scholarly journals Protein phosphatase 2A inactivates Bcl2's antiapoptotic function by dephosphorylation and up-regulation of Bcl2-p53 binding

Blood ◽  
2009 ◽  
Vol 113 (2) ◽  
pp. 422-428 ◽  
Author(s):  
Xingming Deng ◽  
Fengqin Gao ◽  
W. Stratford May

Abstract Bcl2 is associated with chemoresistance and poor prognosis in patients with various hematologic malignancies. DNA damage-induced p53/Bcl2 interaction at the outer mitochondrial membrane results in a Bcl2 conformational change with loss of its antiapoptotic activity in interleukin-3–dependent myeloid H7 cells. Here we find that specific disruption of protein phosphatase 2A (PP2A) activity by either expression of small t antigen or depletion of PP2A/C by RNA interference enhances Bcl2 phosphorylation and suppresses cisplatin-stimulated p53/Bcl2 binding in association with prolonged cell survival. By contrast, treatment of cells with C2-ceramide (a potent PP2A activator) or expression of the PP2A catalytic subunit (PP2A/C) inhibits Bcl2 phosphorylation, leading to increased p53/Bcl2 binding and apoptotic cell death. Mechanistically, PP2A-mediated dephosphorylation of Bcl2 in vitro promotes its direct interaction with p53 as well as a conformational change in Bcl2. PP2A directly interacts with the BH4 domain of Bcl2 as a docking site to potentially “bridge” PP2A to Bcl2's flexible loop domain containing the target serine 70 phosphorylation site. Thus, PP2A may provide a dual inhibitory effect on Bcl2's survival function by both dephosphorylating Bcl2 and enhancing p53-Bcl2 binding. Activating PP2A to dephosphorylate Bcl2 and/or increase Bcl2/p53 binding may represent an efficient and novel approach for treatment of hematologic malignancies.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1436-1436
Author(s):  
Xingming Deng ◽  
Fengqin Gao ◽  
Tammy Flagg ◽  
W. Stratford May

Abstract DNA damage-induced p53/Bcl2 interaction at the outer mitochondrial membranes results in a Bcl2 conformational change and loss of its antiapoptotic function. Our data now indicate that either treatment of cells with the protein phosphatase 2A (PP2A) inhibitor, okadaic acid (10 nM), or specific disruption of PP2A activity by the expression of SV40 small tumor antigen enhances Bcl2 phosphorylation and suppresses the cisplatin-stimulated Bcl2-p53 interaction in association with prolonged cell survival. By contrast, C2-ceramide, a potent PP2A activator, reduces Bcl2 phosphorylation and increases Bcl2-p53 binding and promotes apoptotic cell death, suggesting that PP2A may function as a physiological regulator of Bcl2 by, at least in part, affecting its association with p53. Overexpression of the PP2A catalytic subunit (PP2A/C) suppresses Bcl2 phosphorylation in association with increased p53-Bcl2 binding and apoptotic cell death. By contrast, specific depletion of PP2A/C by RNA interference enhances Bcl2 phosphorylation, suppresses p53-Bcl2 interaction and prolongs cell survival. Purified PP2A can directly enhance the formation of the p53-Bcl2 complex in vitro in an okadaic acid-sensitive manner, supporting a direct mechanism. Importantly, PP2A directly interacts with Bcl2 at its BH4 domain which may function as the PP2A ‘docking site’ to potentially ‘bridge’ PP2A to the flexible loop domain which contains the physiological serine 70 phosphorylation site. Thus, PP2A may provide a double whammy to Bcl2’s survival function by both dephosphorylating and enhancing p53-Bcl2 binding. Therapeutically stimulating Bcl2 dephosphorylation and/or increasing Bcl2/p53 binding by activating PP2A may represent an efficient and novel antineoplastic approach.


2015 ◽  
Vol 89 (8) ◽  
pp. 4191-4200 ◽  
Author(s):  
Hyun Jin Kwun ◽  
Masahiro Shuda ◽  
Carlos J. Camacho ◽  
Armin M. Gamper ◽  
Mamie Thant ◽  
...  

