scholarly journals Developmental- and differentiation-specific patterns of human γ- and β-globin promoter DNA methylation

Blood ◽  
2007 ◽  
Vol 110 (4) ◽  
pp. 1343-1352 ◽  
Author(s):  
Rodwell Mabaera ◽  
Christine A. Richardson ◽  
Kristin Johnson ◽  
Mei Hsu ◽  
Steven Fiering ◽  
...  

AbstractThe mechanisms underlying the human fetal-to-adult β-globin gene switch remain to be determined. While there is substantial experimental evidence to suggest that promoter DNA methylation is involved in this process, most data come from studies in nonhuman systems. We have evaluated human γ- and β-globin promoter methylation in primary human fetal liver (FL) and adult bone marrow (ABM) erythroid cells. Our results show that, in general, promoter methylation and gene expression are inversely related. However, CpGs at −162 of the γ promoter and −126 of the β promoter are hypomethylated in ABM and FL, respectively. We also studied γ-globin promoter methylation during in vitro differentiation of erythroid cells. The γ promoters are initially hypermethylated in CD34+ cells. The upstream γ promoter CpGs become hypomethylated during the preerythroid phase of differentiation and are then remethylated later, during erythropoiesis. The period of promoter hypomethylation correlates with transient γ-globin gene expression and may explain the previously observed fetal hemoglobin production that occurs during early adult erythropoiesis. These results provide the first comprehensive survey of developmental changes in human γ- and β-globin promoter methylation and support the hypothesis that promoter methylation plays a role in human β-globin locus gene switching.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1586-1586
Author(s):  
Christine Richardson ◽  
Rodwell Mabaera ◽  
Christopher H. Lowrey

Abstract Despite years of investigation in a variety of experimental systems, the mechanisms underlying human β-globin locus developmental gene switching remain elusive. Several lines of evidence implicate DNA methylation in this process. As an initial step in studying the role of epigenetic modifications in the human switching process and in determining the mechanisms by which DNA methyltransferase inhibitors reverse the switch, we have characterized the DNA methylation patterns of the individual CpGs in the γ- and β-globin promoters in fetal liver (FL) and adult bone marrow (BM) primary erythroid cells and during in vitro differentiation of adult erythroid cells. Using the bisulfite conversion method we evaluated all CpGs in the ~500 bp regions centered on the γ- and β-globin promoter start sites. Fetal liver (FL) and adult bone marrow (BM) samples were obtained using IRB approved protocols and informed consent procedures. Erythroid cells were purified using anti-glycophorin A (glyA) magnetic beads. Purity was confirmed to be greater than 95%. Samples from five independent BM and FL samples were analyzed and 8–20 bisulfite converted sequences were determined for each promoter in each sample. Our results show that all 8 CpGs between −249 and +210 of the Gγ and Aγ-globin promoters are less than 20% methylated in FL and greater than 80% methylated in BM except for the −158 CpG which is only 40% methylated in BM(p<0.002). The 6 CpGs between −415 and +110 of the β-globin promoter show an inverse pattern with lower levels of DNA methylation in BM. Histone H3 acetylation of the γ-globin promoter, as determined by ChIP analysis, showed a complimentary pattern with higher levels in FL than BM. We next evaluated γ-globin promoter methylation patterns during in vitro erythroid differentiation from CD34+ BM cells. In this experiment, cells were grown with SCF, Flt3 ligand and IL-3 for 7 days and then in EPO for 14 days producing erythroid cells which express 99%HbA and 1% HbF. The initial day 0 CD34+ cells showed 90–100% methylation of all γ promoter sites. By day 3 in culture, before the initiation of erythroid differentiation, methylation at all sites upstream of the promoter had decreased to less than 60% and the CpG at −53 (the site of Stage Selector Protein complex binding) had decreased to less than 20%. The three CpG sites down-stream of the promoter (+6, +17 and +50) remained highly methylated. The pattern was unchanged at day 10, early in erythroid differentiation, when γ-globin mRNA expression was beginning. By day 14, when β-globin expression was peaking, methylation of the upstream promoter had increased back to the 70–100% level at all CpGs. These experiments provide a comprehensive picture of γ- and β-globin promoter methylation during the fetal and adult stages of erythroid development and of the γ-globin promoter during adult erythroid differentiation. The finding of transient γ-promoter hypomethylation during differentiation offers a potential mechanism to explain the transient γ-globin gene expression seen during normal adult erythropoiesis. Our results also raise the possibility that, just as domains of altered histone modification exist in β-globin gene loci, there may also be developmentally-specific domains of DNA methylation.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 458-458
Author(s):  
Tatiana Kouznetsova ◽  
Kestis Vaitkus ◽  
Vinzon Ibanez ◽  
Joseph DeSimone ◽  
Donald Lavelle

