HOXB6 overexpression in murine bone marrow immortalizes a myelomonocytic precursor in vitro and causes hematopoietic stem cell expansion and acute myeloid leukemia in vivo

Blood ◽  
2005 ◽  
Vol 105 (4) ◽  
pp. 1456-1466 ◽  
Author(s):  
Neal A. Fischbach ◽  
Sofia Rozenfeld ◽  
Weifang Shen ◽  
Stephen Fong ◽  
Daniel Chrobak ◽  
...  

AbstractThe HOX family of homeobox genes plays an important role in normal and malignant hematopoiesis. Dysregulated HOX gene expression profoundly effects the proliferation and differentiation of hematopoietic stem cells (HSCs) and committed progenitors, and aberrant activation of HOX genes is a common event in human myeloid leukemia. HOXB6 is frequently overexpressed in human acute myeloid leukemia (AML). To gain further insight into the role of HOXB6 in hematopoiesis, we overexpressed HOXB6 in murine bone marrow using retrovirus-mediated gene transfer. We also explored structure-function relationships using mutant HOXB6 proteins unable to bind to DNA or a key HOX-binding partner, pre–B-cell leukemia transcription factor-1 (PBX1). Additionally, we investigated the potential cooperative interaction with myeloid ecotropic viral integration site 1 homolog (MEIS1). In vivo, HOXB6 expanded HSCs and myeloid precursors while inhibiting erythropoiesis and lymphopoiesis. Overexpression of HOXB6 resulted in AML with a median latency of 223 days. Coexpression of MEIS1 dramatically shortened the onset of AML. Cytogenetic analysis of a subset of HOXB6-induced AMLs revealed recurrent deletions of chromosome bands 2D-E4, a region frequently deleted in HOXA9-induced AMLs. In vitro, HOXB6 immortalized a factor-dependent myelomonocytic precursor capable of granulocytic and monocytic differentiation. These biologic effects of HOXB6 were largely dependent on DNA binding but independent of direct interaction with PBX1.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4089-4089
Author(s):  
Yanyan Zhang ◽  
Hadjer Abdelouahab ◽  
Aline Betems ◽  
Monika Wittner ◽  
William Vainchenker ◽  
...  

Abstract Abstract 4089 The receptor CXCR4 and its ligand SDF-1 play major physiological roles especially on hematopoietic stem cells homing and retention. Many studies have implicated CXCR4 in the invasion by tumor cells of organs that produce SDF-1. In acute myeloid leukemia, the physiological role of CXCR4 is not fully understood. We used retrovirus to express MLL-ENL oncogene in CXCR4+/+ and CXCR4−/− hematopoietic primitive cells (Lin- isolated from fetal liver) and showed that CXCR4 is dispensable for generation of immortalized colonies in vitro. To determine CXCR4 function in vivo, CXCR4+/+ and CXCR4−/− transformed cells were transplanted into lethally irradiated mice. Whatever their phenotype, the recipient developed a myelo-monocytique leukemia characterized by their expression of Gr-1 and Mac-1. As expected, all recipients of MLL-ENL transduced CXCR4+/+ cells were moribund within 35 to 80 days post transplant (median survival time: 50 days). Strikingly, recipients of MLL-ENL transduced CXCR4−/− cells showed significantly increased lifespan, with a median survival time of 90 days. The cellularity of the peripheral blood of recipients of MLL-ENL transduced cells displayed considerable increases over time although this increase was much lower in CXCR4−/− than in CXCR4+/+ chimera. Bone marrow of MLL-ENL transduced CXCR4−/− chimera had moderately decreased numbers of mononuclear cells. There were important numbers of leukemic CD45.2+/Gr1+/Mac1+/c-kit+ cells in spleen from MLL-ENL CXCR4+/+ chimera which suggested that CXCR4 is important for leukemic progenitors cells retention in the bone marrow and especially in the spleen. The homing capacity of transduced CXCR4+/+ cells is comparable to the CXCR4−/− cells. Finally, more DNA damages were found in the BM cells of MLL-ENL CXCR4−/− chimera. All these results were confirmed by treating of MLL-ENL CXCR4+/+ chimera with CXCR4 inhibitor (TN140). These results demonstrated that in absence of CXCR4, the cells transduced by oncogene MLL-ENL are capable of generating leukemia in the recipients. However, mice transplanted with MLL-ENL transduced CXCR4−/− FL cells developed acute myeloid leukemia with reduced aggressiveness and organ infiltration, which is associated with induced differentiation and DNA instability. These results indicated that the MLL-ENL progenitors are dependent on CXCR4 for their maintenance in the BM and spleen suggesting that CXCR4 inhibitors might have potential therapeutic applications. Disclosures: No relevant conflicts of interest to declare.


