scholarly journals The novel receptor tyrosine kinase Axl is constitutively active in B-cell chronic lymphocytic leukemia and acts as a docking site of nonreceptor kinases: implications for therapy

Blood ◽  
2011 ◽  
Vol 117 (6) ◽  
pp. 1928-1937 ◽  
Author(s):  
Asish K. Ghosh ◽  
Charla Secreto ◽  
Justin Boysen ◽  
Traci Sassoon ◽  
Tait D. Shanafelt ◽  
...  

Abstract Recently, we detected that chronic lymphocytic leukemia (CLL) B-cell–derived microvesicles in CLL plasma carry a constitutively phosphorylated novel receptor tyrosine kinase (RTK), Axl, indicating that Axl was acquired from the leukemic B cells. To examine Axl status in CLL, we determined the expression of phosphorylated-Axl (P-Axl) in freshly isolated CLL B cells by Western blot analysis. We detected differential levels of P-Axl in CLL B cells, and further analysis showed that expression of P-Axl was correlated with the other constitutively phosphorylated kinases, including Lyn, phosphoinositide-3 kinase, SyK/ζ-associated protein of 70 kDa, phospholipase C γ2 in CLL B cells. We found that these intracellular signaling molecules were complexed with P-Axl in primary CLL B cells. When Axl and Src kinases were targeted by a Src/Abl kinase inhibitor, bosutinib (SKI-606), or a specific-inhibitor of Axl (R428), robust induction of CLL B-cell apoptosis was observed in both a dose- and time-dependent manner. Therefore, we have identified a novel RTK in CLL B cells which appears to work as a docking site for multiple non-RTKs and drives leukemic cell survival signals. These findings highlight a unique target for CLL treatment.

Blood ◽  
1998 ◽  
Vol 91 (9) ◽  
pp. 3390-3396 ◽  
Author(s):  
M. Bernardetta Majolini ◽  
Mario M. D'Elios ◽  
Piero Galieni ◽  
Marianna Boncristiano ◽  
Francesco Lauria ◽  
...  

Src family kinases play a key role in mitogenesis. The exquisitely tissue-specific distribution of different Src family members suggests that a fine tuning of their expression might be a key prerequisite for cell homeostasis. We tested B cells from patients affected by B-cell chronic lymphocytic leukemia (B-CLL) for expression of Src family kinases. The T-cell–specific tyrosine kinase Lck was found to be expressed at significant levels in CLL B-cells. This finding could be accounted for either by ectopic expression of Lck in B-CLL or by specific expression of this kinase in normal B-1 cells, which are believed to be the normal counterpart of CLL B cells. To answer this question B cells from different sources, characterized by a different size of the B-1 subpopulation, were tested for Lck expression. The results show that Lck expression is a feature of CD5+, B-1 cells, suggesting a potential role for Lck in the self-renewal capacity of this B-cell subpopulation and supporting the notion that B-1 cells are the subset undergoing oncogenic transformation in B-CLL. Furthermore, we show that the CD5−, B-2 subpopulation, while normally lacking Lck expression, acquires the capacity to express Lck ectopically upon transformation by EBV.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2799-2799
Author(s):  
Liguang Chen ◽  
John Apgar ◽  
Li Tang ◽  
Thomas J. Kipps

