scholarly journals JAK2/STAT5 inhibition by nilotinib with ruxolitinib contributes to the elimination of CML CD34+ cells in vitro and in vivo

Blood ◽  
2014 ◽  
Vol 124 (9) ◽  
pp. 1492-1501 ◽  
Author(s):  
Paolo Gallipoli ◽  
Amy Cook ◽  
Susan Rhodes ◽  
Lisa Hopcroft ◽  
Helen Wheadon ◽  
...  

Key Points The JAK2/STAT5 pathway is a relevant therapeutic target in CML SPCs. Targeting the JAK2/STAT5 pathway by nilotinib and RUX in combination leads to enhanced eradication of primitive CML stem cells.

Blood ◽  
2014 ◽  
Vol 124 (20) ◽  
pp. 3130-3140 ◽  
Author(s):  
Matthieu Cornelis Johannes Bosman ◽  
Hein Schepers ◽  
Jennifer Jaques ◽  
Annet Zwaantien Brouwers-Vos ◽  
Wim Johannes Quax ◽  
...  

Key PointsThe threonine kinase TAK1 is a survival-related gene that is strongly upregulated in AML CD34+ cells vs NBM CD34+ cells. Genetic and pharmacologic inhibition of TAK1-induced cell death in an NF-κB–dependent manner in AML cells in vitro and in vivo.


Blood ◽  
2000 ◽  
Vol 95 (9) ◽  
pp. 2813-2820 ◽  
Author(s):  
Lisa Gallacher ◽  
Barbara Murdoch ◽  
Dongmei M. Wu ◽  
Francis N. Karanu ◽  
Mike Keeney ◽  
...  

Recent evidence indicates that human hematopoietic stem cell properties can be found among cells lacking CD34 and lineage commitment markers (CD34−Lin−). A major barrier in the further characterization of human CD34− stem cells is the inability to detect this population using in vitro assays because these cells only demonstrate hematopoietic activity in vivo. Using cell surface markers AC133 and CD7, subfractions were isolated within CD34−CD38−Lin− and CD34+CD38−Lin− cells derived from human cord blood. Although the majority of CD34−CD38−Lin− cells lack AC133 and express CD7, an extremely rare population of AC133+CD7− cells was identified at a frequency of 0.2%. Surprisingly, these AC133+CD7− cells were highly enriched for progenitor activity at a frequency equivalent to purified fractions of CD34+ stem cells, and they were the only subset among the CD34−CD38−Lin− population capable of giving rise to CD34+ cells in defined liquid cultures. Human cells were detected in the bone marrow of non-obese/severe combined immunodeficiency (NOD/SCID) mice 8 weeks after transplantation of ex vivo–cultured AC133+CD7− cells isolated from the CD34−CD38−Lin− population, whereas 400-fold greater numbers of the AC133−CD7− subset had no engraftment ability. These studies provide novel insights into the hierarchical relationship of the human stem cell compartment by identifying a rare population of primitive human CD34− cells that are detectable after transplantation in vivo, enriched for in vitro clonogenic capacity, and capable of differentiation into CD34+ cells.


Blood ◽  
2003 ◽  
Vol 101 (5) ◽  
pp. 1759-1768 ◽  
Author(s):  
Bernhard Schiedlmeier ◽  
Hannes Klump ◽  
Elke Will ◽  
Gökhan Arman-Kalcek ◽  
Zhixiong Li ◽  
...  

Ectopic retroviral expression of homeobox B4 (HOXB4) causes an accelerated and enhanced regeneration of murine hematopoietic stem cells (HSCs) and is not known to compromise any program of lineage differentiation. However, HOXB4 expression levels for expansion of human stem cells have still to be established. To test the proposed hypothesis that HOXB4 could become a prime tool for in vivo expansion of genetically modified human HSCs, we retrovirally overexpressed HOXB4 in purified cord blood (CB) CD34+ cells together with green fluorescent protein (GFP) as a reporter protein, and evaluated the impact of ectopic HOXB4 expression on proliferation and differentiation in vitro and in vivo. When injected separately into nonobese diabetic–severe combined immunodeficient (NOD/SCID) mice or in competition with control vector–transduced cells, HOXB4-overexpressing cord blood CD34+ cells had a selective growth advantage in vivo, which resulted in a marked enhancement of the primitive CD34+ subpopulation (P = .01). However, high HOXB4 expression substantially impaired the myeloerythroid differentiation program, and this was reflected in a severe reduction of erythroid and myeloid progenitors in vitro (P < .03) and in vivo (P = .01). Furthermore, HOXB4 overexpression also significantly reduced B-cell output (P < .01). These results show for the first time unwanted side effects of ectopic HOXB4 expression and therefore underscore the need to carefully determine the therapeutic window of HOXB4 expression levels before initializing clinical trials.