Cancers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1663 ◽  
Author(s):  
Arne Velthaus ◽  
Kerstin Cornils ◽  
Jan K. Hennigs ◽  
Saskia Grüb ◽  
Hauke Stamm ◽  
...  

Leukemia-initiating cells reside within the bone marrow in specialized niches where they undergo complex interactions with their surrounding stromal cells. We have identified the actin-binding protein Plastin-3 (PLS3) as potential player within the leukemic bone marrow niche and investigated its functional role in acute myeloid leukemia. High expression of PLS3 was associated with a poor overall and event-free survival for AML patients. These findings were supported by functional in vitro and in vivo experiments. AML cells with a PLS3 knockdown showed significantly reduced colony numbers in vitro while the PLS3 overexpression variants resulted in significantly enhanced colony numbers compared to their respective controls. Furthermore, the survival of NSG mice transplanted with the PLS3 knockdown cells showed a significantly prolonged survival in comparison to mice transplanted with the control AML cells. Further studies should focus on the underlying leukemia-promoting mechanisms and investigate PLS3 as therapeutic target.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5040-5040
Author(s):  
Bing Xu ◽  
Rongwei Li ◽  
Huijuan Dong ◽  
Feili Chen ◽  
Yuejian Liu ◽  
...  

Abstract Background Disulfiram(DS), an old drug clinically used for alcoholism, was reported to have antitumor effects, recent studies have found that Copper(Cu) can significantly enhance the DS-induced cell death in vitro in a variety of tumor cells. Our previous studies also demonstrated that disulfiram/copper (DS/Cu) couldtarget human leukemia cell lines(like KG1α,Molt4) through the activation of JNK, in vitro. However, there is few report about the ability of DS/Cu in killing cancer cells in vivo. Aims This study aims to explore the effect of DS/Cu on acute myeloid leukemia cell line KG1αin vivo and clarify the underlining mechanism. Methods 6-8 week old female NOD/SCID mice were sublethally irradiated with 2Gy X-ray the day before transplantation, followed by intravenous injection of KG1α cells (1×107 cells) suspended in 0.2 mL of PBS. 5 weeks after transplantation mice were randomly divided into three treatment groups: vehicle (0.9% saline), a combination of DS and Cu daily for 2 weeks, Ara-C alone twice before killing. Mice were sacrificed after 2 weeks treatment with tissues of spleen, liver, bone marrow being observed using histopathology method to detect the invasion of leukemia. The DS/Cu-induced p-c-jun activation was also examined by western blot using tissues of spleen, liver, bone marrow. Statistical analysis was carried out with one-way ANOVA to assess statistical significance (*p < 0.05). Results 4 weeks after transplantation, mice were dispirited with low appetite, down-bent gait, wrinkled fur, slow move, just like suffered from leukemia. What’s more, immature blasts like morphology similar to KG1α were found in the peripheral blood of the mice(11%±3.41). All the mice were sacrificed after 2 weeks treatment, mice in control group were observed with slightly larger spleen and liver with the morphology of invasion of leukemia such as a granular appearance than the other two groups. Histopathology examination showed that leukemia cells infiltrate liver, spleen and bone marrow, and the immunohistochemistry examination found that the leukemia cells in spleen, liver and bone marrow expressed human specific antigen CD45 with the highest expression level in the control group. Moreover, solid tumor could be observed in the peritoneal cavity of two mice in the control group with expression of human specific antigen CD45detected by immunohistochemistry examination. Western blot in this study showed DS/Cu complex induced phosphorylation of c-Jun expression in the spleen, liver and bone marrow. Conclusion DS/Cu complex could effectively target the acute myeloid leukemia cells in the acute leukemia NOD/SCID mice while inhibiting the invasion of leukemia to some extent, and the activation of JNK might play a functional role in DS/Cu mediated antileukemic effects. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 4 (13) ◽  
pp. 3000-3010 ◽  
Author(s):  
Jan Habbel ◽  
Lucas Arnold ◽  
Yiyang Chen ◽  
Michael Möllmann ◽  
Kirsten Bruderek ◽  
...  

