Differential Noxa/Mcl-1 balance in peripheral versus lymph node chronic lymphocytic leukemia cells correlates with survival capacity

Blood ◽  
2006 ◽  
Vol 109 (4) ◽  
pp. 1660-1668 ◽  
Author(s):  
Laura A. Smit ◽  
Delfine Y.H. Hallaert ◽  
René Spijker ◽  
Bart de Goeij ◽  
Annelieke Jaspers ◽  
...  

Abstract The gradual accumulation of chronic lymphocytic leukemia (B-CLL) cells is presumed to derive from proliferation centers in lymph nodes and bone marrow. To what extent these cells possess the purported antiapoptotic phenotype of peripheral B-CLL cells is unknown. Recently, we have described that, in B-CLL samples from peripheral blood, aberrant apoptosis gene expression was not limited to protective changes but also included increased levels of proapoptotic BH3-only member Noxa. Here, we compare apoptosis gene profiles from peripheral blood B-CLL (n = 15) with lymph node B-CLL (> 90% CD5+/CD19+/CD23+ lymphocytes with Ki67+ centers; n = 9). Apart from expected differences in Survivin and Bcl-xL, a prominent distinction with peripheral B-CLL cells was the decreased averaged level of Noxa in lymph nodes. Mcl-1 protein expression showed a reverse trend. Noxa expression could be reduced also in vitro by CD40 stimulation of peripheral blood B-CLL. Direct manipulation of Noxa protein levels was achieved by proteasome inhibition in B-CLL and via RNAi in model cell lines. In each instance, cell viability was directly linked with Noxa levels. These data indicate that suppression of Noxa in the lymph node environment contributes to the persistence of B-CLL at these sites and suggest that therapeutic targeting of Noxa might be beneficial.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4972-4972
Author(s):  
Delfine Y.H. Hallaert ◽  
Laura A. Smit ◽  
Rene Spijker ◽  
Bart de Goeij ◽  
Annelieke Jaspers ◽  
...  

Abstract Background: The gradual accumulation of chronic lymphocytic leukemia (B-CLL) cells is presumed to derive from proliferation centers in lymph nodes and bone marrow. To what extent these cells possess the purported anti-apoptotic phenotype of peripheral B-CLL cells is unknown. Recently, we have described that in B-CLL samples from peripheral blood, aberrant apoptosis gene expression was not limited to protective changes but also included increased levels of pro-apoptotic BH3-only member Noxa. The functional consequence of this finding is not known, nor whether this aberrant apoptosis gene profile is also present in CLL proliferation centers. Aim: To perform a functional comparison of apoptosis gene profiles from peripheral blood (PB) B-CLL versus lymph node (LN) proliferation centers. Methods: Immunofluorescence microscopy, RT-Multiplex-Ligation-dependent Probe Amplification (RT-MLPA), Western Blot, Transduction, RNA interference. Results: PB samples (>90% CD5/CD19/CD23+ B-CLL cells) from 16 B-CLL patients and LN samples from 9 B-CLL patients were included in this study. LN samples contained over 90% CD5/CD19/CD23+ lymphocytes with Ki67+ cells either scattered throughout the LN or in follicle-like structures. RNA samples were subjected to the RT-MLPA procedure which monitors expression of 34 apoptosis genes. Apart from expected differences in survivin and Bcl-xL, the most prominent distinction with PB B-CLL cells was the generally low levels of Noxa in LN samples. Figure 1: Profiling of apoptosis genes in peripheral blood and lymph node samples of B-CLL patients Figure 1:. Profiling of apoptosis genes in peripheral blood and lymph node samples of B-CLL patients A reduction in Noxa RNA and protein levels could also be obtained by in vitro stimulation of PB B-CLL with CD40. Direct manipulation of Noxa protein levels was achieved by proteasome inhibition in B-CLL cells and via RNAi in model cell lines. In all these instances the viability of the cells was inversely correlated with Noxa levels. Conclusions: These data indicate that spontaneous apoptosis of PB B-CLL cells in vitro is linked with high Noxa levels. We propose that suppression of Noxa in the LN contributes to the persistence of B-CLL, and that therapeutic targeting of Noxa might be beneficial.


