PLCβ Is Critical for T-Cell Chemotaxis In Vivo.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2650-2650
Author(s):  
Tami L. Bach ◽  
Qing-Min Chen ◽  
Martha S. Jordan ◽  
John K. Choi ◽  
Dianqing Wu ◽  
...  

Abstract Chemokines acting through G-protein coupled receptors play an essential role in both the immune and inflammatory responses. Phosphatidylinositol 3-kinase (PI3K) and phospholipase C (PLC) are two distinct signaling molecules that have been proposed as potential candidates in the regulation of this process. Studies with knockout mice have demonstrated a critical role for PI3Kγ, but not PLCβ, in Gαi-coupled receptor-mediated neutrophil chemotaxis. We compared the chemotactic response of peripheral T-cells derived from wild type mice with mice containing loss-of-function mutations of either PI3Kγ, or both of the two predominant lymphocyte PLCβ isoforms (PLCβ2 and PLCβ3). In contrast to neutrophils, loss of PI3Kγ did not significantly impair T-cell migration in vitro, although PI3K pharmacologic inhibitor experiments suggest that another isoform of this enzyme might contribute to T-cell migration. However, loss of PLCβ2β3 decreased chemokine-stimulated T-cell migration in vitro. Chelation of intracellular calcium by BAPTA-AM and Quin-2 AM decreased the chemotactic response of wild type lymphocytes, but pharmacologic inhibition of PKC isoforms by GF109203x did not impair T-cell migration. This suggests that the T-cell migration defect seen in the PLCβ2β3-null T-cells may be due to an impaired ability to increase the cytoplasmic calcium concentration, while there appears to be little requirement for PKC activity. Indeed, SDF-1α-induced calcium efflux was not detected in the PLCβ2β3-null lymphocytes. Compared to fluorescently labeled wild type T-cells, labeled PLCβ2β3 knockout T-cells migrated less efficiently into secondary lymphoid organs of recipient mice. This demonstrates that PLCβ is also required for migration in vivo. PLCβ2β3-null mice develop spontaneous skin ulcers starting around 3 months of age. Histological examination of the lesions revealed a dense inflammatory infiltrate composed of neutrophils, macrophages, and plasma cells, consistent with acute and chronic inflammation. Remarkably, lymphocytes, typical of chronic inflammation, were rare to absent by histology and by paraffin immunohistochemistry for CD3, also consistent with an in vivo migratory defect of T-cells. These results show that phospholipid second messengers generated by PLCβ and isoforms of PI3K, other than PI3Kγ, play a critical role in lymphocyte chemotaxis. Collectively, our data demonstrate that although PLCβ-mediated signaling plays no role in neutrophil chemotaxis, it makes a substantial contribution to this process within T-lymphocytes.

Immunology ◽  
2003 ◽  
Vol 108 (1) ◽  
pp. 32-41 ◽  
Author(s):  
Isabel Correa ◽  
Tim Plunkett ◽  
Anda Vlad ◽  
Arron Mungul ◽  
Jessica Candelora-Kettel ◽  
...  

2000 ◽  
Vol 74 (5) ◽  
pp. 2406-2413 ◽  
Author(s):  
Davorka Messmer ◽  
Ralf Ignatius ◽  
Christine Santisteban ◽  
Ralph M. Steinman ◽  
Melissa Pope

ABSTRACT Transmission of simian immunodeficiency virus SIVmac239Δnef (Δnef) to macaques results in attenuated replication of the virus in most animals and ultimately induces protection against challenge with some pathogenic, wild-type SIV strains. It has been difficult, however, to identify a culture system in which the replication of Δnef is severely reduced relative to that of the wild type. We have utilized a primary culture system consisting of blood-derived dendritic cells (DCs) and autologous T cells. When the DCs were fully differentiated or mature, the DC–CD4+ T-cell mixtures supported replication of both the parental SIV strain, 239 (the wild type), and its mutant withnef deleted (Δnef), irrespective of virus dose and the cell type introducing the virus to the coculture. In contrast, when immature DCs were exposed to Δnef and cocultured with T cells, virus replication was significantly lower than that of the wild type. Activation of the cultures with a superantigen allowed both Δnef and the wild type to replicate comparably in immature DC–T-cell cultures. Immature DCs, which, it has been hypothesized, capture and transmit SIV in vivo, are deficient in supporting replication of Δnef in vitro and may contribute to the reduced pathogenicity of Δnef in vivo.


Endocrinology ◽  
2010 ◽  
Vol 151 (1) ◽  
pp. 56-62 ◽  
Author(s):  
Arvind Batra ◽  
Besir Okur ◽  
Rainer Glauben ◽  
Ulrike Erben ◽  
Jakob Ihbe ◽  
...  