ABSTRACTMerkel cell polyomavirus (MCV) is a newly discovered human cancer virus encoding a small T (sT) oncoprotein. We performed MCV sT FLAG-affinity purification followed by mass spectroscopy (MS) analysis, which identified several protein phosphatases (PP), including PP2A A and C subunits and PP4C, as potential cellular interacting proteins. PP2A targeting is critical for the transforming properties of nonhuman polyomaviruses, such as simian virus 40 (SV40), but is not required for MCV sT-induced rodent cell transformation. We compared similarities and differences in PP2A binding between MCV and SV40 sT. While SV40 sT coimmunopurified with subunits PP2A Aα and PP2A C, MCV sT coimmunopurified with PP2A Aα, PP2A Aβ, and PP2A C. Scanning alanine mutagenesis at 29 sites across the MCV sT protein revealed that PP2A-binding domains lie on the opposite molecular surface from a previously described large T stabilization domain (LSD) loop that binds E3 ligases, such as Fbw7. MCV sT-PP2A interactions can be functionally distinguished by mutagenesis from MCV sT LSD-dependent 4E-BP1 hyperphosphorylation and viral DNA replication enhancement. MCV sT has a restricted range for PP2A B subunit substitution, inhibiting only the assembly of B56α into the phosphatase holoenzyme. In contrast, SV40 sT inhibits the assembly of B55α, B56α and B56ε into PP2A. We conclude that MCV sT is required for Merkel cell carcinoma growth, but itsin vitrotransforming activity depends on LSD interactions rather than PP2A targeting.IMPORTANCEMerkel cell polyomavirus is a newly discovered human cancer virus that promotes cancer, in part, through expression of its small T (sT) oncoprotein. Animal polyomavirus sT oncoproteins have been found to cause experimental tumors by blocking the activities of a group of phosphatases called protein phosphatase 2A (PP2A). Our structural analysis reveals that MCV sT also displaces the B subunit of PP2A to inhibit PP2A activity. MCV sT, however, only displaces a restricted subset of PP2A B subunits, which is insufficient to cause tumor cell formationin vitro. MCV sT instead transforms tumor cells through another region called the large T stabilization domain. The PP2A targeting and transforming activities lie on opposite faces of the MCV sT molecule and can be genetically separated from each other.


1993 ◽  
Vol 13 (3) ◽  
pp. 1657-1665 ◽  
Author(s):  
C L Carpenter ◽  
K R Auger ◽  
B C Duckworth ◽  
W M Hou ◽  
B Schaffhausen ◽  
...  

We identified a serine/threonine protein kinase that is associated with and phosphorylates phosphoinositide 3-kinase (PtdIns 3-kinase). The serine kinase phosphorylates both the 85- and 110-kDa subunits of PtdIns 3-kinase and purifies with it from rat liver and immunoprecipitates with antibodies raised to the 85-kDa subunit. Tryptic phosphopeptide maps indicate that p85 from polyomavirus middle T-transformed cells is phosphorylated in vivo at three sites phosphorylated in vitro by the associated serine kinase. The 85-kDa subunit of PtdIns 3-kinase is phosphorylated in vitro on serine at a stoichiometry of approximately 1 mol of phosphate per mol of p85. This phosphorylation results in a three- to sevenfold decrease in PtdIns 3-kinase activity. Dephosphorylation with protein phosphatase 2A reverses the inhibition. This suggests that the association of protein phosphatase 2A with middle T antigen may function to activate PtdIns 3-kinase.


2010 ◽  
Vol 298 (5) ◽  
pp. F1205-F1213 ◽  
Author(s):  
I. Alexandru Bobulescu ◽  
Henry Quiñones ◽  
Serge M. Gisler ◽  
Francesca Di Sole ◽  
Ming-Chang Hu ◽  
...  

Nephrogenic dopamine is a potent natriuretic paracrine/autocrine hormone that is central for mammalian sodium homeostasis. In the renal proximal tubule, dopamine induces natriuresis partly via inhibition of the sodium/proton exchanger NHE3. The signal transduction pathways and mechanisms by which dopamine inhibits NHE3 are complex and incompletely understood. This manuscript describes the role of the serine/threonine protein phosphatase 2A (PP2A) in the regulation of NHE3 by dopamine. The PP2A regulatory subunit B56δ (coded by the Ppp2r5d gene) directly associates with more than one region of the carboxy-terminal hydrophilic putative cytoplasmic domain of NHE3 (NHE3-cyto), as demonstrated by yeast-two-hybrid, coimmunoprecipitation, blot overlay, and in vitro pull-down assays. Phosphorylated NHE3-cyto is a substrate for purified PP2A in an in vitro dephosphorylation reaction. In cultured renal cells, inhibition of PP2A by either okadaic acid or by overexpression of the simian virus 40 (SV40) small T antigen blocks the ability of dopamine to inhibit NHE3 activity and to reduce surface NHE3 protein. Dopamine-induced NHE3 redistribution is also blocked by okadaic acid ex vivo in rat kidney cortical slices. These studies demonstrate that PP2A is an integral and critical participant in the signal transduction pathway between dopamine receptor activation and NHE3 inhibition.


1993 ◽  
Vol 13 (3) ◽  
pp. 1657-1665
Author(s):  
C L Carpenter ◽  
K R Auger ◽  
B C Duckworth ◽  
W M Hou ◽  
B Schaffhausen ◽  
...  