Abstract CD79b is B-cell surface molecule that non-covalently associates with CD79a and surface immunoglobulin (sIg), which together serve as the B-cell receptor complex (BCR). Both CD79a and CD79b have cytosolic immunoreceptor tyrosine-based activation motifs (ITAMs) that can become phosphorylated following sIg ligation, thereby allowing for recruitment to the BCR complex of cytosolic kinases, such as p72Syk , which then can initiate downstream intracellular signaling events. Compared to normal B cells, chronic lymphocytic leukemia (CLL) B cells typically expresses low levels of CD79b, which is speculated to contribute to the relatively poor capacity of CLL cells to initiate intracellular signaling following BCR ligation despite having apparently adequate levels of p72Syk. BCR signaling in CLL cells can be enhanced by expression of the zeta-associated protein of 70 kD (ZAP-70), a tyrosine kinase that initially was identified in T cells, where it plays a critical role in the phosphorylation of ITAMs of the accessory molecules of the T-cell receptor (TCR) complex for antigen following TCR ligation. We investigated for phosphorylation of CD79b following BCR ligation with F(ab)2 anti- μ antibody in CLL cell samples that did or did not express ZAP-70. All CLL cell samples expressed similar amounts of surface IgM and p72Syk, as assessed via flow cytometry and immunoblot analysis. Within 10 minutes after treatment with anti-μ the CLL cell samples that expressed ZAP-70 (n = 28) experienced a mean increase in phosphorylation of CD79b of 21.5% (± 14.0% S.D.), which was significantly greater than the 7.5% increase (± 7.9% S.D.) experienced by similarly treated CLL cell samples that did not express ZAP-70 (n = 19) (P< 0.01). Immune precipitation studies demonstrated association of CD79b with p72Syk in CLL B cells. CLL cell samples (n = 5) lacking expression of ZAP-70 were transfected with a control vector or an expression vector encoding ZAP-70, allowing us to examine the effect that engineered-expression of ZAP-70 has on CD79 phosphorylation following treatment with anti-μ. Anti-μ treatment induced significantly higher mean levels of CD79b phosphorylation in CLL samples made to express ZAP-70 (33% ± 16%) than in control mock-transfected CLL cells (4% ± 2%). This also was associated with enhanced anti-μ induced phosphorylation of p72Syk. We conclude that expression of ZAP-70 in CLL B cells enhances phosphorylation of the accessory molecules in the BCR complex following sIg ligation, potentially allowing for improved recruitment of cytosolic kinases and adapter proteins to these accessory molecules for enhanced BCR signaling.


Blood ◽  
2011 ◽  
Vol 117 (23) ◽  
pp. 6287-6296 ◽  
Author(s):  
Sarah E. M. Herman ◽  
Amber L. Gordon ◽  
Erin Hertlein ◽  
Asha Ramanunni ◽  
Xiaoli Zhang ◽  
...  

Abstract B-cell receptor (BCR) signaling is aberrantly activated in chronic lymphocytic leukemia (CLL). Bruton tyrosine kinase (BTK) is essential to BCR signaling and in knockout mouse models its mutation has a relatively B cell–specific phenotype. Herein, we demonstrate that BTK protein and mRNA are significantly over expressed in CLL compared with normal B cells. Although BTK is not always constitutively active in CLL cells, BCR or CD40 signaling is accompanied by effective activation of this pathway. Using the irreversible BTK inhibitor PCI-32765, we demonstrate modest apoptosis in CLL cells that is greater than that observed in normal B cells. No influence of PCI-32765 on T-cell survival is observed. Treatment of CD40 or BCR activated CLL cells with PCI-32765 results in inhibition of BTK tyrosine phosphorylation and also effectively abrogates downstream survival pathways activated by this kinase including ERK1/2, PI3K, and NF-κB. In addition, PCI-32765 inhibits activation-induced proliferation of CLL cells in vitro, and effectively blocks survival signals provided externally to CLL cells from the microenvironment including soluble factors (CD40L, BAFF, IL-6, IL-4, and TNF-α), fibronectin engagement, and stromal cell contact. Based on these collective data, future efforts targeting BTK with the irreversible inhibitor PCI-32765 in clinical trials of CLL patients is warranted.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2812-2812
Author(s):  
Januario E. Castro ◽  
Carlos E. Prada ◽  
Jorieth M. Jose ◽  
Scott A. Jung ◽  
Liguang J. Chen ◽  
...  

