scholarly journals HUS and the case for complement

Blood ◽  
2015 ◽  
Vol 126 (18) ◽  
pp. 2085-2090 ◽  
Author(s):  
Edward M. Conway

Abstract Hemolytic-uremic syndrome (HUS) is a thrombotic microangiopathy that is characterized by microangiopathic hemolytic anemia, thrombocytopenia, and renal failure. Excess complement activation underlies atypical HUS and is evident in Shiga toxin–induced HUS (STEC-HUS). This Spotlight focuses on new knowledge of the role of Escherichia coli–derived toxins and polyphosphate in modulating complement and coagulation, and how they affect disease progression and response to treatment. Such new insights may impact on current and future choices of therapies for STEC-HUS.

2012 ◽  
Vol 56 (6) ◽  
pp. 3277-3282 ◽  
Author(s):  
Martina Bielaszewska ◽  
Evgeny A. Idelevich ◽  
Wenlan Zhang ◽  
Andreas Bauwens ◽  
Frieder Schaumburg ◽  
...  

ABSTRACTThe role of antibiotics in treatment of enterohemorrhagicEscherichia coli(EHEC) infections is controversial because of concerns about triggering hemolytic-uremic syndrome (HUS) by increasing Shiga toxin (Stx) production. During the recent large EHEC O104:H4 outbreak, antibiotic therapy was indicated for some patients. We tested a diverse panel of antibiotics to which the outbreak strain is susceptible to interrogate the effects of subinhibitory antibiotic concentrations on induction ofstx2-harboring bacteriophages,stx2transcription, and Stx2 production in this emerging pathogen. Ciprofloxacin significantly increasedstx2-harboring phage induction and Stx2 production in outbreak isolates (Pvalues of <0.001 to <0.05), while fosfomycin, gentamicin, and kanamycin insignificantly influenced them (P> 0.1) and chloramphenicol, meropenem, azithromycin, rifaximin, and tigecycline significantly decreased them (P≤ 0.05). Ciprofloxacin and chloramphenicol significantly upregulated and downregulatedstx2transcription, respectively (P< 0.01); the other antibiotics had insignificant effects (P> 0.1). Meropenem, azithromycin, and rifaximin, which were used for necessary therapeutic or prophylactic interventions during the EHEC O104:H4 outbreak, as well as tigecycline, neither inducedstx2-harboring phages nor increasedstx2transcription or Stx2 production in the outbreak strain. These antibiotics might represent therapeutic options for patients with EHEC O104:H4 infection if antibiotic treatment is inevitable. We await further analysis of the epidemic to determine if usage of these agents was associated with an altered risk of developing HUS.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Jacob H. Umscheid ◽  
Collin Nevil ◽  
Rhythm Vasudeva ◽  
Mohammed Farhan Ali ◽  
Nisha Agasthya

Hemolytic Uremic Syndrome (HUS) is a constellation of microangiopathic hemolytic anemia, thrombocytopenia, and acute renal failure. Shiga toxin-producing Escherichia coli- (STEC-) mediated HUS is a common cause of acute renal failure in children and can rarely result in severe neurological complications such as encephalopathy, seizures, cerebrovascular accidents, and coma. Current literature supports use of eculizumab, a monoclonal antibody that blocks complement activation, in atypical HUS (aHUS). However, those with neurologic complications from STEC-HUS have complement activation and deposition of aggregates in microvasculature and may be treated with eculizumab. In this case report, we describe a 3-year-old boy with diarrhea-positive STEC-HUS who developed severe neurologic involvement in addition to acute renal failure requiring renal replacement therapy. He was initiated on eculizumab therapy, with clinical improvement and organ recovery. This case highlights systemic complications of STEC-HUS in a pediatric patient. The current literature is limited but has suggested a role for complement mediation in cases with severe complications. We review the importance of early recognition of complications, use of eculizumab, and current data available.


2013 ◽  
Vol 62 (11) ◽  
pp. 1760-1762 ◽  
Author(s):  
Parameswaran Narayanan ◽  
Rashi S. Rustagi ◽  
Prabha Sivaprakasam ◽  
Mahadevan Subramanian ◽  
Sreejith Parameswaran ◽  
...  

