Pharmacogenomic analysis of acute promyelocytic leukemia cells highlights CYP26 cytochrome metabolism in differential all-trans retinoic acid sensitivity

Blood ◽  
2007 ◽  
Vol 109 (10) ◽  
pp. 4450-4460 ◽  
Author(s):  
Ronan Quere ◽  
Aurelie Baudet ◽  
Bruno Cassinat ◽  
Gerald Bertrand ◽  
Jacques Marti ◽  
...  

AbstractDisease relapse sometimes occurs after acute promyelocytic leukemia (APL) therapy with all-trans retinoic acid (ATRA). Among the diagnostic parameters predicting relapse, heterogeneity in the in vitro differentiation rate of blasts is an independent factor. To identify biologic networks involved in resistance, we conducted pharmacogenomic studies in APL blasts displaying distinct ATRA sensitivities. Although the expression profiles of genes invested in differentiation were similarly modulated in low- and high-sensitive blasts, low-sensitive cells showed higher levels of transcription of ATRA-target genes, transcriptional regulators, chromatin remodelers, and transcription factors. In opposition, only high-sensitive blasts expressed the CYP26A1 gene, encoding the p450 cytochrome which is known to be involved in retinoic acid catabolism. In NB4 cells, ATRA treatment activates a novel signaling pathway, whereby interleukin-8 stimulates the expression of the homeobox transcription factor HOXA10v2, an effective enhancer of CYP26A1 transcription. These data were corroborated in primary APL cells, as maturation levels correlated with CYP26A1 expression. Treatment with a retinoic acid metabolism blocking agent (RAMBA) results in high-nucleoplasmic concentrations of retinoid and growth of NB4-resistant subclones. Hence, for APL blasts associated with poor prognosis, the low CYP26A1 expression may explain high risk of resistance installation, by increased retinoid pressure. Pharmacogenomic profiles of genes involved in retinoid acid metabolism may help to optimize anticancer therapies, including retinoids.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3256-3256 ◽  
Author(s):  
Ronan Quere ◽  
Aurelie Baudet ◽  
Bruno Cassinat ◽  
Gerald Bertrand ◽  
David Piquemal ◽  
...  

Abstract It is now well established that all trans Retinoic Acid (atRA), administered at pharmacological doses to Acute Promyelocytic Leukemia (APL) patients, provides the first example of therapy by differentiation. Clinical remission is often transient as resistance develops. Because mechanisms of installation are still unclear, gene expression changes during APL cells differentiation were identified by Serial Analysis of Gene Expression (SAGE). Construction of proliferative and 48 hours atRA-treated NB4 cells libraries allowed us to identify a set of new transcriptional markers. Expression profiles of atRA response were performed on NB4, two atRA-resistant cell lines (NB4-LR2 and UF1) and APL blasts by real time PCR analyze on Microfluidic Card. We choose a hundred genes from multiple functional classes since there are several potential mechanisms for atRA resistance: target gene expression, transcription regulation, atRA metabolism, proteasome pathways≡ Reliability between SAGE and Microfluidic technologies is high since 95% of significantly modulated SAGE transcripts (p<0.01) show the same modulation by PCR. Analyzes provide valuable markers of the granulocytic phenotype (ICAM3, S100A9, CYP4F3, TMSB10), relevant and new atRA target genes (HIC1, ID2). Moreover, SAGE highlights chromatin remodeling factors, histone deacetylase (HDAC11) or coactivator (NCOA3) which may play a crucial role in the differentiation process. Finally, we insulate markers that correlate with resistance (CEBPA, CRABP2, NDRG1, CYP26). Transcriptome studies were conducted onto blast of patients with distinct long-term sensitivity, established by correlation to the in vitro differentiation rate (Cassinat, B. et al. Blood, 2001). As a result, all patients show transcriptional response to retinoid. However, once blast differentiation reached, induction of atRA-response element genes in high sensitive blasts is reduced. In opposition, transcripts expression of low sensitive patients is still high, revealing a delay in differentiation establishment. Conversely, expression of cytochrome p450 CYP26, involved in the atRA catabolism, is maintained in highly sensitive blast whereas no modulation is observed in low sensitive blast. Because promoter analysis reveals Homeobox response element, involvement of HOX factors found in SAGE librairies was investigated. In cell lines, HOX factors cooperate with retinoid receptors to increase CYP26 transcription. Furthermore, high-pressure chromatography shows a switch between atRA and its metabolites, 6 hours after atRA addition but only in sensitive cell line. To conclude, CYP26 is a relevant marker of resistance prognostic. Since metabolites show similar efficiency for cell growth inhibition and differentiation than atRA, their implication in resistance installation is investigated.