Abstract The NFκB transcription factors p50/p65 regulate the expression of genes encoding various growth-promoting factors and anti-apoptotic proteins, such as the cellular inhibitors of apoptosis (c-IAPs), Caspase-8/Flice-inhibitory protein (FLIP), A1 (also known as Bfl1), tumor necrosis factor receptor (TNFR)-associated factor 1 (TRAF1) and 2 (TRAF2). Furthermore, constitutive activation of NFκB has been observed in many tumor types, supporting the notion that activation of NFκB can play a causal role in tumor development and/or progression. Studies have shown chronic lymphocytic leukemia (CLL) cells experience activation of NFκB in vitro upon ligation of their surface immunoglobulin (Ig), which commonly possesses polyreactive-binding activity for many self-antigens. Other studies also have found that CLL cells from different patients vary in their capacity to undergo B-cell-receptor signaling following ligation of their surface Ig receptors, a capacity that appears associated with leukemia-B-cell expression of the zeta-associated protein of 70 kD (ZAP-70). We examined whether CLL B cell expression of ZAP-70 also was associated with the capacity to activate NFκB upon surface Ig ligation. For this we used CLL B cells of 8 different patients that expressed ZAP-70 and CLL B cells from 8 other patients that had negligible expression of this tyrosine kinase (as assessed by immunoblot and flow cytometric analysis). The CLL B cells of these two groups of patients had similar expression levels of surface, allowing us to use a F(ab’)2 anti-human IgM (anti-μ) to effect comparable surface Ig receptor ligation. Following treatment with anti-μ, we observed early and sustained degradation of IκB-α, thereby releasing cytoplasmic p50/p65 to the nucleus - the hallmark of NFκB activation. Moreover, this was associated with subsequent increased expression of NFκB target genes. In contrast, similar events were not observed following treatment with anti-μ in the cases lacking expression of ZAP-70. Also, activation of NFκB in ZAP-70+ cases was associated with a greater release of intracellular calcium and calcium flux following treatment with anti-μ than observed in ZAP-70-negative cases. Both calcium flux and activation of NFκB induced by anti-μ in these leukemia cells could be inhibited by Cyclosporine-A, indicating that these responses were mediated via a calmodulin-calcineurin-dependent pathway. These studies reveal that expression of ZAP-70 in B cell CLL is associated with a greater capacity to induce activation of NFκB following ligation of surface Ig, a characteristic that might account for the more aggressive clinical behavior of patients with leukemia B cells that express this tyrosine kinase. Moreover, if constitutive activation via ligation of surface Ig with self-antigen in vivo leads to activation of NFκB, then targeting the calmodulin-calcineurin-dependent pathway might have therapeutic potential for this subset of patients with this disease.


Blood ◽  
1998 ◽  
Vol 91 (9) ◽  
pp. 3390-3396 ◽  
Author(s):  
M. Bernardetta Majolini ◽  
Mario M. D'Elios ◽  
Piero Galieni ◽  
Marianna Boncristiano ◽  
Francesco Lauria ◽  
...  

Abstract Src family kinases play a key role in mitogenesis. The exquisitely tissue-specific distribution of different Src family members suggests that a fine tuning of their expression might be a key prerequisite for cell homeostasis. We tested B cells from patients affected by B-cell chronic lymphocytic leukemia (B-CLL) for expression of Src family kinases. The T-cell–specific tyrosine kinase Lck was found to be expressed at significant levels in CLL B-cells. This finding could be accounted for either by ectopic expression of Lck in B-CLL or by specific expression of this kinase in normal B-1 cells, which are believed to be the normal counterpart of CLL B cells. To answer this question B cells from different sources, characterized by a different size of the B-1 subpopulation, were tested for Lck expression. The results show that Lck expression is a feature of CD5+, B-1 cells, suggesting a potential role for Lck in the self-renewal capacity of this B-cell subpopulation and supporting the notion that B-1 cells are the subset undergoing oncogenic transformation in B-CLL. Furthermore, we show that the CD5−, B-2 subpopulation, while normally lacking Lck expression, acquires the capacity to express Lck ectopically upon transformation by EBV.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4168-4168
Author(s):  
Rajeswaran Mani ◽  
Yicheng Mao ◽  
Frank W Frissora ◽  
Chi-ling Chiang ◽  
Jiang Wang ◽  
...  

