Overexpression of HES-1 is not sufficient to impose T-cell differentiation on human hematopoietic stem cells

Blood ◽  
2006 ◽  
Vol 107 (7) ◽  
pp. 2879-2881 ◽  
Author(s):  
Inge Hoebeke ◽  
Magda De Smedt ◽  
Inge Van de Walle ◽  
Katia Reynvoet ◽  
Greet De Smet ◽  
...  

Abstract By retroviral overexpression of the Notch-1 intracellular domain (ICN) in human CD34+ hematopoietic stem cells (HSCs), we have shown previously that Notch-1 signaling promotes the T-cell fate and inhibits the monocyte and B-cell fate in several in vitro and in vivo differentiation assays. Here, we investigated whether the effects of constitutively active Notch-1 can be mimicked by overexpression of its downstream target gene HES1. Upon HES-1 retroviral transduction, human CD34+ stem cells had a different outcome in the differentiation assays as compared to ICN-transduced cells. Although HES-1 induced a partial block in B-cell development, it did not inhibit monocyte development and did not promote T/NK-cell-lineage differentiation. On the contrary, a higher percentage of HES-1-transduced stem cells remained CD34+. These experiments indicate that HES-1 alone is not able to substitute for Notch-1 signaling to induce T-cell differentiation of human CD34+ hematopoietic stem cells.

2017 ◽  
Vol 14 (5) ◽  
pp. 531-538 ◽  
Author(s):  
Shreya Shukla ◽  
Matthew A Langley ◽  
Jastaranpreet Singh ◽  
John M Edgar ◽  
Mahmood Mohtashami ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 75-75 ◽  
Author(s):  
Sung-UK Lee ◽  
Manami Maeda ◽  
Nagisa Sakurai ◽  
Julie Teruya-Feldstein ◽  
Freddy Radtke ◽  
...  

Abstract The proto-oncogene LRF, encoded by the Zbtb7a gene, is a transcriptional repressor that belongs to the POK (POZ/BTB and KrŸppel) protein family. Along with its oncogenic property, recent evidence has shown that POK proteins play distinct roles in hematopoiesis and immune system development. Conditional inactivation of the LRF gene in mouse hematopoietic stem cells (HSCs) results in the development of CD4/8 double positive (DP) T cells in bone marrow (BM) at the expense of B cell development (Maeda et al. Science 2007). While LRF acts as a master regulator of B versus T lymphoid lineage fate decision by suppressing Notch-mediated signals, it is unclear as to which Notch genes LRF targets and whether LRF is required for the maintenance of HSCs per se. To address these questions, we analyzed HSC/progenitor population of conditional LRF knockout mice (LRFF/FMx1-Cre) as well as LRF/Notch1 double conditional knockout mice (LRFF/FNotch1F/FMx1-Cre). In the absence of Notch1, LRF deficient HSCs/lymphoid progenitors (LRFF/FNotch1F/FMx1-Cre) could successfully give rise to early B cells (Pro B, Pre B and immature B). There were no abnormal DP-T cells seen in the BM, suggesting that LRF primarily targets Notch1 at the HSC/progenitor stages to maintain normal lymphoid development. However the loss of the LRF gene did not rescue the phenotype of Notch1F/FMx1-Cre mice (Radtke et al. Immunity 1999). Immature B cell development in the thymus was still observed in LRFF/FNotch1F/FMx1-Cre mice, suggesting that LRF acts genetically upstream of Notch1 during the early lymphocyte development. Notably, LRFF/FNotch1F/FMx1-Cre mice still exhibit a block of terminal erythroid differentiation and macrocytic anemia as seen in LRFF/FMx1-Cre mice. Thus, LRF is required for erythropoiesis via Notch-independent mechanisms. To further identify distinct HSC/progenitor compartments, we performed multicolor-FACS analysis utilizing antibodies for SLAM family members (CD41, CD48 and CD150), c-Kit, Sca-1, Flt3, IL7R-α, Vcam-1 and lineage markers (Lin). Remarkably, no Flt3 positive HSC/progenitors were observed in LRFF/FMx1-Cre mice. While IL7R-α+ T cell precursors (IL7Rα+Lin-Sca1+c-Kit+Flt3-), which were previously reported as common lymphoid progenitors (Maeda et al. Science 2007), existed abundantly. Absolute numbers of the long-term HSCs (LT-HSCs), defined as CD150+CD48-Flt3-Vcam-1+IL7Rα-LSK (Lin-Sca1+c-Kit+), were significantly reduced in LRFF/FMx1-Cre mice one month after pIpC injection. At the same time, CD150+CD48high+Flt3-Vcam-1-IL7Rα-LSK cells, which are likely T-committed lymphoid precursors, are increased in LRFF/FMx1-Cre mice. To investigate the presence of a population of quiescent HSC/progenitors, we treated LRFF/FMx1-Cre mice with 5-fluorouracil (5-FU), a S phase-specific cytotoxic chemotherapeutic agent, and examined recovery of HSCs in BM. LT-HSCs in LRFF/FMx1-Cre mice did not repopulate as many as their counterpart one month after 5-FU treatment. Our data indicates that LRF deficient HSCs are unable to maintain its quiescent status and are on the state of cell differentiation toward T cells due to the high Notch activity. In fact, loss of the Notch1 gene partially rescued reduced LT-HSCs numbers seen in LRFF/FMx1-Cre mice.


