Comparative gene expression analysis of zebrafish and mammals identifies common regulators in hematopoietic stem cells

Blood ◽  
2010 ◽  
Vol 115 (2) ◽  
pp. e1-e9 ◽  
Author(s):  
Isao Kobayashi ◽  
Hiromasa Ono ◽  
Tadaaki Moritomo ◽  
Koichiro Kano ◽  
Teruyuki Nakanishi ◽  
...  

Abstract Hematopoiesis in teleost fish is maintained in the kidney. We previously reported that Hoechst dye efflux activity of hematopoietic stem cells (HSCs) is highly conserved in vertebrates, and that Hoechst can be used to purify HSCs from teleost kidneys. Regulatory molecules that are strongly associated with HSC activity may also be conserved in vertebrates. In this study, we identified evolutionarily conserved molecular components in HSCs by comparing the gene expression profiles of zebrafish, murine, and human HSCs. Microarray data of zebrafish kidney side population cells (zSPs) showed that genes involved in cell junction and signal transduction tended to be up-regulated in zSPs, whereas genes involved in DNA replication tended to be down-regulated. These properties of zSPs were similar to those of mammalian HSCs. Overlapping gene expression analysis showed that 40 genes were commonly up-regulated in these 3 HSCs. Some of these genes, such as egr1, gata2, and id1, have been previously implicated in the regulation of HSCs. In situ hybridization in zebrafish kidney revealed that expression domains of egr1, gata2, and id1 overlapped with that of abcg2a, a marker for zSPs. These results suggest that the overlapping genes identified in this study are regulated in HSCs and play important roles in their functions.

Leukemia ◽  
2006 ◽  
Vol 20 (12) ◽  
pp. 2147-2154 ◽  
Author(s):  
H Gal ◽  
N Amariglio ◽  
L Trakhtenbrot ◽  
J Jacob-Hirsh ◽  
O Margalit ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 562-562
Author(s):  
Stuart M. Chambers ◽  
Chad A. Shaw ◽  
Margaret A. Goodell

Abstract A decline in stem cell function has been suggested to contribute to vertebrate aging. Several labs have documented a reduction in transplant efficiency and skewing in lineage contribution when murine bone marrow or hematopoietic stem cells (HSC) from old donors were transplanted into young recipients. Paradoxically, evidence from several labs including ours has shown that the percentage of phenotypically defined HSC in C57Bl/6 mice increases with age (Fig. 1). Within the serum of aged animals, systemic inflammatory markers such as C reactive protein in humans and IL-1 in mice have been shown to steadily increase with age, however it is unclear if systemic inflammation plays a role in these age-related HSC phenotypes. In order to investigate what might account for these functional changes in HSC aging, we have characterized gene expression in aged HSC using Affymetrix microarrays, examining expression profiles of HSC purified from C57Bl/6 mice that are 2-, 6-, 12-, 21-months old. Using polynomial regression over the time course, we have found more than 700 genes that are 2-fold up-regulated and more than 400 genes that are down-regulated with time. We used the Gene Ontology to categorize age-regulated genes, and have identified the category of ‘inflammatory response’ to be significantly enriched in genes that are up-regulated with age. Strikingly, several NF-Kb regulated genes, previously associated in other tissues with aging and inflammation (e.g. P-selectin, Cox-2, and ICAM-1) are up-regulated in aged HSC. The expression patterns of more than 15 genes, including clusterin, serum deprivation response, and growth hormone receptor, have been validated by quantitative real-time PCR. Furthermore, expression of several surface markers, including P-selectin, a protein that plays a role in inflammation, has been validated at the protein level by flow cytometry. In order to determine if the gene expression changes observed in aged HSC is caused by intrinsic or extrinsic factors, we have transplanted HSC from 21-month-old mice into young recipients and are assessing changes in their expression profile compared to young transplanted HSC. These data demonstrate a role for inflammation in HSC-aging, and may identify genes involved in stem cell transplant efficiency, lineage specification, and the onset of organismal aging. Figure 1: Sca-1 enriched Side Population cells at the indicated ages (in months). The percentage of cells residing within the SP increases 9-fold with age. Figure 1:. Sca-1 enriched Side Population cells at the indicated ages (in months). The percentage of cells residing within the SP increases 9-fold with age.


