scholarly journals Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet α granules and differentially released

Blood ◽  
2008 ◽  
Vol 111 (3) ◽  
pp. 1227-1233 ◽  
Author(s):  
Joseph E. Italiano ◽  
Jennifer L. Richardson ◽  
Sunita Patel-Hett ◽  
Elisabeth Battinelli ◽  
Alexander Zaslavsky ◽  
...  

Abstract Platelets, in addition to their function in hemostasis, play an important role in wound healing and tumor growth. Because platelets contain angiogenesis stimulators and inhibitors, the mechanisms by which platelets regulate angiogenesis remain unclear. As platelets adhere to activated endothelium, their action can enhance or inhibit local angiogenesis. We therefore suspected a higher organization of angiogenesis regulators in platelets. Using double immunofluorescence and immunoelectron microscopy, we show that pro- and antiangiogenic proteins are separated in distinct subpopulations of α-granules in platelets and megakaryocytes. Double immunofluorescence labeling of vascular endothelial growth factor (VEGF) (an angiogenesis stimulator) and endostatin (an angiogenesis inhibitor), or for thrombospondin-1 and basic fibroblast growth factor, confirms the segregation of stimulators and inhibitors into separate and distinct α-granules. These observations motivated the hypothesis that distinct populations of α-granules could undergo selective release. The treatment of human platelets with a selective PAR4 agonist (AYPGKF-NH2) resulted in release of endostatin-containing granules, but not VEGF-containing granules, whereas the selective PAR1 agonist (TFLLR-NH2) liberated VEGF, but not endostatin-containing granules. In conclusion, the separate packaging of angiogenesis regulators into pharmacologically and morphologically distinct populations of α-granules in megakaryocytes and platelets may provide a mechanism by which platelets can locally stimulate or inhibit angiogenesis.

2019 ◽  
Vol 43 (1) ◽  
pp. 67-74
Author(s):  
Areeg K. M. Al-ebadi

The present study aimed to estimate the efficiency of both a cellular bovine pericardium and bovine urinary bladder matrix sheets in the reconstruction of large ventro-lateral hernias in Iraqi bucks by using of molecular evaluation depending on real time-polymerase chain reaction technique to investigate the level of basic-fibroblast growth factor  and vascular endothelial growth factor  genes during the healing process and reconstruction of the abdominal defects. Under sedation and local anesthesia, (6cm X 8cm size) of ventro-lateral hernias were induced in 24 of Iraqi bucks. The animals were divided randomly into two main equal groups. In bovine pericardium-treatment group, the hernias were treated with onlay implantation of bovine pericardium. While, the hernias in UBM-treatment group were treated with onlay implantation of urinary bladder matrix, 30 days post-inducing of hernias. The molecular evaluation along the period of following-up recorded a significant up-regulation of the level of basic-fibroblast growth factor gene specific for presence of fibroblasts, myofibroblasts and collagen deposition in urinary bladder matrix -treatment group in comparison to bovine pericardium -treatment group with significant difference even at the end of the study. While, a significant up regulation of the levels of angiogenesis classic gene vascular endothelial growth factor  were recorded in the bucks of bovine pericardium -treatment group compared to urinary bladder matrix -treatment group. In conclusion; molecular detection of the level of growth factors in target tissue can be used as an important criterion.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1099
Author(s):  
Pedro Pinto-Bravo ◽  
Maria Rosa Rebordão ◽  
Ana Amaral ◽  
Carina Fernandes ◽  
António Galvão ◽  
...  

The oviduct presents the ideal conditions for fertilization and early embryonic development. In this study, (i) vascularization pattern; (ii) microvascular density; (iii) transcripts of angiogenic factors (FGF1, FGF2, VEGF) and their receptors—FGFR1, FGFR2, KDR, respectively, and (iv) the relative protein abundance of those receptors were assessed in cyclic mares’ oviducts. The oviductal artery, arterioles and their ramifications, viewed by means of vascular injection-corrosion, differed in the infundibulum, ampulla and isthmus. The isthmus, immunostained with CD31, presented the largest vascular area and the highest number of vascular structures in the follicular phase. Transcripts (qPCR) and relative protein abundance (Western blot) of angiogenic factors fibroblast growth factor 1 (FGF1) and 2 (FGF2) and vascular endothelial growth factor (VEGF), and their respective receptors (FGFR1, FGFR2, VEGFR2 = KDR), were present in all oviduct portions throughout the estrous cycle. Upregulation of the transcripts of angiogenic receptors FGF1 and FGFR1 in the ampulla and isthmus and of FGF2 and KDR in the isthmus were noted. Furthermore, in the isthmus, the relative protein abundance of FGFR1 and KDR was the highest. This study shows that the equine oviduct presents differences in microvascular density in its three portions. The angiogenic factors VEGF, FGF1, FGF2 and their respective receptors are expressed in all studied regions of the mare oviduct, in agreement with microvascular patterns.


Sign in / Sign up

Export Citation Format

Share Document