Blood ◽  
2009 ◽  
Vol 113 (18) ◽  
pp. 4403-4413 ◽  
Author(s):  
Meike Vogler ◽  
Michael Butterworth ◽  
Aneela Majid ◽  
Renata J. Walewska ◽  
Xiao-Ming Sun ◽  
...  

Abstract ABT-737 and its orally active analog, ABT-263, are rationally designed inhibitors of BCL2 and BCL-XL. ABT-263 shows promising activity in early phase 1 clinical trials in B-cell malignancies, particularly chronic lymphocytic leukemia (CLL). In vitro, peripheral blood CLL cells are extremely sensitive to ABT-737 (EC50 ∼7 nM), with rapid induction of apoptosis in all 60 patients tested, independent of parameters associated with disease progression and chemotherapy resistance. In contrast to data from cell lines, ABT-737–induced apoptosis in CLL cells was largely MCL1-independent. Because CLL cells within lymph nodes are more resistant to apoptosis than those in peripheral blood, CLL cells were cultured on CD154-expressing fibroblasts in the presence of interleukin-4 (IL-4) to mimic the lymph node microenvironment. CLL cells thus cultured developed an approximately 1000-fold resistance to ABT-737 within 24 hours. Investigations of the underlying mechanism revealed that this resistance occurred upstream of mitochondrial perturbation and involved de novo synthesis of the antiapoptotic proteins BCL-XL and BCL2A1, which were responsible for resistance to low and high ABT-737 concentrations, respectively. Our data indicate that after therapy with ABT-737–related inhibitors, resistant CLL cells might develop in lymph nodes in vivo and that treatment strategies targeting multiple BCL2 antiapoptotic members simultaneously may have synergistic activity.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4157-4157 ◽  
Author(s):  
Loïc Ysebaert ◽  
Christian Klein ◽  
Anne Quillet-Mary

Abstract Introduction: Ibrutinib is an irreversible first-in-class inhibitor of BTK (Bruton tyrosine kinase) approved for the therapy of relapsed/refractory chronic lymphocytic leukemia (R/R CLL). The drug mediates a transient increase in circulating CLL cells together with reduction in spleen and lymph node size, by both cellular mobilization and apoptosis of resident CLL cells (Herman SE, et al. Blood 2014;123:3286-95). These events occur with important patients' inter-variability (Herman SE, et al. Leukemia 2014;28:2188-96), one cluster of patients presents with greater peak lymphocytosis (resolving between 1 to more than 6 months), while another cluster presents with rapid resolution of lymphocytosis and lymph node/spleen size within 2 months. Upon such dramatic shifts in disease distribution the first 2 months of therapy (and sometimes lasting >6-12 months), the question of phenotypic changes, sensitivity to monoclonal antibodies (MoAbs), and subclonal diversity of circulating cells remains central for further combination studies. In this study, we evaluated changes in CD5, CD19, and CD20 expression in vitro/in vivo, and peripheral blood side population (SP) cells (a fraction highly enriched in chemorefractory cells, Gross E, et al. Leukemia 2010;24:1885-92) upon ibrutinib therapy. We also investigated whether patterns of lymphocytosis may predict for response to rituximab (RTX) or obinutuzumab (GA101). Methods: R/R CLL patients (n=25) median prior lines=4, range=2-8), PBMCs were collected before ibrutinib initiation and after 1 and 2 months of therapy. PBMC were seeded at 10 x 106 cells/mL in culture medium and treated for 7 days with 10µg/mL control IgG1 (trastuzumab), RTX or obinutuzumab. The specific percentage of remaining B cells in MoAbs-treated samples was calculated as (absolute number in treated samples/absolute number in control samples) x 100. For each condition, absolute number of remaining B cells =total viable cell number (trypan blue exclusion determination) x % of viable CD19+/CD5+ lymphocytes (flow cytometry determination). For statistical analyses, Student's test (paired, two-sided) was used (*p<0.05;**p<0.01;***p<0.001). Results: We firstanalyzed patterns ofabsolute lymphocytes count ( ALC) across 23 patients receiving ibrutinib (Fig 1a) to classify them into two clusters as previously published (Fig 1b): Cluster 1 and cluster 2 did not differ significantly in terms of initial lymphocytosis, line of therapy, gender, karyotype, IgHV. Interestingly, the SP fraction in peripheral blood was significantly increased (median: 5/microL before ibrutinib, 10/microL at peak lymphocytosis), suggesting mobilization of resident SP cells, although no apoptosis was detected (in vitro or in vivo) with ibrutinib. We next assessed CD5, CD19 and CD20 levels in vitro (n=22) and in vivo (n=15) upon ibrutinib therapy. In vitro, ibrutinib significantly reduced CD20 (Fig 2a) and CD19 surface expression, but not CD5; nevertheless anti-CD20 MoAbs still had activity in vitro (Fig 2b). Expression levels were not linked to clusters 1 or 2. Finally we compared RTX- and obinutuzumab-induced B-cell depletion before administration of ibrutinib, and at various sampling time points (1 to 6 months). Obinutuzumab induced significantly superior depletion at various timepoints than RTX. More interestingly, when analysis was performed from paired samples before/during ibrutinib therapy from the same ibrutinib-exposed patients, only obinutuzumab-induced depletion was increased in cluster 2 (Fig 3). Conclusions: Ongoing and planned clinical studies evaluate the combination of ibrutinib and obinutuzumab in CLL (first-line and relapsed). Some concerns have emerged due to published preclinical data showing that ibrutinib can interfere with efficacy of therapeutic antibodies. Here, we suggest that ibrutinib-exposed CLL cells, despite wide inter-patient heterogeneity, are targetable with obinutuzumab. Figure 1. Figure 1. Figure 2. Figure 2. Figure 3. Figure 3. Disclosures Klein: Roche: Employment.