Abstract Acute myeloid leukemia (AML) is characterized by a high relapse rate and dismal long-term overall survival which is related to persistence of leukemia-initiating cells in their niche. Different animal models of myeloid malignancies reveal how neoplastic cells alter the structural and functional characteristics of the hematopoietic stem cell niche to reinforce malignancy. Understanding and disruption of the microenvironmental interactions with AML cells are a vital need. Malignant niches frequently go along with inflammatory responses, but their impact on cancerogenesis often remains unexplored. Here, we uncovered an aberrant production of inflammatory cytokines in untreated AML bone marrow that was proved to promote the proliferation of leukemia cells. This inflammatory response induced an activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway in AML blasts as well as bone marrow stromal cells that also fostered leukemia proliferation. Inhibition of JAK/STAT signaling using the selective JAK1/2 inhibitor ruxolitinib resulted in significant antileukemic activity in AML in vitro which is mediated through both cell-autonomous and microenvironment-mediated mechanisms. However, in a xenograft transplantation model, monotherapy with ruxolitinib did not achieve substantial antileukemic activity, possibly suggesting a complementary function of JAK1/2 inhibition in AML.


Blood ◽  
2003 ◽  
Vol 101 (11) ◽  
pp. 4529-4538 ◽  
Author(s):  
Nicolas Pineault ◽  
Christian Buske ◽  
Michaela Feuring-Buske ◽  
Carolina Abramovich ◽  
Patty Rosten ◽  
...  

Abstract HOX genes, notably members of the HOXA cluster, and HOX cofactors have increasingly been linked to human leukemia. Intriguingly, HOXD13, a member of the HOXD cluster not normally expressed in hematopoietic cells, was recently identified as a partner of NUP98 in a t(2;11) translocation associated with t-AML/MDS. We have now tested directly the leukemogenic potential of the NUP98-HOXD13 t(2; 11) fusion gene in the murine hematopoietic model. NUP98-HOXD13 strongly promoted growth and impaired differentiation of early hematopoietic progenitor cells in vitro; this effect was dependent on the NUP98 portion and an intact HOXD13 homeodomain. Expression of the NUP98-HOXD13 fusion gene in vivo resulted in a partial impairment of lymphopoiesis but did not induce evident hematologic disease until late after transplantation (more than 5 months), when some mice developed a myeloproliferative-like disease. In contrast, mice transplanted with bone marrow (BM) cells cotransduced with NUP98-HOXD13 and the HOX cofactor Meis1 rapidly developed lethal and transplantable acute myeloid leukemia (AML), with a median disease onset of 75 days. In summary, this study demonstrates that NUP98-HOXD13 can be directly implicated in the molecular process leading to leukemic transformation, and it supports a model in which the transforming properties of NUP98-HOXD13 are mediated through HOX-dependent pathways.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 715-715
Author(s):  
Dinesh S. Rao ◽  
Ryan M. O’Connell ◽  
Aadel A. Chaudhuri ◽  
Mark Boldin ◽  
Konstantin Taganov ◽  
...  