Blood ◽  
2015 ◽  
Vol 125 (20) ◽  
pp. 3144-3152 ◽  
Author(s):  
Carolina Schinke ◽  
Orsolya Giricz ◽  
Weijuan Li ◽  
Aditi Shastri ◽  
Shanisha Gordon ◽  
...  

Key Points IL8-CXCR2 is overexpressed in purified stem cells from AML and MDS, and CXCR2 expression is associated with worse prognosis. Inhibition of CXCR2 by genetic and pharmacologic means leads to decreased viability in AML/MDS stem cells and in vitro and in vivo models.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2348-2348
Author(s):  
Hirotaka Kawano ◽  
Tomotoshi Marumoto ◽  
Michiyo Okada ◽  
Tomoko Inoue ◽  
Takenobu Nii ◽  
...  

Abstract Abstract 2348 Since the successful establishment of human embryonic stem cells (ESCs) in 1998, transplantation of functional cells differentiated from ESCs to the specific impaired organ has been expected to cure its defective function [Thomson JA et al., Science 282:1145–47, 1998]. For the establishment of the regenerative medicine using ESCs, the preclinical studies utilizing animal model systems including non-human primates are essential. We have demonstrated that non-human primate of common marmoset (CM) is a suitable experimental animal for the preclinical studies of hematopoietic stem cells (HSCs) therapy [Hibino H et al., Blood 93:2839–48, 1999]. Since then we have continuously investigated the in vitro and in vivo differentiation of CM ESCs to hematopoietic cells by the exogenous hematopoietic gene transfer. In earlier study, we showed that the induction of CD34+ cells having a blood colony forming capacity from CM ESCs is promoted by lentiviral transduction of TAL1 cDNA [Kurita R et al., Stem Cells 24:2014-22,2006]. However those CD34+ cells did not have a bone marrow reconstituting ability in irradiated NOG (NOD/Shi-scid/IL-2Rγnull) mice, suggesting that transduction of TAL1 gene is not enough to induce functional HSCs which have self-renewal capability and multipotency. Thus we tried to find other hematopoietic genes being able to promote hematopoietic differetiation more efficiently than TAL1. We selected 6 genes (LYL1, HOXB4, BMI1, GATA2, c-MYB and LMO2) as candidates for factors that induce the differentiation from ESCs to HSCs, based on the comparison of gene expression level between human ESCs and HSCs by Digital Differential Display from the Uni-Gene database at the NCBI web site (http://www.ncbi.nlm.nih.gov/UniGene/). Then, we transduced the respective candidate gene in CM ESCs (Cj11), and performed embryoid body (EB) formation assay to induce their differentiation to HSCs for 9 days. We found that lentiviral transduction of LYL1, a basic helix-loop-helix transcription factor, in EBs derived from Cj11, one of CM ESC lines, markedly increased the number of cells positive for CD34, a marker for hematopoietic stem/progenitors. The lymphoblastic leukemia 1 (LYL1) was originally identified as the factor of a chromosomal translocation, resulting in T cell acute lymphoblastic leukemia [Mellentin JD et al., Cell 58:77-83.1989]. These class II bHLH transcription factors regulate gene expression by binding to target gene sequences as heterodimers with E-proteins, in association with Gata1 and Gata2 [Goldfarb AN et al., Blood 85:465-71.1995][Hofmann T et al., Oncogene 13:617-24.1996][Hsu HL et al., Proc Natl Acad Sci USA 91:5947-51.1994]. The Lyl1-deficient mice display the reduction of B cells and impaired long-term hematopoietic reconstitution capacity [Capron C et al., Blood 107:4678-4686. 2006]. And, overexpression of Lyl1 in mouse bone marrow cells induced the increase of HSCs, HPCs and lymphocytes in vitro and in vivo [Lukov GL et al., Leuk Res 35:405-12. 2011]. These information indicate that LYL1 plays important roles in hematopoietic differentiation in primate animals including human and common marmoset. To examine whether overexpression of LYL1 in EBs can promote hematopoietic differentiation in vitro we performed colony-forming unit (CFU) assay, and found that LYL1-overexpressing EBs showed the formation of multi-lineage blood cells consisting of erythroid cells, granulocytes and macrophages. Next, we analyzed gene expression level by RT-PCR, and found that the transduction of LYL1 induced the expression of various hematopoietic genes. These results suggested that the overexpression of LYL1 can promote the differentiation of CM ESCs to HSCs in vitro. Furthermore we found that the combined overexpression of TAL1 and LYL1 could enhance the differentiation of CD34+ cells from CM ESCs than the respective overexrpession of TAL1 or LYL1. Collectively, our novel technology to differentiate hematopoietic cells from ESCs by the transduction of specific transcription factors is novel, and might be applicable to expand human hematopoietic stem/progenitor cells in vitro for future regenerative medicine to cure human hematopoietic cell dyscrasias. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1999-1999
Author(s):  
Annie L. Oh ◽  
Dolores Mahmud ◽  
Benedetta Nicolini ◽  
Nadim Mahmud ◽  
Elisa Bonetti ◽  
...  