We identified a serine/threonine protein kinase that is associated with and phosphorylates phosphoinositide 3-kinase (PtdIns 3-kinase). The serine kinase phosphorylates both the 85- and 110-kDa subunits of PtdIns 3-kinase and purifies with it from rat liver and immunoprecipitates with antibodies raised to the 85-kDa subunit. Tryptic phosphopeptide maps indicate that p85 from polyomavirus middle T-transformed cells is phosphorylated in vivo at three sites phosphorylated in vitro by the associated serine kinase. The 85-kDa subunit of PtdIns 3-kinase is phosphorylated in vitro on serine at a stoichiometry of approximately 1 mol of phosphate per mol of p85. This phosphorylation results in a three- to sevenfold decrease in PtdIns 3-kinase activity. Dephosphorylation with protein phosphatase 2A reverses the inhibition. This suggests that the association of protein phosphatase 2A with middle T antigen may function to activate PtdIns 3-kinase.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii115-ii115
Author(s):  
Rongze Olivia Lu ◽  
Winson Ho ◽  
Brandon Chiou

Abstract Checkpoint immunotherapy (ICB) thus far has shown limited efficacy against brain tumors, such as medulloblastoma (MB). Its low mutational burden is thought to result in a paucity of neoantigen to trigger an effective T-cell response. Natural killer (NK) cells, can recognize tumor cells independently of neoantigens, making them appealing against MBs. Modulation of NK cells to enhance cytotoxicity against MBs could be a novel treatment strategy. Protein Phosphatase 2A (PP2A), a ubiquitous serine/threonine phosphatase, has been shown to inhibit IFNg and Granzyme B production by NK cells. We hypothesize that NK92, a transformed human NK cell line, has intrinsic activity against human MB cells and that inhibiting PP2A pharmacologically can enhance cytotoxicity of NK92 cells. We performed NK cytotoxicity assay and granulation assay against human MB cell line D425. We also used a small molecular inhibitor, LB100, to modulate PP2A activity in NK92. NK92 cells were co-cultured with D425, in increasing E:T (Effector:Target) ratio for 4 hours. D425 cells were pre-labeled with CellTrace Violet dye. The percentage of D425 (Violet+) cells in apoptosis (Cas3/7+) or necrosis (AAD+) were compared with different ET ratios to quantify NK mediated cell cytotoxicity. We also measured CD107a expression in NK92 to assess granulation with LB100 treatment. D425 cells were sensitive to NK92 killing. Percentage of D425 cells either apoptotic or necrotic increased with increasing ET ratio, suggesting that there was NK92 mediated cytotoxicity. Percentage of killed D425 cells ranged from 18% at baseline (without NK92) to 80% at ET ratio of 20. Inhibition of PP2A using LB100, enhanced NK92 degranulation. CD107a+ NK92 cells increased from 19% to 28% with 8uM of LB100. NK92 cells are cytotoxic against MB cells in vitro and inhibition of PP2A in NK cells can enhance their activity against MB cells.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Arunachal Chatterjee ◽  
Neelakantan Vasudevan ◽  
Maradumane Mohan ◽  
Elizabeth Martelli ◽  
John George ◽  
...  

Beta-Adrenergic receptors (bARs) play a key role in regulating cardiac function. Loss of surface receptors and desensitization (impaired G-protein coupling) of bARs are hallmarks of a failing heart. Desensitization occurs by phosphorylation of bARs. The bARs are resensitized by protein phosphatase 2A (PP2A) mediated dephosphorylation in the endosomes before recycling to the plasma membrane. While mechanisms of desensitization are well understood, little is known about mechanisms regulating resensitization. Our previous work has shown that PI3Kg phosphorylates an endogenous inhibitor of PP2A (I2PP2A) on serine 9 & 93, which then robustly binds to PP2A inhibiting bAR resensitization. Since it is not known whether resensitization is altered in response to cardiac stress or whether altered bAR resensitization contributes to cardiac hypertrophy and failure, we generated transgenic mice with cardiomyocyte specific overexpression of wild type I2PP2A (WT I2PP2A Tg), I2PP2A phospho-mimetic mutants S9, 93D and mutants with constitutively dephosphorylated S9, 93A state. To test whether resensitization is critical in the development of bAR dysfunction during cardiac hypertrophy, WT I2PP2A Tg mice were subjected to transverse aortic constriction (TAC) for 8 weeks. Echocardiographic analysis post-TAC showed that WT I2PP2A Tg mice had accelerated cardiac dysfunction compared to their littermate controls [HW (mg)/BW(g): Sham: WT - 4.83, WT I2PP2A Tg - 4.82, TAC: WT- 6.47, WT I2PP2A Tg - 7.61; %EF: Sham: WT - 83.53, WT I2PP2A Tg - 74.72, TAC: WT - 70.47, WT I2PP2A Tg - 49.62]. To directly test whether resensitization mechanisms are altered, plasma membranes and endosomes were isolated and in vitro Adenylyl Cyclase activity assessed. Our studies show that compared to littermate controls, WT I2PP2A Tg had altered in vitro adenylyl cyclase activity showing that resensitization mechanisms in the endosomes may in part, contribute to cardiac dysfunction. Mechanistic underpinnings of the resensitization pathways using the I2PP2A S9, 93A and S9, 93D will be presented showing that bAR resensitization a process considered passive is altered in conditions of cardiac stress that in part may contribute to bAR dysfunction leading to cardiac hypertrophy and heart failure.


Sign in / Sign up

Export Citation Format

Share Document