PLoS ONE ◽  
2018 ◽  
Vol 13 (11) ◽  
pp. e0206407 ◽  
Author(s):  
John A. Bennett ◽  
Kameshwar P. Singh ◽  
Stephen L. Welle ◽  
Lisbeth A. Boule ◽  
B. Paige Lawrence ◽  
...  

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. SCI-42-SCI-42
Author(s):  
Norman N. Iscove

Abstract Abstract SCI-42 For many years a distinction was drawn between prospectively separable murine HSC populations with long-term, essentially permanent reconstituting potential (LT-HSC), versus HSC populations yielding short-term engraftment lasting only 4 – 6 weeks after transplantation (ST-HSC). Recent work based on transplantation of single cells shows that highly purified populations of LT-HSC prepared by standard sorting parameters consist in fact predominantly of a distinct, newly recognized class of intermediate- term reconstituting cells (IT-HSC) whose grafts endure longer than short-term HSC but also eventually fail (1). IT-HSC are separable from long-term reconstituting cells on the basis of expression of more alpha2 integrin and less SLAM150. Crucial to recognition of the distinction between LT- and IT-HSC are the endpoints used to evaluate reconstitution. If blood erythroid or myeloid reconstitution is measured, IT reconstitution is readily distinguished by the disappearance of these elements by 16 wk post-transplant. If instead reconstitution is measured simply by presence of blood leukocytes of donor origin, which in the mouse are almost entirely lymphocytes, the distinction is not made because lymphoid elements persist even in fading IT clones to 24 wk or beyond. The observations imply a need for reinterpretation of most of the published descriptions of the biology and gene expression profiles previously attributed to LT-HSC but in fact derived from analysis of populations that consisted mainly of IT-HSC. The capacity now to separate LT- from IT-HSC creates new opportunities for probing the mechanisms that specify and sustain long term function in the former but not the latter. 1. Benveniste P, Frelin C, Janmohamed S, Barbara M, Herrington R, Hyam D, Iscove NN. Intermediate-term hematopoietic stem cells with extended but time-limited reconstitution potential. Cell Stem Cell. 2010;6:48–58 Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2002 ◽  
Vol 99 (2) ◽  
pp. 488-498 ◽  
Author(s):  
In-Kyung Park ◽  
Yaqin He ◽  
Fangming Lin ◽  
Ole D. Laerum ◽  
Qiang Tian ◽  
...  

Abstract Hematopoietic stem cells (HSCs) have self-renewal capacity and multilineage developmental potentials. The molecular mechanisms that control the self-renewal of HSCs are still largely unknown. Here, a systematic approach using bioinformatics and array hybridization techniques to analyze gene expression profiles in HSCs is described. To enrich mRNAs predominantly expressed in uncommitted cell lineages, 54 000 cDNA clones generated from a highly enriched population of HSCs and a mixed population of stem and early multipotent progenitor (MPP) cells were arrayed on nylon membranes (macroarray or high-density array), and subtracted with cDNA probes derived from mature lineage cells including spleen, thymus, and bone marrow. Five thousand cDNA clones with very low hybridization signals were selected for sequencing and further analysis using microarrays on glass slides. Two populations of cells, HSCs and MPP cells, were compared for differential gene expression using microarray analysis. HSCs have the ability to self-renew, while MPP cells have lost the capacity for self-renewal. A large number of genes that were differentially expressed by enriched populations of HSCs and MPP cells were identified. These included transcription factors, signaling molecules, and previously unknown genes.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 727-727 ◽  
Author(s):  
Takafumi Yokota ◽  
Kenji Oritani ◽  
Stefan Butz ◽  
Koichi Kokame ◽  
Paul W Kincade ◽  
...  

