High-level expression of porcine factor VIII from genetically modified bone marrow–derived stem cells

Blood ◽  
2006 ◽  
Vol 107 (10) ◽  
pp. 3859-3864 ◽  
Author(s):  
Bagirath Gangadharan ◽  
Ernest T. Parker ◽  
Lucienne M. Ide ◽  
H. Trent Spencer ◽  
Christopher B. Doering

Clinical success for gene therapy of hemophilia A will be judged by achievement of sustained, therapeutic levels of coagulation factor VIII (fVIII). Previous clinical trials have suffered from transient, subtherapeutic expression of human fVIII transgenes. Porcine fVIII contains sequence elements that enable more efficient biosynthesis than human fVIII due to enhanced posttranslational transit through the secretory pathway. In this study, we evaluated ex vivo retroviral gene transfer of a high-expression porcine fVIII transgene into bone marrow–derived stromal and hematopoietic stem/progenitor cells (MSCs and HSCs, respectively) and transplantation into genetically immunocompetent hemophilia A mice. Both MSCs and HSCs demonstrated high-level expression of porcine fVIII in vivo. However, following transplantation of gene-modified MSCs, fVIII activity levels rapidly returned to baseline due to the formation of anti–porcine fVIII–neutralizing antibodies. Alternatively, transplantation of HSCs into myeloablated and nonmyeloablated hemophilia A mice resulted in high-level fVIII expression despite low-level hematopoietic reconstitution by gene-modified cells. FVIII expression was sustained beyond 10 months, indicating that immunologic tolerance to porcine fVIII was achieved. Furthermore, transplantation of bone marrow from primary recipients into naive secondary recipients resulted in sustained, high-level fVIII expression demonstrating successful genetic modification and engraftment of HSCs.

Author(s):  
Н.И. Зозуля

Серьезным осложнением, связанным с лечением гемофилии А, является развитие ингибиторов. В последние годы был проведён ряд исследований, посвящённых данной проблеме: RODIN, INSIGHT, FranceCoag, SIPPET и NuProtect. В данном обзоре суммируются основные результаты этих исследований. Согласно результатам рандомизированного исследования SIPPET, препараты плазматического фактора свертывания крови VIII (FVIII) обладают меньшей иммуногенностью, чем препараты рекомбинантного FVIII, синтезированного из клеточной линии китайских хомячков, что следует учитывать при выборе стратегии лечения. Согласно результатам исследования NuProtect, опубликованным в 2019 г., концентрат рекомбинантного FVIII, полученный из клеточной линии человека, демонстрирует профиль иммуногенности, сходный с таковым у препаратов плазматического FVIII. У ранее нелеченых пациентов с ненулевыми мутациями при применении симоктоког альфа не наблюдалось образования ингибиторов, также как и в случае применения препаратов плазматического FVIII в исследовании SIPPET. Inhibitor development is a serious complication associated with hemophilia A therapy. A number of studies have been carried out of this issue — RODIN, INSIGHT, FranceCoag, SIPPET, and NuProtect. This review summarizes the main results of these studies. According to the results of the SIPPET randomized trial, plasma-derived coagulation factor VIII (FVIII) products are less immunogenic than recombinant FVIII products synthesized from a Chinese hamster cell line; this fact should be taken into account in choosing a treatment strategy. According to the results of NuProtect study published in 2019, the concentrate of human cell line-derived recombinant FVIII demonstrates immunogenicity profi le similar to the one in plasma-derived FVIII products. Previously untreated patients with non-zero mutations receiving simoctocog alfa did not show development of inhibitors as well as in case of administration of plasma-derived FVIII products in SIPPET study.


Blood ◽  
2008 ◽  
Vol 112 (7) ◽  
pp. 2713-2721 ◽  
Author(s):  
Qizhen Shi ◽  
Scot A. Fahs ◽  
David A. Wilcox ◽  
Erin L. Kuether ◽  
Patricia A. Morateck ◽  
...  

Abstract Although genetic induction of factor VIII (FVIII) expression in platelets can restore hemostasis in hemophilia A mice, this approach has not been studied in the clinical setting of preexisting FVIII inhibitory antibodies to determine whether such antibodies would affect therapeutic engraftment. We generated a line of transgenic mice (2bF8) that express FVIII only in platelets using the platelet-specific αIIb promoter and bred this 2bF8 transgene into a FVIIInull background. Bone marrow (BM) from heterozygous 2bF8 transgenic (2bF8tg+/−) mice was transplanted into immunized FVIIInull mice after lethal or sublethal irradiation. After BM reconstitution, 85% of recipients survived tail clipping when the 1100-cGy (myeloablative) regimen was used, 85.7% of recipients survived when 660-cGy (nonmyeloablative) regimens were used, and 60% of recipients survived when the recipients were conditioned with 440 cGy. Our further studies showed that transplantation with 1% to 5% 2bF8tg+/− BM cells still improved hemostasis in hemophilia A mice with inhibitors. These results demonstrate that the presence of FVIII-specific immunity in recipients does not negate engraftment of 2bF8 genetically modified hematopoietic stem cells, and transplantation of these hematopoietic stem cells can efficiently restore hemostasis to hemophilic mice with preexisting inhibitory antibodies under either myeloablative or nonmyeloablative regimens.