Abstract Recent discoveries have implicated microRNAs, which are small 22–24 nucleotide long RNA molecules, as important regulators of many cellular processes, including differentiation and development. The microRNA-155 (miR-155) is known to be overexpressed in subsets of B-cell neoplasms and is thought to be important in the activation and function of B-lymphocytes. Here, we show that miR-155 is signficantly overexpressed in human acute myeloid leukemia and that its overexpression is most consistently seen in acute myelomonocytic leukemia. These findings led us to investigate the effects of overexpression of miR-155 in hematopoietic cells. By utilizing retroviral infection and transfer of murine bone marrow, we introduced miR-155 overexpressing hematopoietic stem cells into lethally irradiated recipient mice. Following reconstitution of hematopoietic organs, the mice demonstrated a profound myeloproliferative condition in the bone marrow characterized by replacement of the marrow by proliferating and dysplastic myelomonocytic cells. In addition, extramedullary hematopoiesis was observed in the spleen and examination of the peripheral blood revealed anemia and thrombocytopenia. To begin to explore the mechanisms whereby miR-155 overexpression results in this myeloproliferative phenotype, we utilized computational methods to identify targets predicted to be regulated by miR-155. This revealed several genes that have previously been implicated in myeloid development and neoplasia, which were confirmed to be targets of miR-155 by reverse-transcription/quantitative polymerase chain reaction (RT/QPCR) and by downregulation of luciferase protein upon fusion of the luc gene with the respective 3′ untranslated regions. These studies show a hitherto uncharacterized role of miR-155 in myeloid development and proliferation. Importantly, these findings lay the groundwork for understanding the complex regulatory networks underlying myeloid development in the context of microRNAs, and may point to new therapeutic opportunities in the treatment of myeloid malignancies.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3941-3941 ◽  
Author(s):  
Nicole R. Grieselhuber ◽  
Shaneice R. Mitchell ◽  
Shelley Orwick ◽  
Bonnie K. Harrington ◽  
Virginia M. Goettl ◽  
...  

Abstract Background: Acute myeloid leukemia (AML) has very poor long-term survival with traditional therapies. AML has a diverse pathogenesis and likely represents multiple different diseases. Various epigenetic effector proteins are altered in AML by mutation, over-expression, or compartmental displacement and these changes maintain transcriptional programs important for leukemogenesis. The bromodomain and extra-terminal domain (BET) proteins, including BRD2, BRD3 and BRD4, play roles in many cellular functions important to leukemogenesis, such as super-enhancer function, transcriptional elongation, histone acetylation and cell cycle progression. In particular, AML cells depend on BRD4 for expression of the pro-survival proteins MYC and BCL2. BRD4 has therefore become an attractive target for novel therapeutics. PLX51107 is a novel BET inhibitor with a unique binding mode in the acetylated lysine binding pocket of BRD4 that differentiates it from other compounds under investigation. Our group has previously shown this compound to have antineoplastic activity in models of aggressive B cell malignancies. We have now investigated the anti-leukemic properties of PLX51107 in both in vitro and in vivo models of AML. Results: PLX51107 treatment potently reduced viability and proliferation of the human AML cell lines MV4-11, MOLM-13, OCI-AML3, and Kasumi-1, with IC50 of 0.17, 1.8, 0.2 and 0.2 μM, respectively. We then evaluated the in vitro activity of PLX51007 in primary human AML samples. PLX51107 inhibited the proliferation of primary human AML cells co-cultured with HS5 stromal cells. For nearly all samples tested (n=9), the IC50 of PLX51007 was less than 1 μM (average = 0.41 μM, range 0.039 - 1.5 μM). Notably, PLX51107 showed efficacy across a broad range of AML risk groups, including samples with adverse risk features such as 11q23 abnormalities and FLT3-ITD mutations. In comparison, for the same AML samples, the average IC50 for JQ1 was 0.71 μM (range 0.02 - 3.3 μM) and for cytarabine was 3.5 μM (range 0.33 to >10 μM). Furthermore, PLX51107 treatment reduced the clonogenicity of primary AML cells. Following incubation of AML cells in 1 μM PLX51107, there was significantly decreased colony formation (p<0.05) in drug-free, cytokine-supplemented methylcellulose media. We next examined the efficacy of PLX51107 in vivo, utilizing luciferase labeled MV4-11 AML cells xenotransplanted into NOD / SCID / IL2rgnull (NSG) immunodeficient mice. Daily oral dosing with 20 mg/kg PLX51107 resulted in prolonged survival (median 47 days) compared to vehicle treated control animals (median 30 days, p< 0.001). Weekly measurement of bioluminescence showed decreased disease burden in PLX51107 treated mice. In addition, human peripheral blood CD45 / CD33 double positive cells were significantly decreased in treated animals. Histologic analysis conducted at day 16 showed decreased leukemic burden in the bone marrow of the PLX51107 treated animals. In addition, examination of tissues from moribund mice at time of euthanasia demonstrated fewer leukemia cells in the spleen, liver and bone marrow. Conclusions: Collectively, our results show pre-clinical activity of PLX51107 in AML, supporting further development of this compound in clinical trials for relapsed or refractory myeloid malignancies. We are currently working to define downstream targets of PLX51107 action and developing patient derived AML xenografts to further characterize the in vivo effects of PLX51107. Disclosures Walker: Gilead Sciences: Research Funding. Bhatnagar:Karyopharm: Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3767-3767
Author(s):  
Christian Recher ◽  
Marion David ◽  
Philippe de Medina ◽  
Cécile Bize ◽  
Nizar Serhan ◽  
...  