Abstract The discovery of predominantly inactive phosphatases in a variety of cancers and the potential for phosphatase targeted therapy as an alternative to kinase inhibitors especially in situations where the efficacy of the kinase inhibitors are compromised due to resistance mechanisms attributed to mutations and single nucleotide polymorphisms of the drug targets prompted us to evaluate potential activators of phosphatases in chronic lymphocytic leukemia (CLL) and other B cell malignancies. We have recently identified cytotoxic activity of OSU-2S, a novel non-immunosuppressive FTY720 derivative and PP2A activator against CLL. OSU-2S induced cytotoxicity was associated with PKC dependent phosphorylation of Serine 591 (S591) of tumor suppressor phosphatase SHP1 and its nuclear translocation consistent with a potential role for S591 phosphorylation. Here in, we demonstrate the molecular mechanisms and a rational approach for developing this novel agent for preclinical and clinical studies. In-vitro kinase assay demonstrated OSU-2S increased activity of purified PKC directly (p<0.0001) and also in CLL-B cells (N=5; p<0.05). Further, OSU-2S induced phospho SHP1S591 is inversely correlated with viability in CLL-B cells (N=20; rs= -0.64; p=0.0026). To elucidate the role of nuclear phospho SHP1S591, we performed gene expression studies by microarray analysis of RNA isolated from OSU-2S treated CLL cells revealing at least 260 genes that have changed by two fold (p<0.0005). Ingenuity pathway analysis (IPA) of the top 40 genes included some of B cell receptor (BCR) signaling candidates such as PI3Kγ, PLCγ, MAP2K6. Consistent with this, OSU-2S treatment reduced BCR activation of CLL cells stimulated with goat F(ab’)2 against human IgA+IgG+IgM (H+L), as identified with reduced activation and viability. Moreover, with relevant to CLL disease Tcl1A expression that was identified to be down regulated in response to OSU-2S in the gene expression profile was independently confirmed to be significantly down regulated both at the mRNA (N=7; p=0.0159) and protein levels with the corresponding up regulation in cFOS and FRA2 two known inhibitory targets of Tcl1A. To overcome the limitations associated with non specific activity on unintended target cells and normal counterparts, we made OSU-2S immunoliposome (2A2-OSU-2S-ILP) formulation targeting malignant B cell specific tumor antigen receptor tyrosine kinase-like orphan receptor (ROR1). ROR1 is an orphan receptor tyrosine kinase that is expressed exclusively in malignant B but not normal B cells. We have used a non-cytotoxic anti-ROR1 monoclonal antibody 2A2 to formulate immunoliposome 2A2-ILP which showed selective binding and internalization in ROR1+ CLL B cells but not ROR1- normal B cells from healthy donors. To demonstrate the chemotherapeutic efficiency in a more relevant CLL model in-vivo, we have generated Eµ-hROR1 transgenic mouse which expresses B cell specific human ROR1. Crossing the Eµ-hROR1 mouse with Eµ-Tcl1 CLL mouse resulted in generation of Eµ-hROR1-Tcl1 mouse that exhibit CLL like disease with human ROR1 antigen in leukemic CD19+CD5+ B cells. Ex-vivostudies using CLL primary B cells or Eµ-hROR1-Tcl1 double transgenic mouse B cells showed selective toxicity of leukemic B cells by 2A2-OSU-2S-ILP compared to 2A2-Empty-ILP which does not have OSU-2S. Further, administration of 2A2-OSU-2S-ILP in Eμ-hROR1 transgenic mice resulted in selective depletion of ROR1 positive B cells and prolonged survival in Eµ-hROR1-Tcl1 spleen engrafted mouse model of CLL (N=11 for 2A2-OSU-2S-ILP and N=9 for 2A2-Empty-ILP; p<0.001). The novel OSU-2S, its delivery formulation, and the mouse models described here provide the tools for further development of OSU-2S formulations for B cell malignancies. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 109 (5) ◽  
pp. 2032-2039 ◽  
Author(s):  
Stefania Gobessi ◽  
Luca Laurenti ◽  
Pablo G. Longo ◽  
Simona Sica ◽  
Giuseppe Leone ◽  
...  

Abstract Expression of ZAP-70 is an important negative prognostic factor in chronic lymphocytic leukemia (CLL). This protein tyrosine kinase is a key mediator of T-cell receptor (TCR) signaling and is structurally homologous to Syk, which plays an analogous role in B-cell receptor (BCR) signaling. Recent studies indicate that ZAP-70 may participate in BCR signaling as well, but the mechanism of action is not completely understood. We have now compared antigen receptor-induced activation of ZAP-70 in B cells and T cells by analyzing phosphorylation of critical regulatory tyrosine residues. We show that BCR-mediated activation of ZAP-70 is very inefficient in CLL and lymphoma B cells and is negligible when compared to activation of Syk. Despite the inefficient catalytic activation, the ability of ZAP-70 to recruit downstream signaling molecules in response to antigen receptor stimulation appeared relatively preserved. Moreover, ectopic expression of ZAP-70 enhanced and prolonged activation of several key mediators of BCR signaling, such as the Syk, ERK, and Akt kinases, and decreased the rate of ligand-mediated BCR internalization. We conclude that the role of ZAP-70 in BCR signaling is quite distinct from its role in TCR signaling and is likely mediated by inhibition of events that terminate the signaling response.