Abstract Our previous studies have shown the ability of human CD34+ cells to stimulate T cell alloproliferative responses in-vitro. Here, we investigated anti-CD34 T cell alloreactivity in-vivo by co-transplanting human CD34+ cells and allogeneic T cells of an incompatible individual into NSG mice. Human CD34+ cells (2x105/animal) were transplanted with allogeneic T cells at different ratios ranging from 1:50 to 1:0.5, or without T cells as a control. No xenogeneic GVHD was detected at 1:1 CD34:T cell ratio. Engraftment of human CD45+ (huCD45+) cells in mice marrow and spleen was analyzed by flow cytometry. Marrow engraftment of huCD45+ cells at 4 or 8 weeks was significantly decreased in mice transplanted with T cells compared to control mice that did not receive T cells. More importantly, transplantation of T cells at CD34:T cell ratios from 1:50 to 1:0.5 resulted in stem cell rejection since >98% huCD45+ cells detected were CD3+. In mice with stem cell rejection, human T cells had a normal CD4:CD8 ratio and CD4+ cells were mostly CD45RA+. The kinetics of human cell engraftment in the bone marrow and spleen was then analyzed in mice transplanted with CD34+ and allogeneic T cells at 1:1 ratio and sacrificed at 1, 2, or 4 weeks. At 2 weeks post transplant, the bone marrow showed CD34-derived myeloid cells, whereas the spleen showed only allo-T cells. At 4 weeks, all myeloid cells had been rejected and only T cells were detected both in the bone marrow and spleen. Based on our previous in-vitro studies showing that T cell alloreactivity against CD34+ cells is mainly due to B7:CD28 costimulatory activation, we injected the mice with CTLA4-Ig (Abatacept, Bristol Myers Squibb, New York, NY) from d-1 to d+28 post transplantation of CD34+ and allogeneic T cells. Treatment of mice with CTLA4-Ig prevented rejection and allowed CD34+ cells to fully engraft the marrow of NSG mice at 4 weeks with an overall 13± 7% engraftment of huCD45+ marrow cells (n=5) which included: 53±9% CD33+ cells, 22±3% CD14+ monocytes, 7±2% CD1c myeloid dendritic cells, and 4±1% CD34+ cells, while CD19+ B cells were only 3±1% and CD3+ T cells were 0.5±1%. We hypothesize that CTLA4-Ig may induce the apoptotic deletion of alloreactive T cells early in the post transplant period although we could not detect T cells in the spleen as early as 7 or 10 days after transplant. Here we demonstrate that costimulatory blockade with CTLA4-Ig at the time of transplant of human CD34+ cells and incompatible allogeneic T cells can prevent T cell mediated rejection. We also show that the NSG model can be utilized to test immunotherapy strategies aimed at engrafting human stem cells across HLA barriers in-vivo. These results will prompt the design of future clinical trials of CD34+ cell transplantation for patients with severe non-malignant disorders, such as sickle cell anemia, thalassemia, immunodeficiencies or aplastic anemia. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1192-1192
Author(s):  
Hirotaka Kawano ◽  
Tomotoshi Marumoto ◽  
Takafumi Hiramoto ◽  
Michiyo Okada ◽  
Tomoko Inoue ◽  
...  

