scholarly journals Activation of Wnt5A signaling is required for CXC chemokine ligand 12–mediated T-cell migration

Blood ◽  
2009 ◽  
Vol 114 (7) ◽  
pp. 1366-1373 ◽  
Author(s):  
Manik C. Ghosh ◽  
Gary D. Collins ◽  
Bolormaa Vandanmagsar ◽  
Kalpesh Patel ◽  
Margaret Brill ◽  
...  

Abstract Chemokines mediate the signaling and migration of T cells, but little is known about the transcriptional events involved therein. Microarray analysis of CXC chemokine ligand (CXCL) 12−treated T cells revealed that Wnt ligands are significantly up-regulated during CXCL12 treatment. Real-time polymerase chain reaction and Western blot analysis confirmed that the expression of noncanonical Wnt pathway members (eg, Wnt5A) was specifically up-regulated during CXCL12 stimulation, whereas β-catenin and canonical Wnt family members were selectively down-regulated. Wnt5A augmented signaling through the CXCL12-CXCR4 axis via the activation of protein kinase C. Moreover, Wnt5A expression was required for CXCL12–mediated T-cell migration, and rWnt5A sensitized human T cells to CXCL12-induced migration. Furthermore, Wnt5A expression was also required for the sustained expression of CXCR4. These results were further supported in vivo using EL4 thymoma metastasis as a model of T-cell migration. Together, these data demonstrate that Wnt5A is a critical mediator of CXCL12-CXCR4 signaling and migration in human and murine T cells.

1999 ◽  
Vol 190 (8) ◽  
pp. 1123-1134 ◽  
Author(s):  
K. Mark Ansel ◽  
Louise J. McHeyzer-Williams ◽  
Vu N. Ngo ◽  
Michael G. McHeyzer-Williams ◽  
Jason G. Cyster

Migration of antigen-activated CD4 T cells to B cell areas of lymphoid tissues is important for mounting T cell–dependent antibody responses. Here we show that CXC chemokine receptor (CXCR)5, the receptor for B lymphocyte chemoattractant (BLC), is upregulated on antigen-specific CD4 T cells in vivo when animals are immunized under conditions that promote T cell migration to follicles. In situ hybridization of secondary follicles for BLC showed high expression in mantle zones and low expression in germinal centers. When tested directly ex vivo, CXCR5hi T cells exhibited a vigorous chemotactic response to BLC. At the same time, the CXCR5hi cells showed reduced responsiveness to the T zone chemokines, Epstein-Barr virus–induced molecule 1 (EBI-1) ligand chemokine (ELC) and secondary lymphoid tissue chemokine (SLC). After adoptive transfer, CXCR5hi CD4 T cells did not migrate to follicles, indicating that additional changes may occur after immunization that help direct T cells to follicles. To further explore whether T cells could acquire an intrinsic ability to migrate to follicles, CD4−CD8− double negative (DN) T cells from MRL-lpr mice were studied. These T cells normally accumulate within follicles of MRL-lpr mice. Upon transfer to wild-type recipients, DN T cells migrated to follicle proximal regions in all secondary lymphoid tissues. Taken together, our findings indicate that reprogramming of responsiveness to constitutively expressed lymphoid tissue chemokines plays an important role in T cell migration to the B cell compartment of lymphoid tissues.


Immunology ◽  
2003 ◽  
Vol 108 (1) ◽  
pp. 32-41 ◽  
Author(s):  
Isabel Correa ◽  
Tim Plunkett ◽  
Anda Vlad ◽  
Arron Mungul ◽  
Jessica Candelora-Kettel ◽  
...  

2018 ◽  
Author(s):  
Xenia Ficht ◽  
Nora Ruef ◽  
Bettina Stolp ◽  
Federica Moalli ◽  
Nicolas Page ◽  
...  