Author(s):  
Sarah Wilmore ◽  
Karly-Rai Rogers-Broadway ◽  
Joe Taylor ◽  
Elizabeth Lemm ◽  
Rachel Fell ◽  
...  

AbstractSignaling via the B-cell receptor (BCR) is a key driver and therapeutic target in chronic lymphocytic leukemia (CLL). BCR stimulation of CLL cells induces expression of eIF4A, an initiation factor important for translation of multiple oncoproteins, and reduces expression of PDCD4, a natural inhibitor of eIF4A, suggesting that eIF4A may be a critical nexus controlling protein expression downstream of the BCR in these cells. We, therefore, investigated the effect of eIF4A inhibitors (eIF4Ai) on BCR-induced responses. We demonstrated that eIF4Ai (silvestrol and rocaglamide A) reduced anti-IgM-induced global mRNA translation in CLL cells and also inhibited accumulation of MYC and MCL1, key drivers of proliferation and survival, respectively, without effects on upstream signaling responses (ERK1/2 and AKT phosphorylation). Analysis of normal naïve and non-switched memory B cells, likely counterparts of the two main subsets of CLL, demonstrated that basal RNA translation was higher in memory B cells, but was similarly increased and susceptible to eIF4Ai-mediated inhibition in both. We probed the fate of MYC mRNA in eIF4Ai-treated CLL cells and found that eIF4Ai caused a profound accumulation of MYC mRNA in anti-IgM treated cells. This was mediated by MYC mRNA stabilization and was not observed for MCL1 mRNA. Following drug wash-out, MYC mRNA levels declined but without substantial MYC protein accumulation, indicating that stabilized MYC mRNA remained blocked from translation. In conclusion, BCR-induced regulation of eIF4A may be a critical signal-dependent nexus for therapeutic attack in CLL and other B-cell malignancies, especially those dependent on MYC and/or MCL1.


2017 ◽  
Vol 39 (2) ◽  
pp. 141-144
Author(s):  
S V Andreieva ◽  
K V Korets ◽  
O E Ruzhinska ◽  
I M Skorokhod ◽  
O G Alkhimova

Aim: The genetic mechanisms of resistance to chemotherapy in B-cell chronic lymphocytic leukemia/small lymphocytic lymphoma (B-CLL/SLL) are not clear. We aimed to determine the peculiarities of abnormal karyotype formation in bone marrow (BM) cells and peripheral blood (PB) blast transformed B-cells in relapse of B-CLL/SLL. Materials and Methods: Cytogenetic GTG banding technique and molecular cytogenetic in interphase cells (i-FISH) studies of BM cells and PB blast transformed B-lymphocytes were performed in 14 patients (10 males and 4 females) with B-CLL/SLL. Results: The results of karyotyping BM and PB cells revealed the heterogeneity of cytogenetic abnormalities in combined single nosological group of B-CLL/SLL. In PB B-cells, chromosome abnormalities related to a poor prognosis group were registered 2.5 times more often than in BM cells. Additional near tetraploid clones that occurred in 57.1% cases were the peculiar feature of BM cell karyotypes. Chromosomal rearrangements characteristic of the group of adverse cytogenetic prognosis were revealed in all cases from which in 2 cases by karyotyping BM cells, in 6 cases in PB B-cells and in 8 cases by the i-FISH method in BM cells, i.e. their detection frequency was 3 times higher in PB B-cells and 4 times higher when analyzing by i-FISH in BM cells. Conclusions: Mismatch in abnormal karyotypes in BM and PB B-cells by the presence of quantitative and structural chromosomal rearrangements may be indicative of simultaneous and independent processes of abnormal clone formation in the lymph nodes and BM hematopoietic cells. Accumulation the information about previously unidentified chromosomal rearrangements in relapse of the disease may help to understand the ways of resistance formation to chemotherapy.


Sign in / Sign up

Export Citation Format

Share Document