Abstract Abstract 458 Increased fetal hemoglobin (HbF) levels associated with acute erythropoietic stress in man and experimental baboons have been proposed to result from increased commitment of early progenitors that preferentially express γ-globin to the terminal erythroid differentiation pathway. The increased propensity of early progenitors to preferentially express γ-globin has been hypothesized to be due to the presence of trans-acting factors favoring γ-globin expression. Because increased HbF in response to acute erythropoietic stress does not occur in transgenic human β-globin gene locus mouse models, investigation of the mechanism responsible for this phenomenon requires the use of a primate model system. We investigated the role of DNA methylation and the trans-acting factor BCL11A in the mechanism responsible for increased HbF in a primary cell culture system designed to mimic conditions associated with acute erythropoietic stress. Erythroid progenitor cells (EPC) derived from CD34+ baboon bone marrow (BM) cells cultured in Iscove's medium containing 30% fetal bovine serum supplemented with 2 U/ml Epo, 200ng/ml SCF, and 1uM dexamethasone express high levels of γ-globin (0.47+ 0.09 γ/γ+β; n=6). Bisulfite sequence analysis performed to determine whether changes in DNA methylation of 5 CpG residues within the 5' γ-globin promoter regions were associated with increased γ-globin expression showed that DNA methylation levels were similar in BM erythroid cells from normal baboons expressing very low levels of HbF (<1%), bled baboons expressing moderately elevated levels of HbF (5-10%), and cultured erythroid progenitor cells expressing highly elevated levels of HbF (30-50%). Changes in γ-globin promoter DNA methylation were thus not associated with increased γ-globin expression in EPC cultures. Further experiments were therefore performed to investigate whether differences in BCL11A expression were associated with increased γ-globin in EPC cultures. Western blot assays performed using three different anti-BCL11A monoclonal antibodies recognizing epitopes present in the N terminus, core, and C terminus detected different BCL11A isoforms in cultured EPC and normal BM erythroid cells. The size of the predominant protein band detected in cultured EPC was 125kDa, corresponding to the reported size of the in vitro transcription/translation product encoded by the BCL11A-XL transcript (Liu et al, Mol Cancer 16:18, 2006). In contrast, the size of the predominant band observed in BM erythroid cells was 220kDa. The 220kDa isoform was not observed in cultured EPC. Higher molecular weight forms of BCL11A have been observed following co-transfection of vectors encoding BCL11A and SUMO-1 (Kuwata and Nakamura, Genes Cells 13:931, 2008). Therefore we investigated whether the post-translational modification SUMOylation was responsible for the difference in the size of the 125 and 220kDa isoforms. Immunoprecipitation experiments performed using either SUMO-1 or SUMO 2/3 antibodies followed by Western blot with anti-BCL11A antibody showed that the 220 kDa isoform, but not the 125kDa isoform, was immunoprecipitated by either anti-SUMO-1 or anti-SUMO-2/3 antibody, confirming that the 220 kDA isoform, but not the 125 kDa isoform, was SUMOylated. Western blot assays performed to investigate the relative levels of these isoforms in BM erythroid cells of normal baboons, phlebotomized baboons, and early gestational age (53d) baboon fetal liver showed that expression of the 125kDa isoform was increased in bled compared to normal unbled baboons, suggesting that the deSUMOylated BCL11A isoform was increased by erythropoietic stress. The relative levels of the 125 and 220 kDa isoforms were similar in bled BM and fetal liver, indicating that SUMOylation of BCL11A was not developmentally regulated. The absolute level of BCL11A was reduced in fetal liver erythroid cells compared to BM erythroid cells consistent with observations showing that the level of BCL11A expression is developmentally regulated in man (Sankaran et al, Nature epub 2009). We conclude that BCL11A is post-translationally modified by SUMOylation in primary BM erythroid cells, but not in cultured EPC expressing high levels of HbF and suggest that modulation of the level of BCL11A SUMOylation is important in the mechanism responsible for increased HbF levels during recovery from acute erythropoietic stress. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 334-334
Author(s):  
Maria Armila Ruiz ◽  
Angela Rivers ◽  
Kestis Vaitkus ◽  
Vinzon Ibanez ◽  
Robert E. Molokie ◽  
...  