Haemolytic uraemic syndrome (HUS) is a recognized complication of infection with Shiga toxin-producing Escherichia coli (STEC) and Shigella dysenteriae type 1. Infections with other micro-organisms, especially Streptococcus pneumoniae, have been cited as causes of HUS. In addition, influenza virus and other viruses may rarely be associated with this syndrome. A 2-year-old girl presented with severe Pseudomonas aeruginosa sepsis with renal failure and ecthyma gangrenosum. Further investigations revealed features of HUS. She was managed with antibiotics and other supportive measures including peritoneal dialysis, and subsequently made a full recovery. A possible role of neuraminidase in the pathogenesis of P. aeruginosa-associated HUS was proposed. This is the first reported case of P. aeruginosa sepsis leading to HUS.


2015 ◽  
Vol 4 (2) ◽  
Author(s):  
Laura Ercoli ◽  
Silvana Farneti ◽  
David Ranucci ◽  
Stefania Scuota ◽  
Raffaella Branciari

Shiga toxin-producing <em>Escherichia coli</em> (STEC) can cause severe clinical diseases in humans, such as haemorrhagic colitis (HC) and haemolytic-uremic syndrome (HUS). Although ruminants, primarily cattle, have been suggested as typical reservoirs of STEC, many food products of other origins, including pork products, have been confirmed as vehicles for STEC transmission. Only in rare cases, pork consumption is associated with severe clinical symptoms caused by high pathogenic STEC strains. However, in these outbreaks, it is unknown whether the contamination of food products occurs during swine processing or via cross-contamination from foodstuffs of different sources. In swine, STEC plays an important role in the pathogenesis of oedema disease. In particular a Shiga toxin subtype, named stx2e, it is considered as a key factor involved in the damage of swine endothelial cells. On the contrary, stx2e-producing <em>Escherichia coli</em> has rarely been isolated in humans, and usually only from asymptomatic carriers or from patients with mild symptoms, such as uncomplicated diarrhoea. In fact, the presence of gene stx2e, encoding for stx2e, has rarely been reported in STEC strains that cause HUS. Moreover, stx2e-producing STEC isolated from humans and pigs were found to differ in serogroup, their virulence profile and interaction with intestinal epithelial cells. Because of the limited epidemiologic data of STEC in swine and the increasing role of non-O157 STEC in human illnesses, the relationship between swine STEC and human disease needs to be further investigated.


2021 ◽  
Vol 27 (1) ◽  
pp. 90-95
Author(s):  
Bo Weber ◽  
Dominic Chan ◽  
Sandy Hammer

Shiga toxin–producing Escherichia coli hemolytic uremic syndrome (STEC-HUS) is the most common cause of acute renal failure in children, and it is associated with thrombocytopenia and hemolytic anemia. Although this disease primarily affects the kidney, it can also contribute to cellular damage in other organ systems, such as the CNS. Eculizumab is a monoclonal antibody that binds to complement proteins to prevent complement-mediated intravascular hemolysis in atypical HUS. In STEC-HUS, complement activation also occurs by Shiga toxin, and previous cases of eculizumab use in the setting of neurological involvement have been shown to be successful. We report the successful use of eculizumab in the setting of typical STEC-HUS–induced neurological symptoms including seizure, altered mental status, and left arm weakness. The patient also experienced concomitant renal failure requiring dose adjustment for hemodialysis. Following 2 doses of eculizumab, our patient was discharged to an inpatient rehabilitation facility with resolution of her renal injury, seizures, and altered mentation without adverse effects from eculizumab throughout the admission. Based on our case study, it appears that eculizumab may be given during or between hemodialysis without dose adjustment.


Blood ◽  
2011 ◽  
Vol 117 (20) ◽  
pp. 5503-5513 ◽  
Author(s):  
Anne-lie Ståhl ◽  
Lisa Sartz ◽  
Diana Karpman

AbstractHemolytic uremic syndrome (HUS) is commonly associated with Shiga toxin (Stx)–producing Escherichia coli O157:H7 infection. This study examined patient samples for complement activation on leukocyte-platelet complexes and microparticles, as well as donor samples for Stx and lipopolysaccharide (O157LPS)–induced complement activation on platelet-leukocyte complexes and microparticles. Results, analyzed by flow cytometry, showed that whole blood from a child with HUS had surface-bound C3 on 30% of platelet-monocyte complexes compared with 14% after recovery and 12% in pediatric controls. Plasma samples from 12 HUS patients were analyzed for the presence of microparticles derived from platelets, monocytes, and neutrophils. Acute-phase samples exhibited high levels of platelet microparticles and, to a lesser extent, monocyte microparticles, both bearing C3 and C9. Levels decreased significantly at recovery. Stx or O157LPS incubated with donor whole blood increased the population of platelet-monocyte and platelet-neutrophil complexes with surface-bound C3 and C9, an effect enhanced by costimulation with Stx and O157LPS. Both Stx and O157LPS induced the release of C3- and C9-bearing microparticles from platelets and monocytes. Released microparticles were phagocytosed by neutrophils. The presence of complement on platelet-leukocyte complexes and microparticles derived from these cells suggests a role in the inflammatory and thrombogenic events that occur during HUS.