Abstract Hematopoietic stem cells (HSC) are an important cell type with the capacity for self-renewal as well as differentiation into multi-lineage blood cells, maintaining the immune system throughout life. Many studies have attempted to identify unique markers associated with these extremely rare cells. In bone marrow of adult mice, the Lin-c-kitHi Sca1+ CD34−/Lo Thy1.1Lo subset is known to include HSC with long-term repopulating capacity. However, several of these parameters differ between strains of mice, change dramatically during developmental age and/or are expressed on many non-HSC during inflammation. Efficient HSC-based therapies and the emerging field of regenerative medicine will benefit from learning more about what defines stem cells. We previously determined that the most primitive cells with lymphopoietic potential first develop in the paraaortic splanchnopleura/aorta-gonad-mesonephros (AGM) region of embryos using Rag1/GFP knock-in mice. We also reported that Rag1/GFP-c-kitHi Sca1+ cells derived from E14.5 fetal liver (FL) reconstituted lympho-hematopoiesis in lethally irradiated adults, while Rag1/GFPLo c-kitHi Sca1+ cells transiently contributed to T and B lymphopoiesis. To extend those findings, microarray analyses were conducted to search for genes that characterize the initial transition of fetal HSC to primitive lymphopoietic cells. The comparisons involved mRNA from Rag1Lo ckitHi Sca1+, early lymphoid progenitors (ELP) and the HSC-enriched Rag1-ckitHi Sca1+ fraction isolated from E14.5 FL. While genes potentially related to early lymphopoiesis were discovered, our screen also identified genes whose expression seemed to correlate with HSC. Among those, endothelial cell-selective adhesion molecule (ESAM) attracted attention because of its conspicuous expression in the HSC fraction and sharp down-regulation on differentiation to ELP. ESAM was originally identified as an endothelial cell-specific protein, but expression on megakaryocytes and platelets was also reported (J. Biol. Chem., 2001, 2002). Flow cytometry analyses with anti-ESAM antibodies showed that the HSC-enriched Rag1-c-kitHi Sca1+ fraction could be subdivided into two on the basis of ESAM levels. The subpopulation with the high density of ESAM was enriched for c-kitHi Sca1Hi cells, while ones with negative or low levels of ESAM were found in the c-kitHi Sca1Lo subset. Among endothelial-related antigens on HSC, CD34 and CD31/PECAM1 were uniformly present on Rag1-c-kitHi Sca1+ cells in E14.5 FL and neither resolved into ESAMHi and ESAM−/Lo fractions. Expression profiles of Endoglin and Tie2 partially correlate with ESAM. The primitive ESAMHi fraction uniformly expressed high levels of Endoglin and Tie2, but many of the more differentiated ESAM−/Lo cells still retained the two markers. ESAM expression correlated well with HSC activity. Cells in the ESAMHi Rag1-ckitHi Sca1+ fraction formed more and larger colonies than those in the ESAM-/Lo Rag1-ckitHi Sca1+ fraction. Particularly, most CFU-Mix, primitive progenitors with both myeloid and erythroid potential, were found in the ESAMHi fraction. In limiting dilution stromal cell co-cultures, we found that 1 in 2.1 ESAMHi Rag1-ckitHi Sca1+ cells and 1 in 3.5 ESAM−/Lo Rag1-ckitHi Sca1+ cells gave rise to blood cells. However, while only 1 in 125 ESAM−/Lo Rag1-ckitHi Sca1+ cells were lymphopoietic under these conditions, 1 in 8 ESAMHi Rag1-ckitHi Sca1+ cells produced CD19+ B lineage cells. In long-term reconstituting assays, ESAMHi Rag1-ckitHi Sca1+ cells contributed highly to the multi-lineage recovery of lympho-hematopoiesis in recipients, but no chimerism was detected in mice transplanted with ESAM−/Lo Rag1-ckitHi Sca1+ cells. These results suggested that HSC in E14.5 FL are exclusively present in the ESAMHi fraction. Tie2+ c-kit+ lympho-hematopoietic cells of E10.5 AGM also expressed high levels of ESAM. Furthermore, ESAM expression in adult bone marrow was detected on primitive progenitors and cells in the side population within the Lin-ckitHi Sca1+ fraction. Interestingly, the expression was up-regulated in aged mice. Based on these observations, we conclude that ESAM marks HSC throughout life in mice. We also observed that many of human cord blood CD34+ CD38− cells express ESAM, suggesting potential application for the purification of human HSC.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2474-2474
Author(s):  
Valgardur Sigurdsson ◽  
Shuhei Koide ◽  
Visnja Radulovic ◽  
Els Mansell ◽  
Mark Van Der Garde ◽  
...  