Abstract Acute Myeloid Leukemia (AML) is the most common type of leukemia in adults. Despite intensive research, current treatments remain unsatisfactory with only 40% of younger (<60 years) and less than 10% of older (>60 years) AML patients achieving long-term complete remission. Consequently, drugs with novel mechanism of action are urgently needed to improve the outcome of these patients. We have recently identified Dendrogenin A (DDA) as a cholesterol metabolite present in normal cells but undetectable in various cancer cell lines including AML (de Medina et al, Nat Commun, 2013). DDA, the first steroidal alkaloid identified in mammals, exhibited strong anticancer effects against different tumor models in vitro and in vivo. In this study, we investigated the antileukemic potency of DDA in AML. We demonstrated that DDA exerts potent cytotoxic effect in a large panel of AML cell lines and cytogenetically and molecularly diverse primary AML patient samples (n=50) with a median IC50 of 3.3 µM (range 1.2-10 µM). We determined that DDA triggers both apoptosis and cytotoxic autophagy on AML cells. Macroautophagy was characterized by the accumulation of autophagic vacuoles and the stimulation of autophagic flux. As opposed to conventional chemotherapies, the antileukemic effect of DDA was similarly efficient in both immature stem/progenitor CD34+CD38-CD123+ subpopulation and leukemic bulk. Interestingly, the antileukemic activity of DDA on AML patient samples was not correlated to usual prognostic factors such as adverse cytogenetic risk karyotype, clonogenic ability, white blood cells count and FLT3-ITD or NPM status. Pharmacokinetic studies revealed that both per os (PO) and intraperitoneal (IP) administration led to a good absorption with calculated bioavailability of 74% (PO) and 48% (IP), showing that these modes of administration are relevant to in vivo preclinical studies. We then examined the in vivo anti-leukemic efficacy of DDA in NOD/SCID mice injected subcutaneously with HL60 and KG1 cells. We demonstrated that daily administration of DDA (20 mg/kg IP or 40 mg/kg PO) significantly reduced KG1 and HL60 tumor growth. Immunohistochemical analysis revealed that AML xenografts from mice exposed to DDA display a 3.5 fold increase of LC3 punctated cells and a decreased P62 level highlighting that DDA induces autophagy in vivo. Furthermore, DDA significantly kills AML cells in bone marrow and brain (55±5.6% reduction of viable CD45+ cells), and strongly reduces (57±7.8%) the total cell tumor burden in bone marrow and spleen in established disease models (eg. orthotopically engraftment of HL60 cells and three primary AML patient cells via tail vein injection in NOD/SCID/IL2Rγc-deficient mice). In addition, we showed that DDA is well tolerated in mice at effective dose and spares normal hematopoietic stem/progenitor cells from healthy donor. Mechanistic studies revealed that DDA is a natural modulator of the Liver X Receptor (LXR), a nuclear receptor involved in cholesterol homeostasis, immunity and proliferation. We found that the silencing of LXRβ gene prevents the capacity of DDA to trigger both cell death and autophagy on AML cells in vitro. In addition, DDA failed to block tumor development and to trigger autophagy on LXRβ-invalidated KG1 cells xenografted on NOD/SCID mice. Moreover, DDA strongly stimulates the expression of the myeloid leukemogenesis tumor suppressors Nur77 and Nor1 through an LXRβ-dependent mechanism. Interestingly, DDA triggers the relocation of Nur77 to the mitochondria, a process associated with both apoptosis and autophagic cell death. This study provides a strong rationale to bring DDA in clinical trials for patients with AML. Disclosures de Medina: Affichem: Employment. Bize:Affichem: Employment. Paillasse:Affichem: Employment. Noguer:Affichem: Employment. Sarry:Affichem: Equity Ownership. Silvente-Poirot:Affichem: Equity Ownership. Poirot:Affichem: Equity Ownership.


Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2766
Author(s):  
Sagarajit Mohanty ◽  
Nidhi Jyotsana ◽  
Amit Sharma ◽  
Arnold Kloos ◽  
Razif Gabdoulline ◽  
...  

NUP98-NSD1-positive acute myeloid leukemia (AML) is a poor prognostic subgroup that is frequently diagnosed in pediatric cytogenetically normal AML. NUP98-NSD1-positive AML often carries additional mutations in genes including FLT3, NRAS, WT1, and MYC. The purpose of our study was to characterize the cooperative potential of the fusion and its associated Neuroblastoma rat sarcoma (NRAS) mutation. By constitutively expressing NUP98-NSD1 and NRASG12D in a syngeneic mouse model and using a patient-derived xenograft (PDX) model from a NUP98-NSD1-positive AML patient, we evaluated the functional role of these genes and tested a novel siRNA formulation that inhibits the oncogenic driver NUP98-NSD1. NUP98-NSD1 transformed murine bone marrow (BM) cells in vitro and induced AML in vivo. While NRASG12D expression was insufficient to transform cells alone, co-expression of NUP98-NSD1 and NRASG12D enhanced the leukemogenicity of NUP98-NSD1. We developed a NUP98-NSD1-targeting siRNA/lipid nanoparticle formulation that significantly prolonged the survival of the PDX mice. Our study demonstrates that mutated NRAS cooperates with NUP98-NSD1 and shows that direct targeting of the fusion can be exploited as a novel treatment strategy in NUP98-NSD1-positive AML patients.


Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2696 ◽  
Author(s):  
Paul Takam Kamga ◽  
Giada Dal Collo ◽  
Adriana Cassaro ◽  
Riccardo Bazzoni ◽  
Pietro Delfino ◽  
...  

Wnt/β-catenin signaling has been reported in Acute Myeloid leukemia, but little is known about its significance as a prognostic biomarker and drug target. In this study, we first evaluated the correlation between expression levels of Wnt molecules and clinical outcome. Then, we studied—in vitro and in vivo—the anti-leukemic value of combinatorial treatment between Wnt inhibitors and classic anti-leukemia drugs. Higher levels of β-catenin, Ser675-phospho-β-catenin and GSK-3α (total and Ser 9) were found in AML cells from intermediate or poor risk patients; nevertheless, patients presenting high activity of Wnt/β-catenin displayed shorter progression-free survival (PFS) according to univariate analysis. In vitro, many pharmacological inhibitors of Wnt signalling, i.e., LRP6 (Niclosamide), GSK-3 (LiCl, AR-A014418), and TCF/LEF (PNU-74654) but not Porcupine (IWP-2), significantly reduced proliferation and improved the drug sensitivity of AML cells cultured alone or in the presence of bone marrow stromal cells. In vivo, PNU-74654, Niclosamide and LiCl administration significantly reduced the bone marrow leukemic burden acting synergistically with Ara-C, thus improving mouse survival. Overall, our study demonstrates the antileukemic role of Wnt/β-catenin inhibition that may represent a potential new therapeutics strategy in AML.


Sign in / Sign up

Export Citation Format

Share Document