scholarly journals Deficiency in Aryl Hydrocarbon Receptor (AHR) Expression throughout Aging Alters Gene Expression Profiles in Murine Long-Term Hematopoietic Stem Cells

PLoS ONE ◽  
2015 ◽  
Vol 10 (7) ◽  
pp. e0133791 ◽  
Author(s):  
John A. Bennett ◽  
Kameshwar P. Singh ◽  
Zeenath Unnisa ◽  
Stephen L. Welle ◽  
Thomas A. Gasiewicz

Blood ◽  
2010 ◽  
Vol 115 (2) ◽  
pp. e1-e9 ◽  
Author(s):  
Isao Kobayashi ◽  
Hiromasa Ono ◽  
Tadaaki Moritomo ◽  
Koichiro Kano ◽  
Teruyuki Nakanishi ◽  
...  

Abstract Hematopoiesis in teleost fish is maintained in the kidney. We previously reported that Hoechst dye efflux activity of hematopoietic stem cells (HSCs) is highly conserved in vertebrates, and that Hoechst can be used to purify HSCs from teleost kidneys. Regulatory molecules that are strongly associated with HSC activity may also be conserved in vertebrates. In this study, we identified evolutionarily conserved molecular components in HSCs by comparing the gene expression profiles of zebrafish, murine, and human HSCs. Microarray data of zebrafish kidney side population cells (zSPs) showed that genes involved in cell junction and signal transduction tended to be up-regulated in zSPs, whereas genes involved in DNA replication tended to be down-regulated. These properties of zSPs were similar to those of mammalian HSCs. Overlapping gene expression analysis showed that 40 genes were commonly up-regulated in these 3 HSCs. Some of these genes, such as egr1, gata2, and id1, have been previously implicated in the regulation of HSCs. In situ hybridization in zebrafish kidney revealed that expression domains of egr1, gata2, and id1 overlapped with that of abcg2a, a marker for zSPs. These results suggest that the overlapping genes identified in this study are regulated in HSCs and play important roles in their functions.



Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. SCI-42-SCI-42
Author(s):  
Norman N. Iscove

Abstract Abstract SCI-42 For many years a distinction was drawn between prospectively separable murine HSC populations with long-term, essentially permanent reconstituting potential (LT-HSC), versus HSC populations yielding short-term engraftment lasting only 4 – 6 weeks after transplantation (ST-HSC). Recent work based on transplantation of single cells shows that highly purified populations of LT-HSC prepared by standard sorting parameters consist in fact predominantly of a distinct, newly recognized class of intermediate- term reconstituting cells (IT-HSC) whose grafts endure longer than short-term HSC but also eventually fail (1). IT-HSC are separable from long-term reconstituting cells on the basis of expression of more alpha2 integrin and less SLAM150. Crucial to recognition of the distinction between LT- and IT-HSC are the endpoints used to evaluate reconstitution. If blood erythroid or myeloid reconstitution is measured, IT reconstitution is readily distinguished by the disappearance of these elements by 16 wk post-transplant. If instead reconstitution is measured simply by presence of blood leukocytes of donor origin, which in the mouse are almost entirely lymphocytes, the distinction is not made because lymphoid elements persist even in fading IT clones to 24 wk or beyond. The observations imply a need for reinterpretation of most of the published descriptions of the biology and gene expression profiles previously attributed to LT-HSC but in fact derived from analysis of populations that consisted mainly of IT-HSC. The capacity now to separate LT- from IT-HSC creates new opportunities for probing the mechanisms that specify and sustain long term function in the former but not the latter. 1. Benveniste P, Frelin C, Janmohamed S, Barbara M, Herrington R, Hyam D, Iscove NN. Intermediate-term hematopoietic stem cells with extended but time-limited reconstitution potential. Cell Stem Cell. 2010;6:48–58 Disclosures: No relevant conflicts of interest to declare.



Leukemia ◽  
2006 ◽  
Vol 20 (12) ◽  
pp. 2147-2154 ◽  
Author(s):  
H Gal ◽  
N Amariglio ◽  
L Trakhtenbrot ◽  
J Jacob-Hirsh ◽  
O Margalit ◽  
...  


