eNOS deficient mice (eNOS-KO), and SOD1 and eNOS double-deficient mice (Do-KO) were established. Do-KO had significantly higher blood pressure (BP) than SOD-KO (129.6 ± 4.7 vs. 102.1 ± 1.2 mmHg, p<0.0001). Do-KO had significantly higher heart weights than SOD-KO (3.12 ± 0.09 vs. 2.89 ± 0.03 mg/g, p<0.01). Relaxation of carotid arteries due to acetylcholine was mildly impaired in SOD-KO when compared with wild type mice (WT), while relaxation to acetylcholine was completely ablated in Do-KO. These data indicated that targeted ablation of eNOS in SOD-KO impaired their vascular relaxation, and caused hypertension. Next, we examined vascular remodeling induced by periadventitial cuff-injuries. Four weeks after cuff replacement, marked neointimal formation was induced in SOD-KO; however, eNOS deficiency in SOD-KO ameliorated the vascular remodeling of SOD-KO, and significantly decreased the ratio of intimal to medial areas (1.23 ± 0.23 vs. 2.23 ± 0.38, p<0.05). This data shows that eNOS enhances the vascular remodeling of SOD-KO caused by cuff injury. NO and O2− react to form the strong oxidant peroxynitrite, which is involved in vascular injury. The levels of 3-nitrotyrosine, a marker of peroxynitrite generation, were significantly elevated in the injured arteries of SOD-KO, while their elevation were attenuated in Do-KO. This indicates that NO derived from eNOS enhances the peroxynitrite formation in injured arteries of SOD-KO, so that vascular remodeling may be markedly enhanced. Conclusion: Our results demonstrate that peroxynitrite, generated from O2− and eNOS derived-NO, plays a key role in vascular remodeling induced by periadventitial injury.


Life Sciences ◽  
2013 ◽  
Vol 93 (25-26) ◽  
pp. e13
Author(s):  
Nicolas Vignon-Zellweger ◽  
Katharina Relle ◽  
Jan Rahnenfuhrer ◽  
Karima Schwab ◽  
Berthold Hocher ◽  
...  

PLoS ONE ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. e0206254
Author(s):  
Roberta Fernanda da Silva ◽  
Átila Alexandre Trapé ◽  
Thaís Amanda Reia ◽  
Riccardo Lacchini ◽  
Gustavo Henrique Oliveira-Paula ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document