Blood ◽  
2013 ◽  
Vol 121 (8) ◽  
pp. 1432-1435 ◽  
Author(s):  
Dahae Won ◽  
So Youn Shin ◽  
Chan-Jeoung Park ◽  
Seongsoo Jang ◽  
Hyun-Sook Chi ◽  
...  

Key Points A novel fusion gene, OBFC2A/RARA, in variant acute promyelocytic leukemia. In vitro all-trans retinoic acid sensitivity.


Blood ◽  
2001 ◽  
Vol 98 (9) ◽  
pp. 2862-2864 ◽  
Author(s):  
Bruno Cassinat ◽  
Sylvie Chevret ◽  
Fabien Zassadowski ◽  
Nicole Balitrand ◽  
Isabelle Guillemot ◽  
...  

Abstract Acute promyelocytic leukemia (APL) blasts possess a unique sensitivity to the differentiating effects of all-transretinoic acid (ATRA). Multicenter trials confirm that the combination of differentiation and cytotoxic therapy prolongs survival in APL patients. However relapses still occur, and exquisite adaptation of therapy to prognostic factors is essential to aim at a possible cure of the disease. A heterogeneity was previously reported in the differentiation rate of patients' APL blasts, and it was postulated that this may reflect the in vivo heterogeneous outcome. In this study, it is demonstrated that patients of the APL93 trial whose leukemic cells achieved optimal differentiation with ATRA in vitro at diagnosis had a significantly improved event-free survival (P = .01) and lower relapse rate (P = .04). This analysis highlights the importance of the differentiation step in APL therapy and justifies ongoing studies aimed at identifying novel RA-differentiation enhancers.


Oncotarget ◽  
2016 ◽  
Vol 7 (29) ◽  
pp. 46028-46041 ◽  
Author(s):  
Farzaneh Atashrazm ◽  
Ray M. Lowenthal ◽  
Joanne L. Dickinson ◽  
Adele F. Holloway ◽  
Gregory M. Woods

Blood ◽  
1995 ◽  
Vol 86 (4) ◽  
pp. 1540-1547 ◽  
Author(s):  
RE Gallagher ◽  
YP Li ◽  
S Rao ◽  
E Paietta ◽  
J Andersen ◽  
...  

Of 113 acute promyelocytic leukemia cases documented to have diagnostic PML-RAR alpha hybrid mRNA, 10 cases (8.8%) had fusion sites in PML gene exon 6 (V-forms) rather than in the two common hybrid mRNA configurations resulting from breaksites in either PML gene intron 6 (L- forms) or intron 3 (S-forms). In 4 V-form cases, a common break/fusion site was discovered at PML gene nucleotide (nt) 1685, abutting a 3′ cryptic splice donor sequence. The fusion site was proximal to the common site in 1 case and more distal in 5 cases. The open reading frame encoding a PML-RAR alpha gene was consistently preserved, either by an in-frame fusion site or by the insertion of 3 to 127 unidentified nts. In 2 V-form cases, hybridization analysis of the reverse transcriptase-polymerase chain reaction products with a PML-RAR alpha juction probe was required for discrimination from L-form cases. Two V- form subgroups were defined by in vitro sensitivity to all-trans retinoic acid (tRA)-induced differentiation: 4 of 4 cases tested with fusion sites at or 5′ to nt 1685 (subgroup E6S) had reduced sensitivity (EC50 > or = 10(-7) mol/L), whereas 4 of 4 cases with fusion sites at or 3′ to nt 1709 (subgroup E6L) had high sensitivity (EC50 < 10(-8) mol/L) indistinguishable from that of L-form and S-form cases. These results provide the first link between PML-RAR alpha configuration and tRA sensitivity in vitro and support the importance of subclassifying APL cases according to PML-RAR alpha transcript type.


