scholarly journals Ribosomopathies: human disorders of ribosome dysfunction

Blood ◽  
2010 ◽  
Vol 115 (16) ◽  
pp. 3196-3205 ◽  
Author(s):  
Anupama Narla ◽  
Benjamin L. Ebert

Abstract Ribosomopathies compose a collection of disorders in which genetic abnormalities cause impaired ribosome biogenesis and function, resulting in specific clinical phenotypes. Congenital mutations in RPS19 and other genes encoding ribosomal proteins cause Diamond-Blackfan anemia, a disorder characterized by hypoplastic, macrocytic anemia. Mutations in other genes required for normal ribosome biogenesis have been implicated in other rare congenital syndromes, Schwachman-Diamond syndrome, dyskeratosis congenita, cartilage hair hypoplasia, and Treacher Collins syndrome. In addition, the 5q− syndrome, a subtype of myelodysplastic syndrome, is caused by a somatically acquired deletion of chromosome 5q, which leads to haploinsufficiency of the ribosomal protein RPS14 and an erythroid phenotype highly similar to Diamond-Blackfan anemia. Acquired abnormalities in ribosome function have been implicated more broadly in human malignancies. The p53 pathway provides a surveillance mechanism for protein translation as well as genome integrity and is activated by defects in ribosome biogenesis; this pathway appears to be a critical mediator of many of the clinical features of ribosomopathies. Elucidation of the mechanisms whereby selective abnormalities in ribosome biogenesis cause specific clinical syndromes will hopefully lead to novel therapeutic strategies for these diseases.

F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1350 ◽  
Author(s):  
Lydie Da Costa ◽  
Anupama Narla ◽  
Narla Mohandas

Diamond–Blackfan anemia (DBA) is a rare congenital hypoplastic anemia characterized by a block in erythropoiesis at the progenitor stage, although the exact stage at which this occurs remains to be fully defined. DBA presents primarily during infancy with macrocytic anemia and reticulocytopenia with 50% of cases associated with a variety of congenital malformations. DBA is most frequently due to a sporadic mutation (55%) in genes encoding several different ribosomal proteins, although there are many cases where there is a family history of the disease with varying phenotypes. The erythroid tropism of the disease is still a matter of debate for a disease related to a defect in global ribosome biogenesis. Assessment of biological features in conjunction with genetic testing has increased the accuracy of the diagnosis of DBA. However, in certain cases, it continues to be difficult to firmly establish a diagnosis. This review will focus on the diagnosis of DBA along with a description of new advances in our understanding of the pathophysiology and treatment recommendations for DBA.


Author(s):  
Lei Yu ◽  
Philippe Lemay ◽  
Alexander V Ludlow ◽  
Marie-Claude Guyot ◽  
Morgan Alexander Jones ◽  
...  

Ribosome dysfunction is implicated in multiple abnormal developmental and disease states in humans. Heterozygous germline mutations in genes encoding ribosomal proteins (RPs) are found in the majority of individuals with Diamond Blackfan anemia (DBA) while somatic mutations have been implicated in a variety of cancers and other disorders. Ribosomal protein-deficient animal models show variable phenotypes and penetrance, similar to human DBA patients. Here we characterized a novel ENU mouse mutant (Skax23m1Jus) with growth and skeletal defects, cardiac malformations and increased mortality. Following genetic mapping and whole exome sequencing, we identified an intronic Rpl5 mutation, which segregated with all affected mice. This mutation was associated with decreased ribosome generation, consistent with Rpl5 haploinsufficiency. Rpl5Skax23-Jus/+ mutant animals had a profound delay in erythroid maturation and increased mortality at embryonic day E12.5, which improved by E14.5. Surviving mutant animals had a macrocytic anemia at birth as well as evidence of ventricular septal defect (VSD). Surviving adult and aged mice exhibited no hematopoietic defect or VSD. We propose that this novel Rpl5Skax23-Jus mutant mouse will be useful to study the factors influencing the variable penetrance that is observed in DBA.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 83-83
Author(s):  
Ismael Boussaid ◽  
Salome Le Goff ◽  
Celia Floquet ◽  
Anna Raimbault ◽  
Charlotte Andrieu-Soler ◽  
...  