Abstract Besides being mandatory in the metabolic system, adipokines like leptin directly affect immunity. Leptin was found to be necessary in T helper 1 (Th1)-dependent inflammatory processes, whereas effects on Th2 cells are rarely understood. Here, we focused on leptin in T-helper cell polarization and in Th2-mediated intestinal inflammation in vivo. The induction of cytokine-producing Th1 or Th2 cells from naive CD4+ T cells under polarizing conditions in vitro was generally decreased in cells from leptin-deficient ob/ob mice compared with wild-type mice. To explore the in vivo relevance of leptin in Th2-mediated inflammation, the model of oxazolone-induced colitis was employed in wild-type, ob/ob, and leptin-reconstituted ob/ob mice. Ob/ob mice were protected, whereas wild-type and leptin-reconstituted ob/ob mice developed colitis. The disease severity went in parallel with local production of the Th2 cytokine IL-13. A possible explanation for the protection of ob/ob mice in Th1- as well as in Th2-dependent inflammation is provided by a decreased expression of the key transcription factors for Th1 and Th2 polarization, T-bet and GATA-3, in naive ob/ob T cells. In conclusion, these results support the regulatory function of the adipokine leptin within T-cell polarization and thus in the acquired immune system and support the concept that there is a close interaction with the endocrine system.


Author(s):  
Takayoshi Yamauchi ◽  
Toshifumi Hoki ◽  
Takaaki Oba ◽  
Kristopher Attwood ◽  
Xuefang Cao ◽  
...  

AbstractThe use of tumor mutation-derived neoantigen represents a promising approach for cancer vaccines. Preclinical and early-phase human clinical studies have shown the successful induction of tumor neoepitope-directed responses; however, overall clinical efficacy of neoantigen vaccines has been limited. One major obstacle of this strategy is the prevailing lack of sufficient understanding of the mechanism underlying the generation of neoantigen-specific CD8+ T cells. Here, we report a correlation between antitumor efficacy of neoantigen/toll-like receptor 3 (TLR3)/CD40 vaccination and the generation of antigen-specific CD8+ T cells expressing CX3C chemokine receptor 1 (CX3CR1) in a preclinical model. Mechanistic studies using mixed bone marrow chimeras identified that CD40 and CD80/86, but not CD70 signaling in Batf3-dependent conventional type 1 dendritic cells (cDC1s) is required for antitumor efficacy of neoantigen vaccine and generation of neoantigen-specific CX3CR1+ CD8+ T cells. Although CX3CR1+ CD8+ T cells exhibited robust in vitro effector function, depletion of this subset did not alter the antitumor efficacy of neoantigen/TLR3/CD40 agonists vaccination, suggesting that the expanded CX3CR1+ CD8+ T cell subset represents the post-differentiated in vivo effective CX3CR1-negative CD8+ T cell subset. Taken together, our results reveal a critical role of CD40 and CD80/86 signaling in cDC1s in antitumor efficacy of neoantigen-based therapeutic vaccines, and implicate the potential utility of CX3CR1 as a circulating predictive T-cell biomarker in vaccine therapy.


1998 ◽  
Vol 66 (10) ◽  
pp. 5020-5026 ◽  
Author(s):  
Junichi Yamaoka ◽  
Eijiro Nakamura ◽  
Yoshifumi Takeda ◽  
Sadao Imamura ◽  
Nagahiro Minato

ABSTRACT Streptococcal pyrogenic exotoxin C (SPEC), when injected intradermally, induces erythema in unsensitized rabbits. In the present study, we examined whether this erythema induction is due to the T-cell stimulatory activity of SPEC as a superantigen. Analysis by using single-residue mutant SPECs indicated that mutant SPECs Y15I, A16E, and Y17I, in which tyrosine 15, alanine 16, and tyrosine 17 were replaced with isoleucine, glutamic acid, and isoleucine, respectively, exhibited significantly reduced mitogenic activity for Vβ2+ human T cells in vitro, and Y15I showed as much as a 1,000-fold reduction. Y15I mutant SPEC, however, retained the ability to bind to major histocompatibility complex class II antigen and to form a homodimer, implying that residue 15 is critically important for the interaction of SPEC with T-cell antigen receptor β chains. When injected intradermally into normal rabbits, wild-type SPEC induced a characteristic erythema after 3 h in a dose-dependent fashion, which was associated with polymorphonuclear and mononuclear cell infiltration. This erythema formation was found to be severely suppressed by systemic pretreatment with cyclosporin A, suggesting the involvement of host T cells. Y15I mutant SPEC exhibited nearly 1,000-fold less erythema induction in vivo than wild-type SPEC. Altogether, the present results strongly suggest that erythema induction in rabbits by SPEC is attributable mostly to its T-cell stimulatory activity as a superantigen.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 3077-3077
Author(s):  
Davis Yuri Torrejon ◽  
Jesse Meir Zaretsky ◽  
Daniel Sanghoon Shin ◽  
Mykola Onyshchenko ◽  
Gabriel Abril-Rodriguez ◽  
...  