Blood ◽  
1993 ◽  
Vol 82 (7) ◽  
pp. 2175-2181 ◽  
Author(s):  
L Delva ◽  
M Cornic ◽  
N Balitrand ◽  
F Guidez ◽  
JM Miclea ◽  
...  

Abstract All-trans retinoic acid (ATRA) induces leukemic cell differentiation and complete remission (CR) in a high proportion of patients with acute promyelocytic leukemia (AML3 subtype). However, relapses occur when ATRA is prescribed as maintenance therapy, and resistance to a second ATRA-induction therapy is frequently observed. An induced hypercatabolism of ATRA has been suggested as a possible mechanism leading to reduced ATRA sensitivity and resistance. CRABPII, an RA cytoplasmic binding protein linked to RA's metabolization pathway, is induced by ATRA in different cell systems. To investigate whether specific features of the AML3 cells at relapse could explain the in vivo resistance observed, we studied the CRABP levels and in vitro sensitivity to ATRA of AML3 cells before and at relapse from ATRA. Relapse-AML3 cells (n = 12) showed reduced differentiation induction when compared with “virgin”-AML3 cells (n = 31; P < .05). Dose-response studies were performed in 2 cases at relapse and showed decreased sensitivity to low ATRA concentrations. CRABPII levels and in vitro differentiation characteristics of AML3 cells before and at relapse from ATRA therapy were studied concomittantly in 4 patients. High levels of CRABPII (median, 20 fmol/mg of protein) were detected in the cells of the 4 patients at relapse but were not detected before ATRA therapy. Three of these patients showed a decrease in differentiation induction of their leukemic cells, and a failure to achieve CR with a second induction therapy of ATRA 45 mg/m2/day was noted in all patients treated (n = 3). Results from this study provide evidence to support the hypothesis of induced-ATRA metabolism as one of the major mechanisms responsible for ATRA resistance. Monitoring CRABPII levels after ATRA withdrawal may help to determine when to administer ATRA in the maintenance or relapse therapy of AML3 patients.


Blood ◽  
1997 ◽  
Vol 90 (3) ◽  
pp. 967-973 ◽  
Author(s):  
Tadasu Tobita ◽  
Akihiro Takeshita ◽  
Kunio Kitamura ◽  
Kazunori Ohnishi ◽  
Mitsuaki Yanagi ◽  
...  

Differentiation therapy with all-trans retinoic acid (ATRA) has marked a major advance and become the first choice drug in the treatment of acute promyelocytic leukemia (APL). However, patients who relapse from ATRA-induced complete remission (CR) have difficulty in obtaining a second CR with a second course of ATRA therapy alone. We tested the efficacy of a new synthetic retinoid, Am80, in APL that had relapsed from CR induced by ATRA in a prospective multicenter study. Am80 is approximately 10 times more potent than ATRA as an in vitro differentiation inducer, is more stable to light, heat, and oxidation than ATRA, has a low affinity for cellular retinoic acid binding protein, and does not bind to retinoic acid receptor-γ. Patients received Am80, 6 mg/m2, orally alone daily until CR. Of 24 evaluable patients, 14 (58%) achieved CR. The interval from the last ATRA therapy was not different between CR and failure cases. The clinical response was well correlated with the in vitro response to Am80 in patients examined. Adverse events included 1 retinoic acid syndrome, 1 hyperleukocytosis, 9 xerosis, 8 cheilitis, 16 hypertriglyceridemia, and 15 hypercholesterolemia, but generally milder than those of ATRA, which all patients had received previously. Am80 is effective in APL relapsed from ATRA-induced CR and deserves further trials, especially in combination with chemotherapy.