Blood ◽  
2002 ◽  
Vol 99 (8) ◽  
pp. 2977-2984 ◽  
Author(s):  
Kathleen J. Till ◽  
Ke Lin ◽  
Mirko Zuzel ◽  
John C. Cawley

Abstract Malignant lymphocyte migration into lymph nodes is an important aspect of chronic lymphocytic leukemia (CLL), yet little is known about the processes involved. Here we demonstrate that CLL cells migrate across vascular endothelium in response to at least 3 chemokines, namely, CCL21, CCL19, and CXCL12. Moreover, transendothelial cell migration (TEM) in response to CCL21 and CCL19 was significantly higher for the malignant B cells of patients who had clinical lymph node involvement as compared with those of patients lacking such organomegaly. Furthermore, the expression of CCR7, the receptor for both CCL21 and CCL19, correlated with clinical lymphadenopathy, and blocking of CCR7 inhibited CLL cell TEM. By using immunohistochemistry we demonstrated that CCL21 and CCL19, but not CXCL12, are located in high endothelial venules and are, therefore, in an appropriate location to induce TEM. Regarding the adhesion receptors involved in TEM, α4 (most likely in association with β1) and αLβ2 were shown to be important in CLL cell TEM in vitro, but only the level of α4 expression correlated with the presence of clinical lymphadenopathy. The present studies are the first to shed light on the factors determining CLL cell entry into nodes and define the phenotype of circulating malignant cells likely to determine the pattern of lymph node enlargement in the disease.


Blood ◽  
1978 ◽  
Vol 52 (1) ◽  
pp. 255-260 ◽  
Author(s):  
R Hoffman ◽  
S Kopel ◽  
SD Hsu ◽  
N Dainiak ◽  
ED Zanjani

Abstract The pathogenesis of the anemia associated with malignancy was investigated in a patient with T cell chronic lymphocytic leukemia. The plasma clot culture system was used as a measure in vitro of erythropoiesis. The patient's peripheral blood and marrow T lymphocytes obtained both before and after transfusion therapy suppressed erythroid colony formation by normal human bone marrow cells. Pretreatment of the patient's bone marrow T cells by antithymocyte globulin (ATG) and complement reversed this suppression. In addition, pretreatment of the patient's marrow cells with ATG and complement markedly augmented erythropoiesis in vitro. The expression of erythroid activity caused by the selective destruction of the suppressor T lymphocytes in the patient's bone marrow with ATG and the suppression of normal erythropoiesis by the patient's bone marrow and peripheral blood lymphocytes suggest that interaction between the malignant T cell and the erythropoietin-responsive stem cell is important in production of anemia in this patient.