Abstract Hematopoietic stem cell (HSC) transplantation is the most successful cellular therapy for the malignant hematopoietic diseases such as leukemia, and early recovery of host’s hematopoiesis after HSC transplantation has eagerly been expected to reduce the regimen related toxicity for many years. For the establishment of the safer and more efficient cell source for allogeneic or autologous HSC transplantation, HSCs differentiated from embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) that show indefinite proliferation in an undifferentiated state and pluripotency, are considered to be one of the best candidates. Unfortunately, despite many recent efforts, the HSC-specific differentiation from ESCs and iPSCs remains poor [Kaufman, DS et al., 2001][Ledran MH et al., 2008]. In this study, we developed the new method to differentiate HSC from non-human primate ESC/iPSC. It has been reported that common marmoset (CM), a non-human primate, is a suitable experimental animal for the preclinical studies of HSC therapy [Hibino H et al., 1999]. We have been investigated the hematopoietic differentiation of CM ESCs into HSCs, and previously reported that the induction of CD34+ cells having a blood colony forming capacity from CM ESCs were promoted by lentiviral transduction of TAL1 cDNA [Kurita R et al., 2006]. However, those CD34+ cells did not have a bone marrow reconstituting ability in irradiated NOG (NOD/Shi-scid/IL-2Rγnull) mice, suggesting that transduction of TAL1 gene was not sufficient to induce functional HSCs which have self-renewal capability and multipotency. Thus, we tried to find other hematopoietic genes being able to promote hematopoietic differetiation more efficiently than TAL1. We selected 6 genes (LYL1, HOXB4, BMI1, GATA2, c-MYB and LMO2) as candidates for factors that induce the differentiation of ESCs into HSCs, based on the previous study of hematopoietic differentiation from human and mouse ESCs. And CM ESCs (Cj11) lentivirally transduced with the respective candidate gene were processed for embryoid body (EB) formation to induce their differentiation into HSCs for 9 days. We found that lentiviral transduction of LYL1 (lymphoblastic leukemia 1), a basic helix-loop-helix transcription factor, in EBs markedly increased the proportion of cells positive for CD34 (approximately 20% of LYL1-transduced cells). RT-PCR showed that LYL1-transduced EBs expressed various hematopoietic genes, such as TAL1, RUNX1 and c-KIT. To examine whether these CD34+ cells have the ability to differentiate into hematopoietic cells in vitro, we performed colony-forming unit (CFU) assay, and found that CD34+ cells in LYL1-transduced EBs could form multi-lineage blood colonies. Furthermore the number of blood colonies originated from CD34+CD45+ cells in LYL1-transduced EBs was almost the same as that from CD34+CD45+ cells derived from CM bone marrow. These results suggested that enforced expression of LYL1 in CM ESCs promoted the emergence of HSCs by EB formation in vitro. The LYL1 was originally identified as the factor of a chromosomal translocation, resulting in T cell acute lymphoblastic leukemia [Mellentin JD et al., 1989]. The Lyl1-deficient mice display the reduction of B cells and impaired long-term hematopoietic reconstitution capacity [Capron C et al., 2006]. And, transduction of Lyl1 in mouse bone marrow cells induced the increase of HSCs and lymphocytes in vitro and in vivo [Lukov GL et al., 2011]. Therefore we hypothesized that LYL1 may play essential roles in bone marrow reconstitution by HSCs differentiated from CM ESCs. To examine this, we transplanted CD34+ cells derived from LYL1-transduced CM ESCs into bone marrow of sublethally irradiated NOG mice, and found that about 7% of CD45+ cells derived from CM ESCs were detected in peripheral blood (PB) of recipient mice at 8 weeks after transplant (n=4). Although CM CD45+ cells disappeared at 12 weeks after transplant, CD34+ cells (about 3%) were still found in bone marrow at the same time point. Given that TAL1-transduced EBs derived from CM ESCs could not reconstitute bone marrow of irradiated mice at all, LYL1 rather than TAL1 might be a more appropriate transcription factor that can give rise to CD34+ HSCs having the enhanced capability of bone marrow reconstitution from CM ESCs. We are planning to do in vivo study to prove this hypothesis in CM. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 127 (23) ◽  
pp. 2867-2878 ◽  
Author(s):  
Hayley S. Ma ◽  
Sarah M. Greenblatt ◽  
Courtney M. Shirley ◽  
Amy S. Duffield ◽  
J. Kyle Bruner ◽  
...  