Abstract Haploinsufficiency in genes encoding ribosomal proteins (RP) or ribosome-associated proteins either by mutation or deletion leads to a predominant erythroid phenotype. In acquired 5q- myelodysplasic syndrome (MDS), the macrocytic anemia has been linked to the monoallelic deletion of RPS14 gene which results in altered ribosome biogenesis. Because of the defective maturation of the small 40S ribosome subunit, the RPL5/RPL11/5SrARN complex, normally involved in the assembly of the large 60S subunit assembly, accumulates and inhibits E3-ligase-HDM2 leading to the stabilization and activation of p53 resultig in cell cycle arrest, increased apoptosis and defective differentiation of maturing erythroblasts. In the present work, we hypothesized that p53 could play a key role in the control of normal erythroid differentiation by ribosome biogenesis and we further investigated the involvement of the decreased pool of ribosome on erythroid defects in the 5q- syndrome. To investigate the first hypothesis, we studied the kinetics of ribosome biogenesis in human primary erythroblasts by mass spectrometry after pulse-SILAC. We noted that ribosome renewal collapses begining at the polychromatophilic erythroblast stage. We subsequently used the pharmacological agent CX-5461 to inhibit RNA polymerase I. When ribosome biogenesis in proerythroblasts is blocked by CX-5461, p53 is activated and proerythroblasts enter the terminal differentiation by expressing GATA1-erythroid target genes without apoptosis. By ChIP-seq in primary erythroblasts, we demonstrated that p53 binds to 1289 genes including 263 genes specifically activated by CX-5461, 6 of them being upregulated during CX-5461-induced erythroid differentiation and 3 of them being known GATA1 targets. We further used an shRNA strategy to demonstrate that one of these genes is required to permit entry into terminal erythroid differentiation when ribosome biogenesis is abrogated. We thus showed that normal erythroid differentiation is controlled by ribosome biogenesis through a p53-dependent checkpoint. In 5q- syndrome, ribosome biogenesis is continuously decreased along all stages of erythropoiesis and in contrast to the normal conditions, erythroid differentiation is defective with an excess of apoptosis affecting mature erythroblasts. We previously reported that GATA1 is targeted by a caspase-dependent cleavage since GATA1 is not protected by its chaperone HSP70 in the nucleus of MDS erythroblasts. We confirmed that GATA1 protein is decreased in 5q- primary erythroblasts and in RPS14 shRNA-expressing normal erythroblasts. To obtain further insights into the defective erythroid maturation of RPS14-deleted erythroblasts, we developed an inducible shRNA to RPS14 in the UT7/Epo cell line. Polysome profiling confirmed the decrease of 40S subunit and absolute quantification of RP by deep proteomics demonstrated a 50% decrease of RPS in conjunction with 50% reduction of ribosome content in these cells. GATA1 expression was decreased and was only partially rescued by treatment with either caspase inhibitor qVD or proteasome inhibitor, bortezomib. We then tested the hypothesis of a decrease in GATA1 translation, as previously shown in a shRNA RPS19 Diamond-Blackfan model, by analyzing and comparing the global transcriptome and the translatome corresponding to transcripts present in high molecular weight polysomes using Affymetrix HTA 2.0 microarrays. We observed a decoupling between transcriptome and translatome suggesting a selectivity of translational defects. Thermodynamic characteristics i.e. the fold energy, energy per base and length of the 3'UTR and the energy per base of the 5'UTR (Vienna RNA Package, UCSC genome browser) were the determinants of transcript selection on the polysome. The shortest transcripts with a highly structured 3'UTR including GATA1 were the transcripts which were less effectively translated. Consistently, the diminution of GATA1 protein was associated with a decrease of its target genes. Our results suggest that GATA1 is a potentially interesting therapeutic target. In summary, our results show that ribosome biogenesis controls erythroid differentiation via a p53-dependent transcriptional regulation and that a reduction of the ribosome pool leads to a selective translation at the expense of erythroid master gene GATA1. Disclosures Fontenay: Celgene: Research Funding.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. SCI-11-SCI-11
Author(s):  
Benjamin L. Ebert

Abstract Abstract SCI-11 The 5q- syndrome and Diamond Blackfan Anemia are related on a molecular level by ribosome dysfunction. The 5q- syndrome is a distinct subtype of myelodysplastic syndrome (MDS) associated with isolated, interstitial deletions of the long arm of Chromosome 5. Diamond Blackfan Anemia is a rare congenital disorder associated with bone marrow failure, craniofacial abnormalities, and limb bud defects. The hematologic phenotype of both diseases includes a severe refractory anemia, macrocytosis, and a deficiency of erythroid precursors. Recent evidence indicates that this erythroid defect is caused by RPS14 deletion in the 5q- syndrome, and by mutation of RPS19 or other ribosomal genes in at least 50% of patients with Diamond Blackfan Anemia. In both diseases, deletion or mutation of one allele of a ribosomal protein leads to defects in pre-rRNA processing and defective production of mature ribosomes. In murine and zebrafish models, haploinsufficiency for ribosomal genes phenocopies the erythroid failure characteristic of the human disorders. While the mechanistic consequences of ribosomal dysfunction have not been fully elucidated, the p53 pathway appears to play a central role. MDM2, an E3 ubiquitin ligase that promotes the degradation of p53, binds to several ribosomal proteins including RPL11. Deficiency of RPS6, and perhaps other ribosomal proteins, causes an accumulation of free RPL11, that binds to MDM2, preventing MDM2 from interacting with p53, thereby leading to an accumulation of p53. Several other genes that are mutated in hematologic disorders are involved in ribosome biogenesis and function, including SBDS, mutated in Shwachman Diamond syndrome; DKC1, mutated in some cases of dyskaratosis congenita; and NPM1, mutated in acute myeloid leukemia and deleted in some cases of MDS. The manner in which each of these genes disrupt ribosome function and cause distinct clinical phenotypes is currently under investigation. Disclosures Ebert: GlaxoSmithKline: Research Funding.