Blood ◽  
1972 ◽  
Vol 40 (3) ◽  
pp. 303-310 ◽  
Author(s):  
Seth Pincus ◽  
Celso Bianco ◽  
Victor Nussenzweig

Abstract In the present study we present evidence that the proportion of complement-receptor lymphocytes (CRL) is greatly increased in the circulation in most cases of chronic lymphocytic leukemia (CLL). Lymphocytes (&gt; 99% pure, 70% recovery) were obtained from the peripheral blood of normal individuals by separation of the mononuclear cells from the leukocyte-enriched plasma by differential flotation in Hypaque-Ficoll and incubation of the mononuclear cells with iron-containing particles followed by removal of the phagocytes with a magnet. Complement - receptor lymphocytes were detected by incubating lymphocytes with sheep erythrocytes coated with antibody and mouse complement (EAC) and counting the EAC—CRL rosettes under the microscope. 7.1 ± 3.8% of normal peripheral blood lymphocytes, 31.0 ± 6.9% of lymph node, and 59.6 ± 13.2% of tonsil lymphocytes bind EAC. The binding was C3-dependent since it could be inhibited specifically by papain fragments of rabbit antibodies to mouse C3. Among lymphocytes from the peripheral blood of patients with CLL, 50.7 ± 25.0% bear the complement receptor. These results suggest that CLL preferentially affects B cells.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4996-4996
Author(s):  
Gabriele Seitz ◽  
Sedat Yildirim ◽  
Andreas M. Boehmler ◽  
Lothar Kanz ◽  
Robert Möhle

Abstract Egress of lymphocytes from lymphoid organs into the circulation has been shown to depend on the presence of the lipid mediator sphingosine 1-phosphate (S1P) in the peripheral blood, and expression of corresponding S1P receptors (i.e., S1P1), that belong to the family of 7-transmembrane G protein-coupled receptors (GPCR). As circulating lymphocytic lymphoma cells are a hallmark of chronic lymphocytic leukemia, we analyzed expression of different S1P receptors and the effects of S1P on B-CLL cells. By qualitative and quantitative (TaqMan) RT-PCR, significant mRNA expression of S1P1 and S1P4 was found in CLL cell lines (EHEB, MEC-1) and in most samples (S1P1 in 88%, S1P4 in 100%) of primary CD19+ cells isolated from the peripheral blood of untreated B-CLL patients. mRNA of other S1P receptors (S1P2, S1P3, S1P5) was less consistently detected. Normal, nonmalignant B cells were strongly positive for S1P1, while other S1P receptors were weakly expressed or negative. S1P induced typical effects of chemotactic GPCR, such as actin polymerization (analyzed by flow cytometry) and chemotaxis (measured in a modified Boyden chamber assay) in CLL cell lines and primary B-CLL cells. After serum deprivation in vitro, S1P induced phosphorylation of ERK/MAP-kinase as analyzed by Western blot, demonstrating that S1P receptors expressed in CLL were able to activate signaling pathways of GPCR not only related to cell migration and chemotaxis, but also to cell proliferation. Of note, the S1P1 ligand FTY720, which induces receptor internalization after prolonged exposure and acts as an antagonist, resulted in apoptosis in CLL cell lines and primary CLL cells in vitro, as measured by MTT-test and staining with Annexin-FITC, respectively. We conclude that sphingosine 1-phosphate, which is present in the peripheral blood in considerable amounts, contributes to the trafficking of B-CLL cells expressing the GPCRs S1P1/4, and to their prolonged survival.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3895-3895
Author(s):  
Yair Herishanu ◽  
Inbal Hazan-Hallevi ◽  
Sigi Kay ◽  
Varda Deutsch ◽  
Aaron Polliack ◽  
...  