AbstractFlotillin-1 (Flot1) is a highly conserved, ubiquitously expressed lipid raft-associated scaffolding protein. Migration of Flot1-deficient neutrophils is impaired due to a decrease in myosin II-mediated contractility. Flot1 also accumulates in the uropod of polarized T cells, suggesting an analogous role in T cell migration. Here, we analyzed morphology and migration of naïve and memory WT and Flot1-/- CD8+ T cells in lymphoid and non-lymphoid tissues with intravital two-photon microscopy, as well as their clonal expansion during antiviral immune responses. Flot1-/- CD8+ T cells displayed minor alterations in cell shape and motility parameters in vivo but showed comparable homing to lymphoid organs and infiltration into non-lymphoid tissues. Taken together, Flot1 plays a detectable but unexpectedly minor role for CD8+ T cell behavior under physiological conditions.


2013 ◽  
Vol 305 (10) ◽  
pp. L693-L701 ◽  
Author(s):  
Jesse W. Williams ◽  
Douglas Yau ◽  
Nan Sethakorn ◽  
Jacob Kach ◽  
Eleanor B. Reed ◽  
...  

T cell migration toward sites of antigen exposure is mediated by G protein signaling and is a key function in the development of immune responses. Regulators of G protein signaling (RGS) proteins modulate G protein signaling; however, their role in the regulation of adaptive immune responses has not been thoroughly explored. Herein we demonstrated abundant expression of the Gi/Gq-specific RGS3 in activated T cells, and that diminished RGS3 expression in a T cell thymoma increased cytokine-induced migration. To examine the role of endogenous RGS3 in vivo, mice deficient in the RGS domain (RGS3ΔRGS) were generated and tested in an experimental model of asthma. Compared with littermate controls, the inflammation in the RGS3ΔRGS mice was characterized by increased T cell numbers and the striking development of perivascular lymphoid structures. Surprisingly, while innate inflammatory cells were also increased in the lungs of RGS3ΔRGS mice, eosinophil numbers and Th2 cytokine production were equivalent to control mice. In contrast, T cell numbers in the draining lymph nodes (dLN) were reduced in the RGS3ΔRGS, demonstrating a redistribution of T cells from the dLN to the lungs via increased RGS3ΔRGS T cell migration. Together these novel findings show a nonredundant role for endogenous RGS3 in controlling T cell migration in vitro and in an in vivo model of inflammation.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2650-2650
Author(s):  
Tami L. Bach ◽  
Qing-Min Chen ◽  
Martha S. Jordan ◽  
John K. Choi ◽  
Dianqing Wu ◽  
...  

Abstract Chemokines acting through G-protein coupled receptors play an essential role in both the immune and inflammatory responses. Phosphatidylinositol 3-kinase (PI3K) and phospholipase C (PLC) are two distinct signaling molecules that have been proposed as potential candidates in the regulation of this process. Studies with knockout mice have demonstrated a critical role for PI3Kγ, but not PLCβ, in Gαi-coupled receptor-mediated neutrophil chemotaxis. We compared the chemotactic response of peripheral T-cells derived from wild type mice with mice containing loss-of-function mutations of either PI3Kγ, or both of the two predominant lymphocyte PLCβ isoforms (PLCβ2 and PLCβ3). In contrast to neutrophils, loss of PI3Kγ did not significantly impair T-cell migration in vitro, although PI3K pharmacologic inhibitor experiments suggest that another isoform of this enzyme might contribute to T-cell migration. However, loss of PLCβ2β3 decreased chemokine-stimulated T-cell migration in vitro. Chelation of intracellular calcium by BAPTA-AM and Quin-2 AM decreased the chemotactic response of wild type lymphocytes, but pharmacologic inhibition of PKC isoforms by GF109203x did not impair T-cell migration. This suggests that the T-cell migration defect seen in the PLCβ2β3-null T-cells may be due to an impaired ability to increase the cytoplasmic calcium concentration, while there appears to be little requirement for PKC activity. Indeed, SDF-1α-induced calcium efflux was not detected in the PLCβ2β3-null lymphocytes. Compared to fluorescently labeled wild type T-cells, labeled PLCβ2β3 knockout T-cells migrated less efficiently into secondary lymphoid organs of recipient mice. This demonstrates that PLCβ is also required for migration in vivo. PLCβ2β3-null mice develop spontaneous skin ulcers starting around 3 months of age. Histological examination of the lesions revealed a dense inflammatory infiltrate composed of neutrophils, macrophages, and plasma cells, consistent with acute and chronic inflammation. Remarkably, lymphocytes, typical of chronic inflammation, were rare to absent by histology and by paraffin immunohistochemistry for CD3, also consistent with an in vivo migratory defect of T-cells. These results show that phospholipid second messengers generated by PLCβ and isoforms of PI3K, other than PI3Kγ, play a critical role in lymphocyte chemotaxis. Collectively, our data demonstrate that although PLCβ-mediated signaling plays no role in neutrophil chemotaxis, it makes a substantial contribution to this process within T-lymphocytes.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1753-1753 ◽  
Author(s):  
Shih-Shih Chen ◽  
Steven Ham ◽  
Kanti R. Rai ◽  
Karen McGovern ◽  
Jeffery L. Kutok ◽  
...  