Genes ◽  
2017 ◽  
Vol 8 (3) ◽  
pp. 97 ◽  
Author(s):  
Rizwanul Haque ◽  
Jianyong Song ◽  
Mohammad Haque ◽  
Fengyang Lei ◽  
Praneet Sandhu ◽  
...  

Blood ◽  
1996 ◽  
Vol 87 (10) ◽  
pp. 4040-4048 ◽  
Author(s):  
M Rosenzweig ◽  
DF Marks ◽  
H Zhu ◽  
D Hempel ◽  
KG Mansfield ◽  
...  

Differentiation of hematopoietic progenitor cells into T lymphocytes generally occurs in the unique environment of the thymus, a feature that has hindered efforts to model this process in the laboratory. We now report that thymic stromal cultures from rhesus macaques can support T-cell differentiation of human or rhesus CD34+ progenitor cells. Culture of rhesus or human CD34+ bone marrow-derived cells depleted of CD34+ lymphocytes on rhesus thymic stromal monolayers yielded CD3+CD4+CD8+, CD3+CD4+CD8-, and CD3+CD4-CD8+ cells after 10 to 14 days. In addition to classical T lymphocytes, a discrete population of CD3+CD8loCD16+CD56+ cells was detected after 14 days in cultures inoculated with rhesus CD34+ cells. CD3+ T cells arising from these cultures were not derived from contaminating T cells present in the CD34+ cells used to inoculate thymic stromal monolayers or from the thymic monolayers, as shown by labeling of cells with the lipophilic membrane dye PKH26. Expression of the recombinase activation gene RAG- 2, which is selectively expressed in developing lymphocytes, was detectable in thymic cultures inoculated with CD34+ cells but not in CD34+ cells before thymic culture or in thymic stromal monolayers alone. Reverse transcriptase-polymerase chain reaction analysis of T cells derived from thymic stromal cultures of rhesus and human CD34+ cells showed a polyclonal T-cell receptor repertoire. T-cell progeny derived from rhesus CD34+ cells cultured on thymic stroma supported vigorous simian immunodeficiency virus replication in the absence of exogenous mitogenic stimuli. Rhesus thymic stromal cultures provide a convenient means to analyze T-cell differentiation in vitro and may be useful as a model of hematopoietic stem cell therapy for diseases of T cells, including acquired immunodeficiency syndrome.


Blood ◽  
2013 ◽  
Vol 122 (12) ◽  
pp. 2039-2046 ◽  
Author(s):  
Bin E. Li ◽  
Tao Gan ◽  
Matthew Meyerson ◽  
Terence H. Rabbitts ◽  
Patricia Ernst

Key Points MLL1 does not require interaction with menin to maintain hematopoietic stem cell homeostasis. Menin and MLL1 are both critical during B-cell differentiation, but largely through distinct pathways.


Blood ◽  
2005 ◽  
Vol 105 (4) ◽  
pp. 1431-1439 ◽  
Author(s):  
Ross N. La Motte-Mohs ◽  
Elaine Herer ◽  
Juan Carlos Zúñiga-Pflücker

AbstractThe Notch signaling pathway plays a key role at several stages of T-lymphocyte differentiation. However, it remained unclear whether signals induced by the Notch ligand Delta-like 1 could support full T-cell differentiation from a defined source of human hematopoietic stem cells (HSCs) in vitro. Here, we show that human cord blood–derived HSCs cultured on Delta-like 1–expressing OP9 stromal cells undergo efficient T-cell lineage commitment and sustained T-cell differentiation. A normal stage-specific program of T-cell development was observed, including the generation of CD4 and CD8 αβ–T-cell receptor (TCR)–bearing cells. Induction of T-cell differentiation was dependent on the expression of Delta-like 1 by the OP9 cells. Stimulation of the in vitro–differentiated T cells by TCR engagement induced the expression of T-cell activation markers and costimulatory receptors. These results establish an efficient in vitro coculture system for the generation of T cells from human HSCs, providing a new avenue for the study of early T-cell differentiation and function.


1998 ◽  
Vol 64 (6) ◽  
pp. 733-739 ◽  
Author(s):  
Graham Pawelec ◽  
Robert Muller ◽  
Arnika Rehbein ◽  
Karin Hähnel ◽  
Benedikt L. Ziegler

Sign in / Sign up

Export Citation Format

Share Document