Abstract Abstract 3895 Chronic lymphocytic leukemia (CLL) cells depend on their microenvironment for proliferation and survival. Ectonucleotidase CD39 has anti-inflammatory properties as it hydrolyzes pro-inflammatory extra-cellular ATP, generates anti-inflammatory adenosine and also protects regulatory T cells from ATP-induced cell death. In this study we investigated the clinical significance of CD39 expression on CD4+T-cells in 45 patients with CLL as well as its compartmental regulation and explored the possible mechanisms for its induction. Compared to healthy individuals, CD4+CD39+ lymphocytes were increased in the peripheral blood of patients with CLL (4.6%±2.28 vs. 17.3%±12.49, respectively, p=0.004), and correlated with advanced stage of disease (9.72%±5.76, 18.15%±12.03 and 25.90%±16.34, of CD4+ lymphocytes, in patients with Rai stages 0, 1+2 and 3+4, respectively, p=0.019). CD4+CD39+ cells were also higher in patients with CLL who needed therapeutic intervention (untreated; 12.99%±10.63 vs treated; 22.21%±12.88, p=0.01) and in those who were ZAP70+ or had b2-microglobulin levels>3g/L. There were more CD4+CD39+ lymphocytes in the bone marrow compartment (22.25%±16.16) than in the peripheral blood (16.60%±15.84, p=0.009). In-vitro studies showed that CD39 can be induced on CD4+cells by exposure to ATP or indirectly, following B-cell receptor (BCR) engagement (CD4+CD39+ lymphocytes increased by 1.56 fold, in the BCR engaged samples compared to their paired controls; 20.27%±11.3 vs. 13%±9.42, respectively, p=0.0006). Conclusions: Increased CD39 expression on CD4+ T-lymphocytes in CLL associates with an aggressive disease. This may reflect the ability of the leukemic cells to suppress the surrounding immune environment, and contribute to a poorer prognosis. CD39+ may also serve as a future target for the development of novel therapies with immune modulating anti–tumor agents in CLL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3900-3900
Author(s):  
Eric Eldering ◽  
Christian R Geest ◽  
Martin FM de Rooij ◽  
Nora Liu ◽  
Bogdan I Florea ◽  
...  

Abstract Abstract 3900 In the lymph node (LN) microenvironment, chronic lymphocytic leukemia (CLL) cells are protected from apoptosis by upregulation of anti-apoptotic proteins. In vitro, this can be mimicked via CD40-stimulation of CLL cells, which also provides resistance to various chemotherapeutics. Novel drugs that target kinases involved in B cell signalling, including the broad spectrum kinase inhibitor dasatinib, are currently in clinical development for CLL. We have shown previously that dasatinib prevents CD40-mediated anti-apoptotic changes in CLL (Hallaert et Blood 2008). However, the kinase(s) involved remain unidentified. Here, we coupled dasatinib to an affinity matrix and pulled down its targets from CD40-stimulated CLL cells. By mass-spectrometry and Western blotting, Abl and Btk were identified as dominant targets of dasatinib. Functional analysis revealed that CD40-mediated anti-apoptotic signals and drug-resistance could be overcome both by dasatinib and the Abl inhibitor imatinib, but not by the novel Btk inhibitor PCI-32765 (ibrutinib), whereas BCR- and chemokine-controlled adhesion could be abolished by dasatinib and ibrutinib, but not by imatinib. Thus, dasatinib combines two key aspects that are clinically relevant: inhibition of Abl overrides chemoprotective survival signals, whereas inhibition of Btk impairs integrin-mediated adhesion of CLL cells in the microenvironmental niche. This combined inhibition of Abl and Btk was put to an initial test in an open-label phase 2 trial of dasatinib combined with fludarabine in twenty refractory CLL patients. As might be expected based on the in vitro data, reductions in lymph node size were observed in most patients. A LN reduction of ≥20% provided a significant improved PFS (256 days) and OS (510 days) as compared to non-responders (80 days and 158 days respectively). Details of the clinical study will be presented separately. In conclusion, in agreement with in vitro molecular studies, dasatinib seems to have clinical efficacy in heavily pretreated refractory CLL patients. Combined, these data encourage further studies on a broad-spectrum kinase inhibitor like dasatinib in combination with other classes of drugs in relapsed and refractory CLL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 103 (5) ◽  
pp. 1968-1969 ◽  
Author(s):  
Ozren Jaksic ◽  
Mirjana Mariana Kardum Paro ◽  
Ika Kardum Skelin ◽  
Rajko Kusec ◽  
Vlatko Pejsa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document