Abstract Increased levels of fetal hemoglobin (HbF) lessen the severity of symptoms and increase the life span of patients with sickle cell disease (SCD). Differences in DNA methylation of the γ-globin gene promoter between adult and fetal liver erythroid cells are highly associated with developmental differences in γ-globin expression. Mechanisms that establish and/or modulate DNA methylation of the γ-globin promoter during adult and fetal erythroid differentiation are important in the regulation of γ-globin expression. Pharmacological manipulation of DNA methylation increases HbF in nonhuman primates and SCD patients. Decitabine, a DNA methyltransferase inhibitor that demethylates DNA and increases HbF, is currently in clinical trials. Recent studies have shown that 5-hydroxymethylcytosine (5-hmC), an oxidative product of 5-methylcytosine (5-mC) catalyzed by activity of the TET dioxygenase family, is an intermediate in developmental processes that demethylate DNA. Previously we showed that the γ-globin gene promoter was demethylated during fetal liver erythroid differentiation and to a lesser extent during adult bone marrow (BM) erythroid differentiation. We have investigated the role of 5-hmC in the mechanism of γ-globin gene demethylation by analyzing 5-hmC levels at the HpaII site located at position -51 5’ to the γ-globin transcription start site using a T4-MspI assay in DNA isolated from FACS-purified subpopulations of baboon BM cells enriched for different stages of erythroid lineage differentiation. Levels of 5-hmC were >3 fold higher (p<0.001) in the CD117+CD36+ subpopulation enriched in CFUe (7.15+1.34%) compared to the terminal erythroid precursors (2.33+0.84%) showing that 5-hmC levels are dynamically regulated during erythroid differentiation. Although baboon BM erythroid subpopulations express both TET2 and TET3, higher levels of TET3 were observed in terminal erythroid precursors than in the more primitive CD117+CD36+ subpopulation. High levels of TET3 were also observed in FACS-purified erythroid cells derived from cultured CD34+ baboon BM, human peripheral blood, and human cord blood cells suggesting a role for TET3 in erythroid differentiation. To investigate the relationship between 5-hmC, 5-mC, and γ-globin expression, levels of γ-globin promoter 5-hmC and 5-mC were determined in purified erythroid cells derived from baboon BM CD34+ erythroid progenitors grown in culture conditions resulting in either high (liquid culture) or low (AFT024 murine fetal liver stromal cell line co-culture) levels of γ-globin expression. Levels of γ-globin promoter 5-hmC (mean difference 4.93% total cytosine; p<0.005) and γ-globin chain expression (mean difference γ/γ+β=0.44; p<0.001) were higher and γ-globin promoter 5-mC levels lower (mean difference -25.2% total cytosine; p<0.01) in erythroid progenitors grown in liquid cultures compared to stromal cell line co-cultures. Supplementation of culture media with ascorbic acid, a co-factor of the TET dioxygenases, increased γ-globin expression (mean difference γ/γ+β=0.12; p<0.005) and reduced the level of γ-globin promoter DNA methylation (mean difference -29.0% total cytosine; p<0.001) in baboon BM erythroid progenitors grown in both liquid and co-cultures compared to untreated controls. Ascorbic acid also increased γ-globin expression in cultures derived from human peripheral blood CD34+ progenitors (mean difference γ/γ+β=0.08; p<0.05). In addition, in baboon BM erythroid progenitor cultures ascorbic acid increased γ-globin expression in an additive manner in combination with either the DNA methyltransferase inhibitor decitabine (p<0.001) or the LSD1 inhibitor tranylcypromine (p<0.001) compared to either drug alone, while no combinatorial effects on γ-globin expression were observed with hydroxyurea. These results demonstrate that ascorbic acid is a DNA hypomethylating agent that increases γ-globin gene expression and are consistent with a role for the TET-mediated 5-hmC pathway in the regulation of DNA methylation and expression of the γ-globin gene. Furthermore, these results suggest that vitamin C deficiency, observed in approximately 50% of patients with sickle cell disease, may limit HbF induction by drugs that target epigenetic silencing mechanisms. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jianfeng Xu ◽  
Jiejun Shi ◽  
Xiaodong Cui ◽  
Ya Cui ◽  
Jingyi Jessica Li ◽  
...  