Key Points ATRA and FLT3 TKIs have synergistic activity against FLT3/ITD+ AML cell lines and patient samples. Combination reduces the leukemia stem cell population and improves survival in genetic and xenograft AML mouse models.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 516-516 ◽  
Author(s):  
Daniel Goff ◽  
Alice Shih ◽  
Angela Court Recart ◽  
Larisa Balaian ◽  
Ryan Chuang ◽  
...  

Abstract Abstract 516 Introduction: Several studies have demonstrated the role of leukemia stem cells (LSC) in the development and maintenance of human chronic myeloid leukemia (CML). These cells, which first develop in chronic phase CML (CP CML) with acquisition of the BCR-ABL fusion protein, are often quiescent and can be highly resistant to apoptosis induced by drugs and radiotherapy that target rapidly dividing cells. Data has also shown that CML LSC become increasingly resistant to BCR-ABL inhibition with progression to blast crisis CML (BC CML). Bcl-2 family proteins are key regulators of apoptosis and have been shown by numerous studies to regulate cancer resistance to chemotherapy. This family of proteins has also been implicated in the development of BC CML, however most studies have focused on CML cell lines and their expression of Bcl-2 family proteins in vitro. Thus, there is relatively little data on expression of Bcl-2 family proteins in primary CML LSC and on the role of these proteins in regulating chemotherapy resistance in CML LSC in vivo. As Bcl-2 family proteins are known regulators of chemotherapy resistance we hypothesized that human BC CML LSC may overexpress these proteins compared to normal hematopoietic stem cells. We analyzed Bcl-2 family mRNA and protein expression in CP CML and BC CML LSC and compared this expression to normal cord blood stem and progenitor cells. We also analyzed whether these cells were sensitive to chemotherapy treatment in vitro. Finally, we tested whether a high potency pan-Bcl-2 inhibitor, 97C1, could effectively kill CML LSC in vitro and in vivo. Methods: Bcl-2 and Mcl-1 protein expression was measured in primary CP CML, BC CML, and normal cord blood cells using intracellular FACS. We also measured Bcl-2, Mcl-1, Bcl-X, and Bfl-1 mRNA expression in FACS sorted CD34+CD38+lin− cells (LSC) from these samples. For all drug studies we used either serially transplanted CD34+ cells derived from primary BC CML patient samples or primary CD34+ normal cord blood cells. In vitro drug responses were tested by culturing CD34+ cells either alone or in co-culture with a mouse bone marrow stromal cell line (SL/M2). Effects on colony formation and replating were also tested by culturing sorted CD34+CD38+lin− cells in methylcellulose in the presence and absence of drug. For in vivo testing of 97C1 we transplanted neonatal RAG2-/-yc-/- mice with CD34+ cells from 3 different BC CML and cord blood samples. Transplanted mice were screened for peripheral blood engraftment at 6–8 weeks post-transplant and engrafted mice were then treated for 2 weeks with 97C1 by IP injection. Following the treatment period the mice were sacrificed and hemotapoietic organs were analyzed for human engraftment by FACS. Results: BC CML progenitors expressed higher levels of Bcl-2 and Mcl-1 protein compared to normal cord blood and chronic phase CML cells. mRNA expression of Mcl-1, Bcl-X, and Bfl-1 was also increased in BC CML progenitors compared to CP CML progenitors. While BC CML LSC cultured in vitro were resistant to etoposide and dasatinib-induced cell death, 97C1 treatment led to a dose-dependent increase in cell death along with a dose-dependent decrease in the frequency of CD34+CD38+lin− cells compared to vehicle treated controls. While cord blood progenitor cells were also sensitive to 97C1 treatment they had an IC50 around 10 times higher than that for the BC CML cells (100nM versus 10nM). Importantly, 97C1 treatment did not inhibit cord blood colony formation or colony replating in vitro. Mice transplanted with BC CML LSC developed CML in 6–8 weeks post-transplant with diffuse myeloid sarcomas and engraftment of human CD34+CD38+lin− cells in the peripheral blood, liver, spleen, and bone marrow. In vivo treatment with 97C1 led to a significant reduction in both total human engraftment and engraftment of CD34+CD38+lin− cells in all hematopoietic organs analyzed. Conclusion: Our results demonstrate that BC CML LSC are resistant to conventional chemotherapy but are sensitive to 97C1 in vitro and in vivo. Broad-spectrum inhibition of Bcl-2 family proteins may help to eliminate CML LSC while sparing normal hematopoietic stem and progenitor cells. Disclosures: Jamieson: CoronadoBiosciences: Research Funding; CIRM: Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 936-936
Author(s):  
Katharina Rothe ◽  
Artem Babaian ◽  
Naoto Nakamichi ◽  
Min Chen ◽  
Akie Watanabe ◽  
...  