Abstract Duvelisib (IPI-145), a dual inhibitor of phosphoinositide 3-kinase (PI3K)-δ and -γ, has shown clinical activity in treatment-naïve and relapsed/refractory chronic lymphocytic leukemia (CLL) patients. Clinically, duvelisib results in a redistribution of malignant B cells and concomitant reduction in nodal enlargement. These effects are believed to be due to important roles of PI3K- δ and -γ in CXCL12-mediated CLL cell migration (Peluso 2014), cytokine-induced CLL B-cell proliferation, and BCR-stimulated B-cell survival (Balakrishnan 2015). Additional data suggest an effect of duvelisib on the tumor supporting cells of the CLL microenvironment. This includes preclinical studies demonstrating that PI3K-γ inhibition blocks normal T cell migration toward tumor chemokines and prevents murine bone marrow-derived M2 macrophage polarization (Peluso 2014), as well as clinical data in CLL patients receiving duvelisib showing reduced serum levels of myeloid and T cell-secreted cytokines and chemokines (Douglas 2015). To further characterize duvelisib's effect on CLL cells and the tumor microenvironment (TME), a murine xenograft model using primary human CLL cells was employed. We first studied duvelisib's effect on CLL B- and T-cell migration in vivo. CLL PBMCs (n=2; 1 IGHV unmutated (U)-CLL, 1 IGHV mutated (M)-CLL) pre-treated with duvelisib for 48 hours were injected retro-orbitally into NOD-scid IL2Rgammanull (NSG) mice. B- and T-cell localization in tissues and circulation was studied 1 and 24 hours post-injection. Duvelisib treatment (1000 nM) prevented the egress of CLL B and T cells from the circulation into the spleen, indicating impaired homing of CLL B and T cells. To better define the effect of duvelisib on T-cell migration, T cells from CLL patients (n=3; 2 U-CLL, 1 M-CLL) treated ex vivo with duvelisib at 1, 10, 100 and 1000 nM were injected into mice and analyzed for their trafficking 24 hours later. Inhibition of T-cell homing to spleen was dose dependent, with only 100 and 1000 nM having significant effects. Given duvelisib's cellular IC50s for PI3K isoforms, these results suggest that impaired T-cell migration is due to PI3K-γ inhibition, and studies with isoform-selective PI3K-δ and PI3K-γ inhibitors are currently underway to examine this possibility. The effect of duvelisib on CLL T-cell proliferation was evaluated after in vitro activation with anti-CD3/28 Dynabeads plus IL2 (n=6; 3 U-CLL, 3M-CLL). In duvelisib treated cells, CD4+, but not CD8+, T-cell proliferation was inhibited at doses of 100 and 1000 nM, suggesting a role for PI3K-γ. The effects of duvelisib on CLL B- and T-cell growth in vivo (n=4; 2 U-CLL, 2 M-CLL) were then studied. Autologous CLL T cells were stimulated as above and injected with CLL PBMCs into NSG mice. Animals treated orally with duvelisib for 3 weeks at 100 mg/kg/day had preferentially reduced CD4+ T-cell recovery from spleens, thereby decreasing the CD4 to CD8 ratio. In each case, duvelisib treatment reduced the number of splenic CLL B cells. This reduction reflected inhibition of both CLL cell proliferation and survival, since duvelisib treatment decreased the percentage of cycling CLL cells and increased the percentage of apoptotic B cells. Thus, duvelisib may target CLL B-cell growth directly, or indirectly by inhibiting the support of CD4+ T cells in the TME. The potential effect of duvelisib on the tumor-supporting myeloid compartment was also tested. Because of limited human myeloid-cell engraftment in our NSG model, we studied the effect of duvelisib on murine macrophages. Mice receiving duvelisib had reduced numbers of splenic CD11b+ GR-1low LY-6Clow LY-6Gneg macrophages compared to controls, suggesting duvelisib altered macrophage development. Prior in vitro studies demonstrated inhibition of CLL B-cell survival and proliferation by duvelisib, as well as blockade of T-cell migration and M2 macrophage polarization (Balakrishnan 2015; Peluso 2014). Our current in vivo studies further support duvelisib's effect on CLL B-cell growth and survival through inhibition of cellular homing to supportive tissue niches and alterations in the TME. The latter, in part, is through suppression of T-cell support and alterations in the macrophage compartment. Overall, these preclinical results suggest that inhibition of PI3K-δ and PI3K-γ by duvelisib affects CLL cell survival through direct and indirect mechanisms. Disclosures McGovern: Infinity Pharmaceuticals, Inc.: Employment. Kutok:Infinity Pharmaceuticals, Inc.: Employment.