1999 ◽  
Vol 82 (08) ◽  
pp. 562-571 ◽  
Author(s):  
Steven Josephs ◽  
Jiemin Zhou ◽  
Xiangming Fang ◽  
Ramón Alemany ◽  
Cristina Balagué ◽  
...  

IntroductionHemophilia A and B are the most common bleeding disorders caused by deficiencies of clotting factors VIII and IX, respectively, both of which are X-linked with a recessive heredity.1 Replacement of the deficient factors with frequent intravenous injections of plasma concentrates or recombinant proteins is the standard treatment for these diseases.2 Great efforts have been made for nearly a decade toward developing experimental gene therapy for these diseases and aiming at the development of a medical intervention that is more effective and convenient than the currently available replacement therapies.3 Hemophilia is a suitable clinical model for the development of gene therapy products and has a number of advantages: 1) there is a simple and well defined cause-and-effect relationship between the protein deficiencies and bleeding symptoms; 2) tissue-specific expression and precise regulation of the transgenes are not necessary; 3) well characterized animal models are available for preclinical studies; 4) an unequivocal endpoint for product efficacy can be assessed in clinical trials; and 5) even 1% to 5% of the normal physiological levels of the proteins is therapeutic.For gene therapy of hemophilia, the most challenging hurdle, with respect to the long-term expression of the deficient proteins at adequate levels, is the development of a suitable gene delivery system. Technologies have been evolving from ex vivo to in vivo approaches, from initial use of retroviral vector to recent application of adenviral (Ad) or adeno-associated virus (AAV) vector, demonstrating progress from early results of transient low-level expression to more sustained high-level expression.3 For hemophilia A treatment, Ad vectors are particularly useful, since the liver naturally produces factor VIII, and following intravenous (i.v.) injection, Ad vectors concentrate in the liver. This makes the gene transduction efficiency to liver very high. Adenovirus vectors have been developed for gene therapy due to their high titer, broad infectivity, potential for large payload, and in vivo gene delivery capacity.4 Although the immunogenicity and cytotoxicity associated with the early-generation Ad vectors have been a concern with respect to their clinical application, newly developed vectors, in which the viral coding sequences have been deleted, have significantly reduced the side effects associated with the vectors. The “gutless” Ad vector, or so called helper-dependent, large-capacity, or mini- Ad vectors are the representative examples of these new-generation Ad vectors.5-15 The mini-Ad vector system described in this report was developed based on two major research findings. First, an Ad- SV40 hybrid virus discovered during attempts to grow human Ad in non-permissive monkey COS-7 cells.16 The hybrid virus had a genome structure in which only both ends of the Ad sequences were retained and almost all coding sequences of the Ad genome were replaced by symmetric, tandemly repeated SV40 genomes. The hybrid viruses replicated and were packaged in the presence of a wild-type Ad as a helper. This finding implied that total replacement of the Ad genome was possible to form a mini-Ad vector as long as proper helper function and selective pressure was provided. Secondly, it was discovered that Ad packaging can be attenuated by deleting portions of the packaging signal.17 This finding provided a means to put selective pressure on the helper Ad (referred to as ancillary Ad) by specifically limiting its packaging process and allowing a preferential packaging of the mini-Ad. The system, therefore, is designed to have three main components: the mini-Ad vector, the E1-deleted ancillary Ad, and a production cell line that provides AdE1 complementation.Based on the mini-Ad vector system, MiniAdFVIII was developed. The MiniAdFVIII vector carries a 27 kb expression cassette, in which the full-length human factor VIII cDNA is flanked by a human albumin promoter and cognate genomic sequences. Infection of MiniAdFVIII in vitro showed that the vector mediated expression of functional human factor VIII at levels of 100-200 ng/106 cells per 24 hours in HepG2 and 293 cells. With single-dose intravenous injection of 1011 viral particles in hemophilic mice, MiniAdFVIII produced a sustained high-level expression of human factor VIII (at 100-800 ng/ml for up to 369 days) that corrected the factor VIII-deficient phenotype. Safety studies of MiniAdFVIII showed that there were no significant toxicities in mice and dogs after a single intravenous dose of up to 3×1011 and 6×1012 viral particles, respectively. In this report, other studies for developing the MiniAdFVIII vector with a site-specific integration capability and the development of a human factor VIII-tolerized mouse model for preclinical studies of MiniAdFVIII are described.


2021 ◽  
Author(s):  
Michela Milani ◽  
Cesare Canepari ◽  
Tongyao Liu ◽  
Mauro Biffi ◽  
Fabio Russo ◽  
...  