Abstract Growing evidence indicates that interactions of cancer cells with their microenvironment in vivo can influence disease progression and therapy resistance, including chronic myeloid leukemia (CML). Focal adhesions that modulate cell attachments, migration, proliferation and intracellular signaling pathways are considered critical mediators of some of these interactions. However, the potential role of focal adhesion components in mediating survival and therapeutic responses of leukemic stem cells is largely unknown. Transcriptional profiling of CD34+ cells from 6 CML patients and 3 healthy donors revealed that the expression of Integrin-linked kinase (ILK), PINCH1 and β-Parvin, major constituents of focal adhesions, is significantly increased in CD34+ CML cells, in particular in cells from drug-nonresponders (p<0.05). Quantitative real-time PCR confirmed these observations in CD34+ cells obtained from additional 30 CML patients and 14 normal healthy adults (p<0.05). Furthermore, we found that the primitive leukemic stem-cell enriched Lin-CD34+CD38- portion from CML patients expressed the highest levels of ILK, PINCH1, and β-Parvin transcripts compared to the more prevalent Lin-CD34+CD38+ progenitor population or mature CD34-cells in the same samples (n=6, p<0.05). In addition, ILK protein expression was increased in primitive CML cells compared to normal donors, in particular when CML cells were co-cultured with BM niche cells. Stable knockdown (KD) of 3 different targeting sequences of ILK in CD34+ CML cells resulted in decreased cell viability (30-80%, p<0.05) and proliferation (2-12-fold) associated with a significantly enhanced frequency of apoptotic cells compared to control-transduced cells (60-80% vs. 30%, p<0.05). Interestingly, these effects of ILK KD were not rescued by co-cultures with BM niche cells in vitro. Cell cycle analysis indicated a reduction in the proportion of surviving cells in S-phase upon ILK suppression. In addition, Western blotting showed that effective suppression of ILK led also to a decrease in β-Parvin and PINCH1 protein expression but not their transcript levels, suggesting that the ILK-PINCH-PARVIN complex is not stable under these conditions and may not be able to mediate critical interactions between primitive CML cells and BM niche components. In agreement, short- and long-term assays of stem/progenitor activity in the presence of BM niche cells demonstrated a significant reduction of colonies upon ILK suppression that was almost entirely abolished with simultaneous ABL1 tyrosine kinase inhibitor (TKI) treatment (p<0.05). Moreover, in vivo studies with 2 different mouse strains (NRG and the humanized NRG-3GS model) emphasized that primitive ILK KD CML cells showed greatly reduced in vivo regenerative activity as compared to control-transduced cells (<2% vs. 13% human cells in the BM of NRG mice, and 3% vs. 18% in NRG-3GS mice 25 weeks post-transplantation). To investigate whether ILK can be targeted pharmacologically, we utilized QLT0267, a validated and selective ILK kinase inhibitor. Similarly to ILK suppression, inhibition of the ILK kinase resulted in a modest decrease of cell viability, reduced short-and long-term stem/progenitor activity, and increased apoptosis of bulk CD34+ as well as more primitive Lin-CD34+CD38- CML cells from drug-nonresponder patients with strong synergistic effects upon simultaneous ABL1 kinase inhibition in vitro. In addition, oral gavage of QLT0267 combined with dasatinib significantly enhanced survival of leukemic mice and eradicated infiltrated leukemic cells in multiple hematopoietic tissues in an aggressive NSG mouse model of BCR-ABL+human leukemia. Most interestingly, dual inhibition of ILK and BCR-ABL1 decreased the proportion of quiescent leukemic stem cells compared to single agent treatments. RNA sequencing of these cells indicated a deregulation of MYC and novel signaling targets, with differences between dividing and non-dividing cell subpopulations. In summary, genetic and pharmacological inhibition of ILK significantly impaired survival, proliferation and quiescence of drug-nonresponder CML stem cells and sensitized them to TKIs both in vitro and in vivo. These findings suggest that ILK plays a critical role in regulating CML stem cell activity and that targeting ILK and BCR-ABL1 simultaneously may offer an improved novel therapeutic strategy. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document