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2474-2474
Author(s):  
Valgardur Sigurdsson ◽  
Shuhei Koide ◽  
Visnja Radulovic ◽  
Els Mansell ◽  
Mark Van Der Garde ◽  
...  

Hematopoietic stem cells (HSCs) are capable of replenishing the entire blood system when needed and transplantation of HSCs remains as one of the most effective, curative treatments for patients with genetic diseases and hematopoietic malignancies. In vitro culture is an essential process for ex vivo expansion and modification of HSCs, however engraftment levels of cultured HSCs cannot be accurately estimated. This is mainly due to lack of reliable cell surface markers representing functionality of HSCs after culture, which also limits the resolution of molecular analyses. We have previously shown that HSCs are vulnerable to endoplasmic reticulum (ER) stress responses fueled by accumulation of unfolded / misfolded proteins (Miharada et al., Cell Rep. 2014). Importance of ER stress suppression is also evident in vivo, as proliferative FL-HSCs fail to expand upon ER stress induction when natural molecular chaperone, bile acid, is reduced (Sigurdsson et al., Cell Stem Cell. 2016). Thus, ER stress elevation severely impairs the potential of HSCs, however usual marker profile is no longer representative of their functionality. In this study we aimed to discover the key signature and novel markers that represent functional retardation of HSC under activation and stress induction. Initially we compared gene expression profiles of fresh and 14-days cultured Lineage-Sca-1+c-kit+(LSK) CD48- (CD48-LSK) cells from mouse bone marrow using microarray analysis, since CD48 has been reported to enrich functional HSCs after in vitro culture (Noda et al., Stem Cells, 2008). We discovered abnormal up-regulations of genes frequently associated with mast cells (MC) in cultured CD48-LSK cells, and identified Cd244 as one of the top upregulated genes. CD244 is a member of the slam family of genes but is considered to be redundant with other slam markers in isolating HSCs from untreated mice. Indeed, freshly isolated CD150+CD48-LSK cells are negative for CD244. However, after 14-days in vitro culture with stem cell factor (SCF) and thrombopoietin (TPO), majority of CD150+CD48-LSK cells were positive for CD244. After shorter (7-days) culture, we found that CD48-LSK cells could be subdivided to CD244+ and CD244- populations (CD244-HSC and CD244+HSC). CD244-HSCs expressed high levels of HSC-related genes such as Fgd5, Hlf, Fhl1 and thrombopoietin receptor Mpl, In contrast, CD244+HSCs expressed MC-related genes, e.g. Cpa3, Gzmb and Mcpt8. In transplantation settings, CD244+HSCs showed no engraftment while CD244-HSCs showed long-term engraftment revealing them as functional stem cells. Since our and other groups have demonstrated that induction of ER stress impairs potential of mouse and human HSCs, we asked if ER stress induction would lead to the elevation of MC signature. Using an ER stress inducing chemical, thapsigargin, we could see increased ratio of CD244+HSCs within CD48-LSK cells. Conversely, the addition of TUDCA, a bile acid known to suppress ER stress, resulted in decreased frequency of CD244+HSCs. These findings strongly indicate that ER stress could be influencing the number of non-functional HSCs. To further substantiate the connection to ER stress and MC signature we analyzed a knock out mouse model of the ER stress modulator Trib3 (Trib3-/-) that is known to show an abnormal differentiation towards mast cells. Trib3-/- HSCs expressed MC genes including Cpa3 already at the steady-state condition. The number of CD244-HSCs after 7-days culture was significantly lower than control mice, and showed poor long-term engraftment potential in transplantation settings. To further elucidate the key molecular changes that impair HSCs, we compared gene expression profiles between fresh HSCs and CD244+/CD244-HSCs after 7-days culture. Gene expression comparison between CD244+ and CD244-HSCs independently confirmed the enrichment of MC cell related genes including Granzyme B (Gzmb), known to have negative impact on HSC potential (Carnevali et al., J Exp Med. 2014). Moreover, the Rel-A pathway was significantly lower in CD244-HSCs compared to fresh HSCs, suggesting a potential implication of NF-kB signal in the first alterations in HSCs during in vitro culture. We conclude that the induction of a MC cell signature fueled by ER stress is critical for normal HSC potential, and CD244 is a novel marker predicting the functionality of activated HSCs and allowing more detailed molecular analysis of activated HSCs. Disclosures No relevant conflicts of interest to declare.