2021 ◽  
Author(s):  
Marta Mastrogiovanni ◽  
Pablo Vargas ◽  
Thierry Rose ◽  
Céline Cuche ◽  
Marie Juzans ◽  
...  

Adenomatous polyposis coli (APC) is a tumor suppressor whose mutations underlie familial adenomatous polyposis (FAP) and colorectal cancer. Although its role in intestinal epithelial cells is well characterized, APC importance for anti-tumor immunity is ill defined. Besides its role in Wnt/β-catenin signaling, APC regulates cytoskeleton organization, cell polarity and migration in various cells types. Here we address whether APC plays a role in T lymphocyte migration, a key step of anti-tumor immune responses. Using a series of cell biology tools, we measured migration of primary T cells obtained from FAP patients carrying APC mutations. FAP T cells showed decreased chemotaxis through micropores or endothelial cell monolayers. Concomitantly, they presented lower expression of the VLA-4 (α4β1) integrin at the cell surface. Notably, adhesion and migration in micro- fabricated channels were specifically reduced when surfaces were coated with VLA-4 ligands, indicating that defective adhesion could lead to decreased T cell migration. To further dissect the cellular mechanisms underpinning APC-mediated defects, we depleted APC in the CEM T cell line. We found that APC is critical for VLA-4-dependent adhesion, and acto-myosin and microtubule organization in migrating cells. APC-silenced CEM cells preferentially adopt an ameboid-like migration, lacking adhesive filopodia and continuously extending and retracting unstructured membrane protrusions. These findings underscore a role of APC in T cell migration via modulation of integrin- dependent adhesion and cytoskeleton reorganization. Hence, APC mutations in FAP patients not only unbalance epithelial homeostasis, driving intestinal neoplasms, but also impair T cell migration, potentially leading to inefficient T cell-mediated anti-tumor immunity.


2006 ◽  
Vol 18 (2) ◽  
pp. 301-311 ◽  
Author(s):  
Takahiro Hara ◽  
Tomoya Katakai ◽  
Jong-Hwan Lee ◽  
Yukiko Nambu ◽  
Natsuki Nakajima-Nagata ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document