scholarly journals The novel histone deacetylase inhibitor, LBH589, induces expression of DNA damage response genes and apoptosis in Ph− acute lymphoblastic leukemia cells

Blood ◽  
2008 ◽  
Vol 111 (10) ◽  
pp. 5093-5100 ◽  
Author(s):  
Anna Scuto ◽  
Mark Kirschbaum ◽  
Claudia Kowolik ◽  
Leo Kretzner ◽  
Agnes Juhasz ◽  
...  

Abstract We investigated the mechanism of action of LBH589, a novel broad-spectrum HDAC inhibitor belonging to the hydroxamate class, in Philadelphia chromosome–negative (Ph−) acute lymphoblastic leukemia (ALL). Two model human Ph− ALL cell lines (T-cell MOLT-4 and pre–B-cell Reh) were treated with LBH589 and evaluated for biologic and gene expression responses. Low nanomolar concentrations (IC50: 5-20 nM) of LBH589 induced cell-cycle arrest, apoptosis, and histone (H3K9 and H4K8) hyperacetylation. LBH589 treatment increased mRNA levels of proapoptosis, growth arrest, and DNA damage repair genes including FANCG, FOXO3A, GADD45A, GADD45B, and GADD45G. The most dramatically expressed gene (up to 45-fold induction) observed after treatment with LBH589 is GADD45G. LBH589 treatment was associated with increased histone acetylation at the GADD45G promoter and phosphorylation of histone H2A.X. Furthermore, treatment with LBH589 was active against cultured primary Ph− ALL cells, including those from a relapsed patient, inducing loss of cell viability (up to 70%) and induction of GADD45G mRNA expression (up to 35-fold). Thus, LBH589 possesses potent growth inhibitory activity against including Ph− ALL cells associated with up-regulation of genes critical for DNA damage response and growth arrest. These findings provide a rationale for exploring the clinical activity of LBH589 in the treatment of patients with Ph− ALL.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3083-3083
Author(s):  
Anna Scuto ◽  
Mark Kirschbaum ◽  
Jennifer M Cermak ◽  
Peter Atadja ◽  
Richard Jove

Abstract Abstract 3083 Poster Board III-20 Histone Deacetylase Inhibitors (HDACi) such as LBH589, which inhibit the zinc containing catalytic domain of HDAC of classes I, II, and IV, demonstrate activity against various malignancies, particularly lymphoid malignancies. SIRT1 is an NAD+ dependent class III histone deacetylase, which deacetylates histones as well as non-histone proteins and is not affected directly by HDACi such as LBH589. It remains controversial whether inhibition of SIRT1 or its activation is more efficacious in anticancer therapy. We have studied the activity of two novel SIRT1 activators, SRT501 and SRT2183, in Philadelphia chromosome negative acute lymphoblastic leukemia (ALL) cell lines. Both pre B (NALM-6, Reh) and T cell (MOLT-4) ALL lines were treated with either SRT501 or SRT2183, as well as in combination with LBH589 and evaluated for biological and gene expression responses. SRT501 induced growth arrest and apoptosis at doses ranging from 10-100 uM, with even the lowest doses inhibiting growth at 72 hours. SRT2183 is much more potent, with growth arrest and apoptosis induced at doses ranging from 1-20 uM. PCR array analysis revealed that SRT2183 treatment leads to increased mRNA levels of pro-apoptosis, growth arrest, and DNA damage response genes. We have previously demonstrated that the activity of LBH589 is mediated in part through upregulation or acetylation of proteins involved in the DNA damage response pathways. Quantitative real-time PCR confirms that the combination of LBH589 with SRT2183 leads to significantly higher expression of GADD45A and GADD45G than either agent alone. The combination of LBH589 plus SRT2183 showed enhanced inhibition of c-Myc protein levels, phosphorylation of H2A.X, and interestingly, increased acetylation of p53 (acetylation of p53 was not seen with SRT2183 alone). In summary, the novel SIRT1 activators SRT501 and SRT2183 show growth inhibitory and pro-apoptotic activity in Ph- ALL alone and enhanced activity in combination with LBH589. Clinical studies of these agents, particularly in combination with HDACi are warranted. Disclosures Kirschbaum: Novartis: Consultancy. Cermak:Sirtris: Employment. Atadja:Novartis: Employment.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2796-2796
Author(s):  
Scuto Anna ◽  
Mark H. Kirschbaum ◽  
Peter Atadja ◽  
Agnes Juhasz ◽  
Vinod Pullarkat ◽  
...  