Abstract Liver gene therapy with adeno-associated viral (AAV) vectors delivering a clotting factor transgene into hepatocytes has shown multi-year therapeutic benefit in adults with hemophilia. However, anti-AAV pre-existing immunity and the mostly episomal nature of AAV vectors, currently challenges application of AAV-vector mediated liver gene therapy to people with anti-AAV neutralizing antibodies and young pediatric patients. We have developed lentiviral vectors (LV), which integrate in the host cell genome, which achieve stable and efficient liver gene transfer in mice, dogs and non-human primates (NHP), by intravenous (i.v.) delivery. Here we show long-term coagulation factor VIII (FVIII) activity and restoration of hemostasis, by LV i.v. gene therapy to newborn and adult hemophilia A mice and normal-range FVIII activity in NHP, paving the way for potential clinical application.


2003 ◽  
Vol 279 (8) ◽  
pp. 6546-6552 ◽  
Author(s):  
Christopher B. Doering ◽  
John F. Healey ◽  
Ernest T. Parker ◽  
Rachel T. Barrow ◽  
Pete Lollar

2019 ◽  
Vol 3 (19) ◽  
pp. 2883-2894 ◽  
Author(s):  
Hongjie Wang ◽  
Zhinan Liu ◽  
Chang Li ◽  
Sucheol Gil ◽  
Thalia Papayannopoulou ◽  
...  

Key Points An in vivo HSC transduction/selection allows for high-level protein expression from erythroid cells without side effects on erythropoiesis. This approach that did not require ex vivo HSC manipulation and transplantation resulted in phenotypic correction of murine hemophilia A.


2002 ◽  
Vol 277 (41) ◽  
pp. 38345-38349 ◽  
Author(s):  
Christopher B. Doering ◽  
John F. Healey ◽  
Ernest T. Parker ◽  
Rachel T. Barrow ◽  
Pete Lollar

Blood ◽  
2005 ◽  
Vol 105 (7) ◽  
pp. 2691-2698 ◽  
Author(s):  
John R. Ohlfest ◽  
Joel L. Frandsen ◽  
Sabine Fritz ◽  
Paul D. Lobitz ◽  
Scott G. Perkinson ◽  
...  

AbstractHemophilia A is a lead candidate for treatment by gene therapy because small increments in the missing secreted protein product, coagulation factor VIII (FVIII), would result in substantial clinical amelioration. Clinically relevant therapy might be achieved by stably delivering a human FVIII cDNA to correct the bleeding disorder. We used the Sleeping Beauty (SB) transposon, delivered as naked plasmid DNA by tail-vein injection, to integrate B-domain–deleted FVIII genes into the chromosomes of hemophilia A mice and correct the phenotype. Since FVIII protein is a neoantigen to these mice, sustaining therapeutic plasma FVIII levels was problematic due to inhibitory antibody production. We circumvented this problem by tolerizing 82% of neonates by a single facial-vein injection of recombinant FVIII within 24 hours of birth (the remaining 18% formed inhibitors). Achievement of high-level (10%-100% of normal) FVIII expression and phenotypic correction required co-injection of an SB transposase-expressing plasmid to facilitate transgene integration in immunotolerized animals. Linker-mediated polymerase chain reaction was used to clone FVIII transposon insertion sites from liver genomic DNA, providing molecular evidence of transposition. Thus, SB provides a nonviral means for sustained FVIII gene delivery in a mouse model of hemophilia A if the immune response is prevented.


Blood ◽  
2006 ◽  
Vol 108 (1) ◽  
pp. 107-115 ◽  
Author(s):  
Haiyan Jiang ◽  
David Lillicrap ◽  
Susannah Patarroyo-White ◽  
Tongyao Liu ◽  
Xiaobing Qian ◽  
...  

Hemophilia A, a deficiency of functional coagulation factor VIII (FVIII), is treated via protein replacement therapy. Restoring 1% to 5% of normal blood FVIII activity prevents spontaneous bleeding, making the disease an attractive gene therapy target. Previously, we have demonstrated short-term activity of a liver-specific AAV2 vector expressing canine B-domain-deleted FVIII (cFVIII) in a hemophilia canine model. Here, we report the long-term efficacy and safety of AAV-cFVIII vectors of serotypes 2, 5, 6, and 8 in both hemophilia A mice and dogs. AAV6-cFVIII and AAV8-cFVIII restored physiologic levels of plasma FVIII activity in hemophilia A mice. The improved efficacy is attributed to more efficient gene transfer in liver compared with AAV2 and AAV5. However, supraphysiologic cFVIII levels correlated with the formation of cFVIII-neutralizing antibodies in these mice. Of importance, hemophilia A dogs that received AAV2-cFVIII, AAV6-cFVIII, and AAV8-cFVIII have persistently expressed therapeutic levels of FVIII, without antibody formation or other toxicities, for more than 3 years. However, liver transduction efficiencies are similar between AAV2, AAV6, and AAV8 serotypes in hemophilia A dogs, in contrast to mice. In summary, this is the first report demonstrating multiyear therapeutic efficacy and safety of multiple AAV-cFVIII vectors in hemophilia A dogs and provides the basis for human clinical studies. (Blood. 2006;108:107-115)


Sign in / Sign up

Export Citation Format

Share Document