2021 ◽  
Author(s):  
Lei Yu ◽  
Philippe Lemay ◽  
Alexander Ludlow ◽  
Marie-Claude Guyot ◽  
Morgan Jones ◽  
...  

AbstractRibosome dysfunction is implicated in multiple abnormal developmental and disease states in humans. Heterozygous germline mutations in genes encoding ribosomal proteins (RPs) are found in the majority of individuals with Diamond Blackfan anemia (DBA) while somatic mutations have been implicated in a variety of cancers and other disorders. Ribosomal protein-deficient animal models show variable phenotypes and penetrance, similar to human DBA patients. The spontaneous anemia remission observed in some DBA patients occurs via unknown mechanism(s) and has not been previously described in animal models. Here we characterized a novel ENU mouse mutant (Skax23m1Jus) with growth and skeletal defects, cardiac malformations and increased mortality. Following genetic mapping and whole exome sequencing, we identified an intronic Rpl5 mutation, which segregated with all affected mice. This mutation was associated with decreased ribosome generation, consistent with Rpl5 haploinsufficiency. Rpl5Skax23-Jus mutant animals had a profound delay in erythroid maturation and increased mortality at embryonic day E12.5, which improved by E14.5. Surviving mutant animals had a macrocytic anemia at birth as well as evidence of ventricular septal defect (VSD). Surviving adult and aged mice exhibited no hematopoietic defect or VSD. We propose that this novel Rpl5Skax23-Jus mutant mouse will be useful to study the factors influencing the variable penetrance and anemia remission that are observed in DBA.


2022 ◽  
Author(s):  
Jimmy Hom ◽  
Theodoros Karnavas ◽  
Emily Hartman ◽  
Julien Papoin ◽  
Yuefeng Tang ◽  
...  

Ribosomopathies are a class of disorders caused by defects in the structure or function of the ribosome and characterized by tissue-specific abnormalities. Diamond Blackfan anemia (DBA) arises from different mutations, predominantly in genes encoding ribosomal proteins (RPs). Apart from the anemia, skeletal defects are among the most common anomalies observed in patients with DBA, but they are virtually restricted to radial ray and other upper limb defects. What leads to these site-specific skeletal defects in DBA remains a mystery. Using a novel mouse model for RP haploinsufficiency, we observed specific, differential defects of the limbs. Using complementary in vitro and in vivo approaches, we demonstrate that reduced WNT signaling and subsequent increased β-catenin degradation in concert with increased expression of p53 contribute to mesenchymal lineage failure. We observed differential defects in the proliferation and differentiation of mesenchymal stem cells (MSCs) from the forelimb versus the hind limbs of the RP haploinsufficient mice that persisted after birth and were partially rescued by allelic reduction of Trp53. These defects are associated with a global decrease in protein translation in RP haploinsufficient MSCs, with the effect more pronounced in cells isolated from the forelimbs. Together these results demonstrate translational differences inherent to the MSC, explaining the site-specific skeletal defects observed in DBA.


Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2080
Author(s):  
Emilien Orgebin ◽  
François Lamoureux ◽  
Bertrand Isidor ◽  
Céline Charrier ◽  
Benjamin Ory ◽  
...  

Ribosomopathies are a group of rare diseases in which genetic mutations cause defects in either ribosome biogenesis or function, given specific phenotypes. Ribosomal proteins, and multiple other factors that are necessary for ribosome biogenesis (rRNA processing, assembly of subunits, export to cytoplasm), can be affected in ribosomopathies. Despite the need for ribosomes in all cell types, these diseases result mainly in tissue-specific impairments. Depending on the type of ribosomopathy and its pathogenicity, there are many potential therapeutic targets. The present manuscript will review our knowledge of ribosomopathies, discuss current treatments, and introduce the new therapeutic perspectives based on recent research. Diamond–Blackfan anemia, currently treated with blood transfusion prior to steroids, could be managed with a range of new compounds, acting mainly on anemia, such as L-leucine. Treacher Collins syndrome could be managed by various treatments, but it has recently been shown that proteasomal inhibition by MG132 or Bortezomib may improve cranial skeleton malformations. Developmental defects resulting from ribosomopathies could be also treated pharmacologically after birth. It might thus be possible to treat certain ribosomopathies without using multiple treatments such as surgery and transplants. Ribosomopathies remain an open field in the search for new therapeutic approaches based on our recent understanding of the role of ribosomes and progress in gene therapy for curing genetic disorders.