Abstract We investigated the mechanism of action of LBH589, a novel broad-spectrum HDAC inhibitor belonging to the hydroxamate class, in Philadelphia chromosome-negative (Ph−) acute lymphoblastic leukemia (ALL). Two model human Ph− ALL cell lines (T-cell MOLT-4, and non-T non-B cell Reh) were treated with LBH589 and evaluated for biological and gene expression responses. Low nM concentrations (IC50 5–20 nM) of LBH589 induced cell cycle arrest, apoptosis and histone (H3 and H4) hyperacetylation. PCR array analysis revealed that LBH589 treatment increased mRNA levels of pro-apoptosis, growth arrest and DNA damage repair genes. Quantitative real-time PCR confirmed that LBH589 induces expression of FANCG, FOXO3A, GADD45A, GADD45B and GADD45G. The most dramatically expressed gene (up to 45-fold induction) observed after treatment with LBH589 is GADD45G. Chromatin immunoprecipitation (ChIP) assays demonstrated increased histone acetylation at the GADD45G promoter following LBH589 treatment. Finally, treatment with LBH589 was active against cultured primary Ph− ALL cells, including those from a relapsed patient, inducing loss of cell viability (up to 70%). Thus, LBH589 possesses potent growth inhibitory activity against Ph− ALL cells associated with upregulation of genes critical for DNA repair. These findings provide a rationale for exploring the clinical activity of LBH589 in the treatment of patients with Ph− ALL.


Oncotarget ◽  
2017 ◽  
Vol 8 (46) ◽  
pp. 80645-80650 ◽  
Author(s):  
Romain Gioia ◽  
Simon Drouin ◽  
Manon Ouimet ◽  
Maxime Caron ◽  
Pascal St-Onge ◽  
...  

Haematologica ◽  
2017 ◽  
Vol 103 (2) ◽  
pp. 266-277 ◽  
Author(s):  
Fulvio Bordin ◽  
Erich Piovan ◽  
Elena Masiero ◽  
Alberto Ambesi-Impiombato ◽  
Sonia Minuzzo ◽  
...  

2021 ◽  
Author(s):  
Maryam Katoueezadeh ◽  
Niloofar Pilehvari ◽  
Ahmad Fatemi ◽  
Gholamhossein Hassanshahi ◽  
Seyedeh Atekeh Torabizadeh

An alarming increase in acute lymphoblastic leukemia cases among children and adults has attracted the attention of researchers to discover new therapeutic strategies with a better prognosis. In cancer cells, the DNA damage response (DDR) pathway elements have been recognized to protect tumor cells from various stresses and cause tumor progression; targeting these DDR members is an attractive strategy for treatment of cancers. The inhibition of the DDR pathway in cancer cells for the treatment of cancers has recently been introduced. Hence, effective treatment strategies are needed for this purpose. Chemotherapy in combination with radiotherapy is considered a potential therapeutic strategy for acute leukemia. This review aims to assess the synergistic effects of these inhibitors with irradiation for the treatment of leukemia.


2018 ◽  
pp. 1-7 ◽  
Author(s):  
Randy F. Sweis ◽  
Brian Heiss ◽  
Jeremy Segal ◽  
Lauren Ritterhouse ◽  
Sabah Kadri ◽  
...  

2020 ◽  
Vol 4 (1) ◽  
pp. 106-111 ◽  
Author(s):  
Valentina Nardi ◽  
Nora Ku ◽  
Matthew J. Frigault ◽  
Adrian M. Dubuc ◽  
Harrison Kwei Tsai ◽  
...  

Key Points Larotrectinib has clinical activity in adult Ph-like acute lymphoblastic leukemia with ETV6-NTRK3 rearrangements. ETV6-NTRK3 rearrangements can be cryptic and subclonal in Ph-like ALL at diagnosis and selected for with aggressive therapy.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3369-3369
Author(s):  
Magali Humbert ◽  
Michaela Medova ◽  
Barbara Geering ◽  
Wieslawa Blank-Liss ◽  
Hans-Uwe Simon ◽  
...  