AbstractPromoter DNA methylation is a well-established mechanism of transcription repression, though its global correlation with gene expression is weak. This weak correlation can be attributed to the failure of current methylation quantification methods to consider the heterogeneity among sequenced bulk cells. Here, we introduce Cell Heterogeneity–Adjusted cLonal Methylation (CHALM) as a methylation quantification method. CHALM improves understanding of the functional consequences of DNA methylation, including its correlations with gene expression and H3K4me3. When applied to different methylation datasets, the CHALM method enables detection of differentially methylated genes that exhibit distinct biological functions supporting underlying mechanisms.


1998 ◽  
Vol 18 (11) ◽  
pp. 6634-6640 ◽  
Author(s):  
Denise E. Sabatino ◽  
Amanda P. Cline ◽  
Patrick G. Gallagher ◽  
Lisa J. Garrett ◽  
George Stamatoyannopoulos ◽  
...  

ABSTRACT During development, changes occur in both the sites of erythropoiesis and the globin genes expressed at each developmental stage. Previous work has shown that high-level expression of human β-like globin genes in transgenic mice requires the presence of the locus control region (LCR). Models of hemoglobin switching propose that the LCR and/or stage-specific elements interact with globin gene sequences to activate specific genes in erythroid cells. To test these models, we generated transgenic mice which contain the human Aγ-globin gene linked to a 576-bp fragment containing the human β-spectrin promoter. In these mice, the β-spectrin Aγ-globin (βsp/Aγ) transgene was expressed at high levels in erythroid cells throughout development. Transgenic mice containing a 40-kb cosmid construct with the micro-LCR, βsp/Aγ-, ψβ-, δ-, and β-globin genes showed no developmental switching and expressed both human γ- and β-globin mRNAs in erythroid cells throughout development. Mice containing control cosmids with the Aγ-globin gene promoter showed developmental switching and expressed Aγ-globin mRNA in yolk sac and fetal liver erythroid cells and β-globin mRNA in fetal liver and adult erythroid cells. Our results suggest that replacement of the γ-globin promoter with the β-spectrin promoter allows the expression of the β-globin gene. We conclude that the γ-globin promoter is necessary and sufficient to suppress the expression of the β-globin gene in yolk sac erythroid cells.


2018 ◽  
Author(s):  
Keegan Korthauer ◽  
Rafael A. Irizarry

AbstractThe scientific community is increasingly embracing open science. This growing commitment to open science should be applauded and encouraged, especially when it occurs voluntarily and prior to peer review. Thanks to other researchers’ dedication to open science, we have had the privilege of conducting a reanalysis of a landmark experiment published as a preprint with data made available in a public repository. The study in question found that promoter DNA methylation is frequently insufficient to induce transcriptional repression, which appears to contradict a large body of observational studies showing a strong association between DNA methylation and gene expression. This study was the first to evaluate whether forcibly methylating thousands of DNA promoter regions is sufficient to suppress gene expression. The authors’ data analysis did not find a strong relationship between promoter methylation and transcriptional repression. However, their analyses did not make full use of statistical inference and applied a normalization technique that removes global differences that are representative of the actual biological system. Here we reanalyze the data with an approach that includes statistical inference of differentially methylated regions, as well as a normalization technique that accounts for global expression differences. We find that forced DNA methylation of thousands of promoters overwhelmingly represses gene expression. In addition, we show that complementary epigenetic marks of active transcription are reduced as a result of DNA methylation. Finally, by studying whether these associations are sensitive to the CG density of promoters, we find no substantial differences in the association between promoters with and without a CG island. The code needed to reproduce are analysis is included in the public GitHub repository github.com/kdkorthauer/repressivecapacity.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1206-1206
Author(s):  
Donald Lavelle ◽  
Kestas Vaitkus ◽  
Maria Hankewych ◽  
Mahipal Singh ◽  
Joseph DeSimone