Blood ◽  
1990 ◽  
Vol 76 (9) ◽  
pp. 1704-1709 ◽  
Author(s):  
S Castaigne ◽  
C Chomienne ◽  
MT Daniel ◽  
P Ballerini ◽  
R Berger ◽  
...  

Abstract Twenty-two patients with acute promyelocytic leukemia were treated with all-trans retinoic acid (RA, 45 mg/m2 per day) for 90 days. Of the 22, four patients were previously untreated, two were resistant after conventional chemotherapy, and 16 were in first (n = 11), second (n = 4), or third (n = 1) relapse. We observed 14 complete response, four transient responses, one failure, and three early deaths. Length of hospitalization and number of transfusions were notably reduced in complete responders. Correction of coagulation disorders and an increase of WBCs were the first signs of all-trans RA efficacy. Morphologic analysis performed at days 0, 15, 30, 45, 60, and 90 showed that complete remissions were obtained without bone marrow (BM) hypoplasia. Presence of Auer rods in the maturing cells confirmed the differentiation effect of the treatment. At remission, the t(15;17) initially present in 20 patients was not found. The in vitro studies showed a differentiation in the presence of all-trans RA in 16 of the 18 tested cases. The single nonresponder to all trans RA in vitro did not respond in vivo. Adverse effects of RA therapy--skin and mucosa dryness, hypertriglyceridemia, and increase of hepatic transaminases-- were frequently noted. We also observed bone pain in 11 patients and hyperleukocytosis in four patients. Whether maintenance treatment consisted of low-dose chemotherapy or all-trans RA, early relapses were observed. Five patients are still in complete remission (CR) at 4 to 13 months. Our study confirms the major efficacy of all-trans RA in M3, even in relapsing patients. Remissions are obtained by a differentiation process.


Blood ◽  
2001 ◽  
Vol 97 (1) ◽  
pp. 264-269 ◽  
Author(s):  
Yongkui Jing ◽  
Long Wang ◽  
Lijuan Xia ◽  
Guo-qiang Chen ◽  
Zhu Chen ◽  
...  

Abstract All-trans retinoic acid (tRA) and arsenic trioxide (As2O3) induce non–cross-resistant complete clinical remission in patients with acute promyelocytic leukemia with t(15;17) translocation and target PML-RARα, the leukemogenic protein, by different pathways suggesting a possible therapeutic synergism. To evaluate this possibility, this study examined the effect of As2O3 on tRA-induced differentiation and, conversely, the effect of tRA on As2O3-induced apoptosis. As2O3 at subapoptotic concentrations (0.5 μM) decreased tRA-induced differentiation in NB4 cells but synergized with atRA to induce differentiation in tRA-resistant NB4 subclones MR-2 and R4 cells as measured by nitroblue tetrazolium reduction and tRA-inducible genes (TTGII, RARβ, RIG-E). tRA cleaved PML-RARα into distinct fragments in NB4 but not in tRA-resistant MR-2 or R4 cells, whereas As2O3 completely degraded PML-RARα in all 3 cell lines. As2O3-induced apoptosis was decreased by tRA pretreatment of NB4 cells but not of R4 cells and was associated with a strong induction of Bfl-1/A1 expression, a Bcl-2 protein family member. Severe combined immunodeficient mice bearing NB4 cells showed an additive survival effect after sequential treatment, but a toxic effect was observed after simultaneous treatment with tRA and As2O3. These data suggest that combined As2O3 and tRA treatment may be more effective than single agents in tRA-resistant patients. Although in vitro data do not always translate to in vivo response, toxicity and potential drug antagonism may be diminished by decreasing the concentration of As2O3 when given at the same time with therapeutic levels of tRA.


Sign in / Sign up

Export Citation Format

Share Document