Abstract Abstract 3369 Intact DNA damage response pathways are important for genomic fidelity of cells in order to avoid tumor formation. On the other hand, inhibition of DNA repair provides an important mechanism to enhance the therapeutic efficacy of DNA damaging agents such as gamma-irradiation. Thus, it is important to identify novel players in DNA damage response that might represent novel targets for combination therapies. Death-associated protein kinases (DAPK) are serine/threonine kinases believed to be involved in cell death and autophagy mechanisms, whereby particularly the role of DAPK1 has previously been investigated. The DAPK family is composed of five members: DAPK1, DAPK2 (or DRP-1), DAPK3 (or ZIP kinase), DRAK1 and DRAK2. DAPK1 and DAPK2 share 80% homology in the catalytic domain. Generally, the role of DAPK in DNA damage responses is not well studied. To analyze the role of DAPK1 and DAPK2 in response to gamma-irradiation, we used p53 wild-type REH B-cell acute lymphoblastic leukemia (B-ALL) cells as a model. In response to irradiation, DAPK1 protein expression increased paralleled by an increased of total p53, phospho-Ser20-p53 and p21WAF1/CIP1. DAPK2 expression, however, did not increase. Since upregulation of p21WAF1/CIP1, a classical p53 target in response to DNA damage leads to cell cycle arrest, we asked whether knocking down DAPK1 or DAPK2 might affect the cell cycle. Interestingly, knocking down DAPK2 but not DAPK1 led to a significant increase of S-phase cells upon irradiation. Moreover, knocking down DAPK2 attenuated the induction of DAPK1 upon irradiation indicating a DAPK2-DAPK1 cascade in DNA damage responses. Next, given the significant role of p21WAF1/CIP1 and p53 in DNA damage responses, we tested if DAPK2 might directly participate in a novel signaling pathway by interacting with these proteins. Indeed, pull down assays revealed that p21WAF1/CIP1 and p53 are novel DAPK2 interacting proteins. Clearly, further experiments are needed to define the DAPK2-DAPK1-p53- p21WAF1/CIP1 network in DNA repair pathways. In conclusion, we identified a novel role for DAPK1 and DAPK2 in DNA damage responses of B-ALL cells and propose a novel DAPK2/DAPK1/p53/ p21WAF1/CIP1 DNA damage regulatory pathway. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Jorge Zamora-Zaragoza ◽  
Katinka Klap ◽  
Renze Heidstra ◽  
Wenkun Zhou ◽  
Ben Scheres

Living organisms face threats to genome integrity caused by environmental challenges or metabolic errors in proliferating cells. To avoid the spread of mutations, cell division is temporarily arrested while repair mechanisms deal with DNA lesions. Afterwards, cells either resume division or respond to unsuccessful repair by withdrawing from the cell cycle and undergoing cell death. How the success rate of DNA repair connects to the execution of cell death remains incompletely known, particularly in plants. Here we provide evidence that the Arabidopsis thaliana RETINOBLASTOMA-RELATED1 (RBR) protein, shown to play structural and transcriptional functions in the DNA damage response (DDR), coordinates these processes in time by successive interactions through its B-pocket sub-domain. Upon DNA damage induction, RBR forms nuclear foci; but the N849F substitution in the B-pocket, which specifically disrupts binding to LXCXE motif-containing proteins, abolishes RBR focus formation and leads to growth arrest. After RBR focus formation, the stress-responsive gene NAC044 arrests cell division. As RBR is released from nuclear foci, it can be bound by the conserved LXCXE motif in NAC044. RBR-mediated cell survival is inhibited by the interaction with NAC044. Disruption of NAC044-RBR interaction impairs the cell death response but is less important for NAC044 mediated growth arrest. Noteworthy, unlike many RBR interactors, NAC044 binds to RBR independent of RBR phosphorylation. Our findings suggest that the availability of the RBR B-pocket to interact with LXCXE-containing proteins couples the structural DNA repair functions and the transcriptional functions of RBR in the cell death program.


Aging Cell ◽  
2011 ◽  
Vol 10 (6) ◽  
pp. 949-961 ◽  
Author(s):  
Michael Y. Sherman ◽  
Le Meng ◽  
Martha Stampfer ◽  
Vladimir L. Gabai ◽  
Julia A. Yaglom

Sign in / Sign up

Export Citation Format

Share Document