PLoS ONE ◽  
2018 ◽  
Vol 13 (11) ◽  
pp. e0206407 ◽  
Author(s):  
John A. Bennett ◽  
Kameshwar P. Singh ◽  
Stephen L. Welle ◽  
Lisbeth A. Boule ◽  
B. Paige Lawrence ◽  
...  




Stem Cells ◽  
2006 ◽  
Vol 24 (7) ◽  
pp. 1719-1727 ◽  
Author(s):  
Andreas Hüttmann ◽  
Ulrich Dührsen ◽  
Katja Heydarian ◽  
Ludger Klein-Hitpass ◽  
Tanja Boes ◽  
...  


Blood ◽  
2002 ◽  
Vol 99 (2) ◽  
pp. 488-498 ◽  
Author(s):  
In-Kyung Park ◽  
Yaqin He ◽  
Fangming Lin ◽  
Ole D. Laerum ◽  
Qiang Tian ◽  
...  

Abstract Hematopoietic stem cells (HSCs) have self-renewal capacity and multilineage developmental potentials. The molecular mechanisms that control the self-renewal of HSCs are still largely unknown. Here, a systematic approach using bioinformatics and array hybridization techniques to analyze gene expression profiles in HSCs is described. To enrich mRNAs predominantly expressed in uncommitted cell lineages, 54 000 cDNA clones generated from a highly enriched population of HSCs and a mixed population of stem and early multipotent progenitor (MPP) cells were arrayed on nylon membranes (macroarray or high-density array), and subtracted with cDNA probes derived from mature lineage cells including spleen, thymus, and bone marrow. Five thousand cDNA clones with very low hybridization signals were selected for sequencing and further analysis using microarrays on glass slides. Two populations of cells, HSCs and MPP cells, were compared for differential gene expression using microarray analysis. HSCs have the ability to self-renew, while MPP cells have lost the capacity for self-renewal. A large number of genes that were differentially expressed by enriched populations of HSCs and MPP cells were identified. These included transcription factors, signaling molecules, and previously unknown genes.



Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 105-105
Author(s):  
Jennifer Tsai ◽  
Kelsey R. Logas ◽  
Lauren D. Van Wassenhove ◽  
Beruh Dejene ◽  
Che-Hong Chen ◽  
...  