Hematopoietic stem cells (HSCs) are capable of replenishing the entire blood system when needed and transplantation of HSCs remains as one of the most effective, curative treatments for patients with genetic diseases and hematopoietic malignancies. In vitro culture is an essential process for ex vivo expansion and modification of HSCs, however engraftment levels of cultured HSCs cannot be accurately estimated. This is mainly due to lack of reliable cell surface markers representing functionality of HSCs after culture, which also limits the resolution of molecular analyses. We have previously shown that HSCs are vulnerable to endoplasmic reticulum (ER) stress responses fueled by accumulation of unfolded / misfolded proteins (Miharada et al., Cell Rep. 2014). Importance of ER stress suppression is also evident in vivo, as proliferative FL-HSCs fail to expand upon ER stress induction when natural molecular chaperone, bile acid, is reduced (Sigurdsson et al., Cell Stem Cell. 2016). Thus, ER stress elevation severely impairs the potential of HSCs, however usual marker profile is no longer representative of their functionality. In this study we aimed to discover the key signature and novel markers that represent functional retardation of HSC under activation and stress induction. Initially we compared gene expression profiles of fresh and 14-days cultured Lineage-Sca-1+c-kit+(LSK) CD48- (CD48-LSK) cells from mouse bone marrow using microarray analysis, since CD48 has been reported to enrich functional HSCs after in vitro culture (Noda et al., Stem Cells, 2008). We discovered abnormal up-regulations of genes frequently associated with mast cells (MC) in cultured CD48-LSK cells, and identified Cd244 as one of the top upregulated genes. CD244 is a member of the slam family of genes but is considered to be redundant with other slam markers in isolating HSCs from untreated mice. Indeed, freshly isolated CD150+CD48-LSK cells are negative for CD244. However, after 14-days in vitro culture with stem cell factor (SCF) and thrombopoietin (TPO), majority of CD150+CD48-LSK cells were positive for CD244. After shorter (7-days) culture, we found that CD48-LSK cells could be subdivided to CD244+ and CD244- populations (CD244-HSC and CD244+HSC). CD244-HSCs expressed high levels of HSC-related genes such as Fgd5, Hlf, Fhl1 and thrombopoietin receptor Mpl, In contrast, CD244+HSCs expressed MC-related genes, e.g. Cpa3, Gzmb and Mcpt8. In transplantation settings, CD244+HSCs showed no engraftment while CD244-HSCs showed long-term engraftment revealing them as functional stem cells. Since our and other groups have demonstrated that induction of ER stress impairs potential of mouse and human HSCs, we asked if ER stress induction would lead to the elevation of MC signature. Using an ER stress inducing chemical, thapsigargin, we could see increased ratio of CD244+HSCs within CD48-LSK cells. Conversely, the addition of TUDCA, a bile acid known to suppress ER stress, resulted in decreased frequency of CD244+HSCs. These findings strongly indicate that ER stress could be influencing the number of non-functional HSCs. To further substantiate the connection to ER stress and MC signature we analyzed a knock out mouse model of the ER stress modulator Trib3 (Trib3-/-) that is known to show an abnormal differentiation towards mast cells. Trib3-/- HSCs expressed MC genes including Cpa3 already at the steady-state condition. The number of CD244-HSCs after 7-days culture was significantly lower than control mice, and showed poor long-term engraftment potential in transplantation settings. To further elucidate the key molecular changes that impair HSCs, we compared gene expression profiles between fresh HSCs and CD244+/CD244-HSCs after 7-days culture. Gene expression comparison between CD244+ and CD244-HSCs independently confirmed the enrichment of MC cell related genes including Granzyme B (Gzmb), known to have negative impact on HSC potential (Carnevali et al., J Exp Med. 2014). Moreover, the Rel-A pathway was significantly lower in CD244-HSCs compared to fresh HSCs, suggesting a potential implication of NF-kB signal in the first alterations in HSCs during in vitro culture. We conclude that the induction of a MC cell signature fueled by ER stress is critical for normal HSC potential, and CD244 is a novel marker predicting the functionality of activated HSCs and allowing more detailed molecular analysis of activated HSCs. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document