3077 Background: We tested the biological significance of the loss of function (LOF) mutations in JAK1 or JAK2 within the IFN-receptor-pathway and in beta-2-microglobulin (B2M), which had been found in patient biopsies with resistance to anti-PD-1 therapy. Methods: We used CRISPR/Cas9 genome editing to generate JAK1, JAK2 and B2M knockout (KO) sublines of HLA-A*02:01 MART-1 or NY-ESO-1 positive human melanoma cell lines, tested using in-vitro T cell co-culture systems and in a syngeneic mouse model (MC38) to analyze the in-vivo antitumor activity with anti-PD1 therapy. Results: The JAK2-KO cell line was insensitive to IFN-gamma induced signaling and growth arrest (p < 0.001 compared with IFN-alpha or beta), while the JAK1-KO cell line was insensitive to all three IFNs. Baseline MHC class I expression after JAK1-KO was unaffected (baseline-MFI 1230 JAK1-KO vs 1570 parental, p = 0.66), but the magnitude of change was lower upon IFN-gamma exposure compared to the parental (MFI change with IFN-gamma, 26% decrease for JAK1-KO vs 50% increase for parental). There was no difference in in-vitro cytotoxicity by NY-ESO-1-TCR transgenic T-cells against JAK1-KO-NY-ESO-1+ melanoma cells compared to the parental (78% vs 82% cytotoxicity at 10:1 E:T ratio, p NS). However, B2M-KO was resistant to killing by MART-1 specific T-cells (2% vs 96% cytotoxicity at 10:1 E:T ratio, p < 0.0001). On the other hand, in the MC38 model the significant antitumor activity of anti-PD-1 against the wild type cells was lost in both JAK2-KO and B2M-KO. The percentage of CD8+ T cells has a trend of increase with anti-PD1 compared to untreated in the MC38 wild type (p = 0.1 d12), and a trend of decrease in MC38 B2M-KO (p = 0.2 d12), but no change in JAK2-KO tumors (p = 0.7 d12). Conclusions: JAK1/2 LOF mutations result in insensitivity to IFN induced antitumor effects, but does not impair T cell recognition and cytotoxicity, while B2M LOF results in lack of antigen presentation to T cells and loss of antitumor activity. However both lead to in-vivo resistance to anti-PD-1 therapy, suggesting they do so by independent mechanisms.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 456-456 ◽  
Author(s):  
Pavan Reddy ◽  
Yoshinobu Maeda ◽  
Raimon Duran-Struuck ◽  
Oleg Krijanovski ◽  
Charles Dinarello ◽  
...  