HSC loss in FA is due to failure to resolve DNA inter-strand crosslinks (ICL), which can be induced by reactive aldehydes, radiation, or other clastogenic agents. Aldehyde exposure may occur through environmental sources, e.g. ingestion, absorption, and inhalation, or endogenously as a byproduct of cellular metabolism. The ALDH2*2 genotype, a dominant-negative point mutation in the aldehyde dehydrogenase 2 (ALDH2) gene, causes the "Asian flushing syndrome" when ethanol (EtOH) is ingested, due to decreased metabolism of small aldehydes, particularly acetaldehyde. ALDH2*2 is a disease modifier in FA, causing more rapid bone marrow failure and earlier leukemia onset in doubly affected children. Similarly, mice experimentally doubly knocked out for FANCD2 and ALDH2 demonstrate increased HSC loss, which is accelerated by EtOH exposure. To reduce aldehyde exposure, we developed a small molecule ALDH activator, Alda-1, which increases the enzymatic activity of both wild type (WT) and mutant ALDH2. We hypothesized that DNA damage and HSC loss in FA would be prevented by reduction of the aldehyde load. To test the effects of Alda-1 mediated ALDH2 activation, we generated a novel murine FA model with FANCD2 KO and knock-in of the ALDH2*2 mutation into the murine locus. The FANCD2-/- ALDH2*1/*2 genetic model and parental controls were then tested after exogenous aldehydic challenge and/or therapeutic intervention with Alda-1. Increased aldehydic load was experimentally induced by EtOH administration 10 mg/kg/day IP, while Alda-1 10 ug/kg/day was continuously administered via osmotic pump. For each of these conditions, marrow was analyzed for HSC and progenitor cell (HSPC) number, HSC gene expression, and function. The importance of the altered aldehyde metabolism due to ALDH2*2 genotype was demonstrated by progressive loss of HSPC in ALDH2*2/*2 and FANCD2-/- ALDH2*1/*2 mice, e.g., 5-fold and 2-fold decline in long-term HSC (LT-HSC), respectively, by 36 weeks. Experimental EtOH challenge to increase the aldehyde load precipitously decreased HSC numbers of all genotypes. After 5 weeks of EtOH challenge, LT-HSC decreased 35-fold in FANCD2-/- ALDH2*1/*2, 12.5-fold in FANCD2-/-ALDH2*1/*1, and 10.5-fold in WT mice. Long-term Alda-1 treatment to decrease aldehydic load rescued FA mice from HSC loss. After 7 months of Alda-1 treatment, LT-HSC numbers in FANCD2-/-ALDH2*1/*2 and FANCD2-/-ALDH2*1/*1 were approximately 10-fold higher than untreated controls. There were no clinically observed adverse effects. Aldehyde exposure and Alda-1 treatment altered gene expression of HSC. Principal component analysis and clustering of HSC gene expression showed that the first principal component representing 40% of the variation in gene expression could be attributed to increased aldehydic load, either genetically (ALDH2*2 genotype) or environmentally (EtOH administration) induced, while Alda-1 treatment obviated these effects. HSC from Alda-1 treated mice clustered with those from control WT mice. To test whether Alda-1 improved HSC function as well as phenotypic number, engraftment potential was assessed with competitive repopulation assays of sorted HSC from congenic untreated donors vs short-term (3 weeks) Alda-1 treated donors. HSC from Alda-1 treated mice had 2-4 fold greater granulocyte repopulating capacity than those from the untreated donors. Our results demonstrate that Alda-1 treatment rescues HSC from aldehyde induced loss, whether from genetic variation (FANCD2- and/or ALDH2*2) or experimental challenge (EtOH administration). Furthermore, Alda-1 treatment prevents the abnormal HSC gene expression induced by increased aldehydic load. HSC function is improved by Alda-1 with greater repopulating capacity observed even after short-term treatment. These preclinical experiments provide compelling proof-of-concept that sustained activation of ALDH2 can prevent HSC loss in FA. Potential applications include long-term administration to prevent the development of marrow failure or leukemia, and HSC expansion to increase the number of cells available for gene therapy with autologous HSC. Our results suggest that a clinical trial of ALDH2 activation in FA patients to prevent marrow failure is warranted. Disclosures Van Wassenhove: U.S. Patent Office: Patents & Royalties: patent pending - submitted for ALDH2 activators to expand hematopoietic stem cells. Chen:Foresee Pharmaceuticals: Patents & Royalties: patents licensed to Foresee related to compounds that activate aldehyde dehydrogenase 2 (ALDH2) and correct the dysfunction in ALDH2*2; U.S. Patent Office: Patents & Royalties: patent pending - submitted for aldehyde dehydrogenase 2 (ALDH2) activators to expand hematopoietic stem cells. Mochly-Rosen:Foresee Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Patents & Royalties: patents licensed to Foresee related to compounds that activate aldehyde dehydrogenase 2 (ALDH2) and correct the dysfunction in ALDH2*2; U.S. Patent Office: Patents & Royalties: patent pending - submitted for aldehyde dehydrogenase 2 (ALDH2) activators to expand hematopoietic stem cells. Weinberg:U.S. Patent Office: Patents & Royalties: patent pending - submitted for aldehyde dehydrogenase 2 (ALDH2) activators to expand hematopoietic stem cells.



Sign in / Sign up

Export Citation Format

Share Document