2021 ◽  
Vol 22 (9) ◽  
pp. 4359
Author(s):  
Sara Martín-Villanueva ◽  
Gabriel Gutiérrez ◽  
Dieter Kressler ◽  
Jesús de la Cruz

Ubiquitin is a small protein that is highly conserved throughout eukaryotes. It operates as a reversible post-translational modifier through a process known as ubiquitination, which involves the addition of one or several ubiquitin moieties to a substrate protein. These modifications mark proteins for proteasome-dependent degradation or alter their localization or activity in a variety of cellular processes. In most eukaryotes, ubiquitin is generated by the proteolytic cleavage of precursor proteins in which it is fused either to itself, constituting a polyubiquitin precursor, or as a single N-terminal moiety to ribosomal proteins, which are practically invariably eL40 and eS31. Herein, we summarize the contribution of the ubiquitin moiety within precursors of ribosomal proteins to ribosome biogenesis and function and discuss the biological relevance of having maintained the explicit fusion to eL40 and eS31 during evolution. There are other ubiquitin-like proteins, which also work as post-translational modifiers, among them the small ubiquitin-like modifier (SUMO). Both ubiquitin and SUMO are able to modify ribosome assembly factors and ribosomal proteins to regulate ribosome biogenesis and function. Strikingly, ubiquitin-like domains are also found within two ribosome assembly factors; hence, the functional role of these proteins will also be highlighted.


Hematology ◽  
2009 ◽  
Vol 2009 (1) ◽  
pp. 344-350 ◽  
Author(s):  
Christoph Klein

Abstract Congenital neutropenia comprises a variety of genetically heterogeneous phenotypic traits. Molecular elucidation of the underlying genetic defects has yielded important insights into the physiology of neutrophil differentiation and function. Non-syndromic variants of congenital neutropenia are caused by mutations in ELA2, HAX1, GFI1, or WAS. Syndromic variants of congenital neutropenia may be due to mutations in genes controlling glucose metabolism (SLC37A4, G6PC3) or lysosomal function (LYST, RAB27A, ROBLD3/p14, AP3B1, VPS13B). Furthermore, defects in genes encoding ribosomal proteins (SBDS, RMRP) and mitochondrial proteins (AK2, TAZ) are associated with congenital neutropenia syndromes. Despite remarkable progress in the field, many patients with congenital neutropenia cannot yet definitively be classified by genetic terms. This review addresses diagnostic and therapeutic aspects of congenital neutropenia and covers recent molecular and pathophysiological insights of selected congenital neutropenia syndromes.


Author(s):  
Fei Wang ◽  
Deyu Zhang ◽  
Dejiu Zhang ◽  
Peifeng Li ◽  
Yanyan Gao

Mitochondria are one of the most important organelles in cells. Mitochondria are semi-autonomous organelles with their own genetic system, and can independently replicate, transcribe, and translate mitochondrial DNA. Translation initiation, elongation, termination, and recycling of the ribosome are four stages in the process of mitochondrial protein translation. In this process, mitochondrial protein translation factors and translation activators, mitochondrial RNA, and other regulatory factors regulate mitochondrial protein translation. Mitochondrial protein translation abnormalities are associated with a variety of diseases, including cancer, cardiovascular diseases, and nervous system diseases. Mutation or deletion of various mitochondrial protein translation factors and translation activators leads to abnormal mitochondrial protein translation. Mitochondrial tRNAs and mitochondrial ribosomal proteins are essential players during translation and mutations in genes encoding them represent a large fraction of mitochondrial diseases. Moreover, there is crosstalk between mitochondrial protein translation and cytoplasmic translation, and the imbalance between mitochondrial protein translation and cytoplasmic translation can affect some physiological and pathological processes. This review summarizes the regulation of mitochondrial protein translation factors, mitochondrial ribosomal proteins, mitochondrial tRNAs, and mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs) in the mitochondrial protein translation process and its relationship with diseases. The regulation of mitochondrial protein translation and cytoplasmic translation in multiple diseases is also summarized.


Sign in / Sign up

Export Citation Format

Share Document