Abstract The pattern of globin gene expression during development is conserved in all simian primates, but not in prosimians or other species. Therefore knowledge of the mechanisms regulating globin gene expression in animal models such as the baboon (P. anubis) is directly applicable to human. This investigation addressed the role of chromatin structure in developmental regulation of globin gene expression. DNA methylation of the ε- and γ-gene promoters and covalent histone modifications in chromatin associated with the ε- γ- and β-globin gene promoters have been investigated in 40d fetal primitive nucleated yolk sac-derived RBCs, and definitive erythroid precursor cells from fetal liver (40d to 56d), fetal BM (154d to 160d), and BM from phlebotomized adults. The methylation status of 3 CpG sites in the ε-globin promoter and 5 CpG sites in the γ-globin promoter was analyzed by sequencing 10 cloned PCR products of each sample following bisulfite modification. The ε-globin promoter was unmethylated in 40d primitive yolk-sac derived RBCs. Moderate methylation of the ε-globin promoter was observed in 40d fetal liver (33%: 50%) and was increased in fetal liver samples obtained 2 weeks later in gestation (54d: 76.6%, 56d: 79.1%) to levels observed in late term fetal BM ( 154d: 80%, 156d: 96.6%, 160 d: 93.1%) and adult BM (84.1%; n=2). Methylation of the γ-globin promoter was lowest in 40d primitive RBC (0%) and early fetal liver (40d: 3.1%, 54d: 0%, 56d: 7.1%) and was moderately increased in fetal BM (154d: 38.6%, 156d: 20%, 160d: 30%) compared to adult BM ( 67.3%; n=3). Levels of ac-H3, ac-H4, dimethyl H3 lys4 (H3-dimeK4), dimethyl H3 lys79 (H3-meK79), dimethyl H3 lys36 (H3-meK36), and RNA pol II bound to the ε-, γ-, and β-globin promoters were determined by immunoprecipitation of formaldehyde-fixed, sheared chromatin (ChIP) followed by real time PCR. The amount of RNA pol II, ac-H3, and ac-H4 associated with each globin promoter correlated with developmental-specific gene expression and differed from the pattern of H3-meK79 and H3-meK4 associated with these promoters during development. The amount of H3-meK79 and H3-dimeK4 bound to the the ε- and γ-globin promoters in 40d primitive RBC and fetal liver erythroid precursors (54 and 56d) was 5 times greater than to the β-globin promoter, while similar levels of each (< 2 fold difference) were associated with all three promoters in fetal and adult bone marrow cells. In contrast, the highest level of H3-meK36 was associated with developmentally silenced genes. The amount of H3-meK36 bound to the ε promoter was 2–3 fold higher than to the γ and β promoters in fetal liver (54 and 56d). Similar levels (<2 fold difference) of H3-meK36 were associated with the γ and ε promoters in late term fetal and adult BM and were 2–6 fold greater than bound to the β promoter. We conclude that the chromatin cofiguration of the β-globin locus undergoes distinctive changes associated with both gene activation and silencing during development. Changes in the levels of H3-dimeK4 and H3-meK79 may reflect generalized domain opening, while high levels of ac-H3 and ac-H4 are bound to the promoters of activated genes. In contrast, gene silencing is correlated with increased DNA methylation and enrichment of H3-meK36 bound to the promoters. Thus the baboon model offers unique opportunities to study developmental regulation of globin gene expression.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 824-824
Author(s):  
Maria Armila Ruiz ◽  
Kestis Vaitkus ◽  
Aparna Vasanthakumar ◽  
Angela Rivers ◽  
Tatiana Kouznetsova ◽  
...  