Abstract We and others have recently demonstrated that suberoylanilide hydroxamic acid (SAHA), a histone deacetylase (HDAC) inhibitor with anti-neoplastic properties, reduces experimental acute graft-versus-host disease (GVHD). We have now investigated the mechanisms of action of two HDAC inhibitors, SAHA and ITF 2357, on allogeneic immune responses. Bone marrow derived dendritic cells (DCs) were preincubated with the HDAC inhibitors at nanomolar concentrations for 16–18 hours and stimulated with lipopolysaccharide (LPS). Pretreatment of DCs caused a significant reduction in the secretion of TNF-α, IL-12p70 and IL-6 compared to the untreated controls (P< 0.005). Similar effects were seen using human peripheral blood mononuclear cell derived DCs. Pre-treatment of both murine and human DCs also significantly reduced their in vitro stimulation of allogeneic T cells as measured by proliferation and IFN-γ production (P<0.01). We determined the in vivo relevance of these observations utilizing a mouse model where the responses of allogeneic donor bm12 T cells depended on the function of injected host B6 DCs would stimulate. Recipient Class-II −/− B6 (H-2b) received 11 Gy on day -1 and were injected with 4–5 x 106 wild type B6 DCs treated with SAHA or with media on days -1 and 0 and then transplanted with 2 x 106 T cells and 5 x 106 TCDBM cells from either syngeneic B6 or allogeneic bm12 donors. SAHA treatment of DCs significantly reduced expansion of allogeneic donor CD4+ T cells on day +7 after BMT compared to controls (P<0.05). SAHA treatment induced a similarly significant reduction in the expansion of CD8+ cells in Class I disparate [bm1→β2M−/−] model. In vitro, SAHA treatment significantly suppressed the expression of CD40 and CD80 but did not alter MHC class II expression. Surprisingly, when mixed with normal DCs at 1:1 ratio, SAHA treated DCs dominantly suppressed allogeneic T cell responses. The regulation of T cell proliferation was not reversible by addition of IL-12, TNF-α, IL-18, anti-IL-10 or anti-TGFβ, either alone or in combination. Suppression of allogeneic responses was contact dependent in trans-well experiments. To address whether the regulation of SAHA treated DCs required contact with T cells, we devised a three cell experiment where SAHA treated DCs lacked the capacity to present antigens to T cells. DCs from B6 MHC Class II deficient (H-2b) were treated with SAHA and co-cultured with wild type B6 (H-2b) DCs along with purified allogeneic BALB/c (H-2d) CD4+ T cells in an MLR. Allogeneic CD4+ T cells proliferated well, demonstrating the regulation to be dependent on contact between SAHA treated DCs and T cells. To address the in vivo relevance of this suppression, we utilized a well characterized [BALB/c →B6] mouse model of acute GVHD. Recipient B6 animals received 11Gy on day -1 and were injected with of 5 million host type SAHA treated or control DCs on days −1, 0, and +2. Mice were transplanted on day 0 with 2 x 106 T cells and 5 x 106 BM from either syngeneic B6 or allogeneic BALB/c donors. Injection of SAHA treated DCs resulted in significantly better survival (60% vs. 10%, P < 0.01) and significantly reduced serum levels of TNF-α, donor T cell expansion and histopathology of GVHD on day +7 after BMT compared to the controls. We conclue that HDAC inhibitors are novel immunomodulators that regulate DC function and might represent a novel strategy to prevent GVHD.


2019 ◽  
Vol 5 (7) ◽  
pp. eaav9732 ◽  
Author(s):  
Carina Seitz ◽  
Juan Huang ◽  
Anna-Lena Geiselhöringer ◽  
Pamela Galbani-Bianchi ◽  
Svenja Michalek ◽  
...  

LRH-1 (liver receptor homolog-1/NR5a2) is an orphan nuclear receptor, which regulates glucose and lipid metabolism, as well as intestinal inflammation via the transcriptional control of intestinal glucocorticoid synthesis. Predominantly expressed in epithelial cells, its expression and role in immune cells are presently enigmatic. LRH-1 was found to be induced in immature and mature T lymphocytes upon stimulation. T cell–specific deletion of LRH-1 causes a drastic loss of mature peripheral T cells. LRH-1–depleted CD4+ T cells exert strongly reduced activation-induced proliferation in vitro and in vivo and fail to mount immune responses against model antigens and to induce experimental intestinal inflammation. Similarly, LRH-1–deficient cytotoxic CD8+ T cells fail to control viral infections. This study describes a novel and critical role of LRH-1 in T cell maturation, functions, and immopathologies and proposes LRH-1 as an emerging pharmacological target in the treatment of T cell–mediated inflammatory diseases.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xuqing Zhang ◽  
Mengyao Luo ◽  
Shamael R. Dastagir ◽  
Mellissa Nixon ◽  
Annie Khamhoung ◽  
...  

AbstractCheckpoint inhibitors and T-cell therapies have highlighted the critical role of T cells in anti-cancer immunity. However, limitations associated with these treatments drive the need for alternative approaches. Here, we engineer red blood cells into artificial antigen-presenting cells (aAPCs) presenting a peptide bound to the major histocompatibility complex I, the costimulatory ligand 4-1BBL, and interleukin (IL)-12. This leads to robust, antigen-specific T-cell expansion, memory formation, additional immune activation, tumor control, and antigen spreading in tumor models in vivo. The presence of 4-1BBL and IL-12 induces minimal toxicities due to restriction to the vasculature and spleen. The allogeneic aAPC, RTX-321, comprised of human leukocyte antigen-A*02:01 presenting the human papilloma virus (HPV) peptide HPV16 E711-19, 4-1BBL, and IL-12 on the surface, activates HPV-specific T cells and promotes effector function in vitro. Thus, RTX-321 is a potential ‘off-the-shelf’ in vivo cellular immunotherapy for treating HPV + cancers, including cervical and head/neck cancers.


Sign in / Sign up

Export Citation Format

Share Document