Abstract Abstract 824 DNA methylation is a key element responsible for γ-globin gene repression in adult erythroid cells. Our laboratory previously observed that the γ-globin gene promoter region was demethylated in a progressive manner as γ-globin expression was activated during erythroid differentiation of primary baboon pre-switch fetal liver cells and, to a lesser extent, of adult baboon bone marrow (BM) cells (Singh et al Exp Hematol 35:48-55, 2007). The mechanism responsible for DNA demethylation of the γ-globin promoter during erythroid differentiation remains unknown. Recent studies have shown that DNA demethylation in the early embryo is mediated by the “sixth base” 5-hydroxymethylcytosine (5-hmC) whose formation from 5-methylcytosine is catalyzed by the enzymatic activity of the three TET proteins. To investigate the hypothesis that 5-hmC mediates DNA demethylation of the γ-globin promoter during erythroid differentiation, levels of 5-hmC at Msp I (CCGG) sites within the γ- and ϵ-globin promoters and γ-globin IVS II region in DNA isolated from peripheral WBC, purified terminal erythroid precursors, and FACS-purified adult bone marrow subpopulations enriched for different stages of differentiation (CD117+ CD36-, CD117+ CD36+, and CD117-CD36+), were analyzed using a T4 glucosylase-MspI quantitative real time PCR assay. Levels of 5-hmC associated with the γ-globin promoter MspI site were 11.6 fold higher (p<.0001) in terminal erythroblasts (n=9) compared to peripheral blood WBC (n=4) while 5-hmC levels associated with the ϵ-globin promoter were 11.8 fold higher (p<.0001) in terminal erythroid precursors (n=13) compared to peripheral WBC (n=4). Levels of 5-hmC associated with the γ-globin promoter (n=9) were 9.4 fold higher (p<.0001) than with the IVS II region of the γ-globin gene (n=8) in terminal erythroid precursors suggesting that elevated levels of 5-hmC within the β-globin gene complex in terminal erythroid precursors may be localized to promoter regions. Genomic 5-hmC levels, analyzed by HPLC-MS, were similar in WBC and terminal erythroid precursors. Within purified BM subpopulations enriched for different stages of erythroid differentiation, levels of 5-hmC associated with the γ-globin promoter were 3.2 to 4.1 fold higher in the CD117+CD36+ subpopulation enriched in erythroid colony forming cells (n=4) than in CD117+CD36- (n=3; p<.01), more differentiated CD117-CD36+ (n=3; p<.02), and terminal erythroid precursor (p<.001) subpopulations. Similar differences in levels of 5-hmC associated with the ϵ-globin promoter were also observed between these subpopulations. Enrichment of 5-hmC within the β-globin locus in the CD117+CD36+ and terminal erythroid precursors compared to peripheral WBC was confirmed by 5-hmC affinity selection and PCR analysis. In addition, similar differences in genomic 5-hmC levels between these subpopulations were also observed by HPLC-MS analysis. Bisulfite sequence analysis showed that the changes in 5-hmC levels at the γ-globin promoter were temporally associated with loss of DNA methylation within the γ-globin promoter as erythroid differentiation progressed. TET gene expression analysis showed that TET2 expression was 3 fold less (p<.01) while TET3 expression was >7 fold higher (p<.05) in terminal erythroid precursors compared to the CD117+CD36- subpopulation. These results strongly suggest that differences in 5-hmC associated with the ϵ- and γ-globin promoters are the result of wider dynamic alterations of genomic 5-hmC levels during erythroid differentiation that may be mediated by differences in TET gene expression and support the hypothesis that 5-hmC is involved in the mechanism responsible for DNA demethylation of the γ-globin promoter during erythroid differentiation. Disclosures: Godley: Celgene: Research Funding.


1988 ◽  
Vol 85 (13) ◽  
pp. 4638-4642 ◽  
Author(s):  
J. Yisraeli ◽  
D. Frank ◽  
A. Razin ◽  
H. Cedar

Sign in / Sign up

Export Citation Format

Share Document