2019 ◽  
Vol 7 (9) ◽  
pp. 276 ◽  
Author(s):  
Miriam Silva ◽  
Anna Santos ◽  
Leticia Rocha ◽  
Bruna Caetano ◽  
Thais Mitsunari ◽  
...  

Shiga toxin (Stx)–producing Escherichia coli (STEC) and its subgroup enterohemorrhagic E. coli are important pathogens involved in diarrhea, which may be complicated by hemorrhagic colitis and hemolytic uremic syndrome, the leading cause of acute renal failure in children. Early diagnosis is essential for clinical management, as an antibiotic treatment in STEC infections is not recommended. Previously obtained antibodies against Stx1 and Stx2 toxins were employed to evaluate the sensitivity and specificity of the latex Agglutination test (LAT), lateral flow assay (LFA), and capture ELISA (cEIA) for STEC detection. The LAT (mAb Stx1 plus mAb stx2) showed 99% sensitivity and 97% specificity. Individually, Stx1 antibodies showed 95.5% and 94% sensitivity and a specificity of 97% and 99% in the cEIA and LFA assay, respectively. Stx2 antibodies showed a sensitivity of 92% in both assays and a specificity of 100% and 98% in the cEIA and LFA assay, respectively. These results allow us to conclude that we have robust tools for the diagnosis of STEC infections.


Blood ◽  
2013 ◽  
Vol 122 (5) ◽  
pp. 803-806 ◽  
Author(s):  
Benjamin C. Lee ◽  
Chad L. Mayer ◽  
Caitlin S. Leibowitz ◽  
D. J. Stearns-Kurosawa ◽  
Shinichiro Kurosawa

Key Points Complement activation is not required for development of thrombotic microangiopathy and HUS induced by EHEC Shiga toxins in nonhuman primates. Complement is an important defense mechanism, and benefits or risks of therapeutic inhibition should be studied further for this infection.


2021 ◽  
Vol 8 ◽  
pp. 205435812110087
Author(s):  
Philip A. McFarlane ◽  
Martin Bitzan ◽  
Catherine Broome ◽  
Dana Baran ◽  
Jocelyn Garland ◽  
...  

Purpose of review: Thrombotic microangiopathy (TMA) is suspected in patients presenting with thrombocytopenia and evidence of a microangiopathic hemolytic anemia. Patients with TMA can be critically ill, so rapid and accurate identification of the underlying etiology is essential. Due to better insights into pathophysiology and causes of TMA, we can now categorize TMAs as thrombotic thrombocytopenic purpura, postinfectious (mainly Shiga toxin-producing Escherichia coli–induced) hemolytic uremic syndrome (HUS), TMA associated with a coexisting condition, or atypical HUS (aHUS). We recognized an unmet need in the medical community to guide the timely and accurate identification of TMA, the selection of tests to clarify its etiology, and the sequence of steps to initiate treatment. Sources of information: Key published studies relevant to the identification, classification, and treatment of TMAs in children or adults. These studies were obtained through literature searches conducted with PubMed or based on the prior knowledge of the authors. Methods: This review is the result of a consultation process that reflects the consensus of experts from Canada, the United States, and the United Arab Emirates. The members represent individuals who are clinicians, researchers, and teachers in pediatric and adult medicine from the fields of hematology, nephrology, and laboratory medicine. Authors, through an iterative review process identified and synthesized information from relevant published studies. Key findings: Thrombotic thrombocytopenic purpura occurs in the setting of insufficient activity of the von Willebrand factor protease known as ADAMTS13. Shiga toxin-producing Escherichia coli–induced hemolytic uremic syndrome, also known as “typical” HUS, is caused by gastrointestinal infections with bacteria that produce Shiga toxin (initially called verocytotoxin). A variety of clinical conditions or drug exposures can trigger TMA. Finally, aHUS occurs in the setting of inherited or acquired abnormalities in the alternative complement pathway leading to dysregulated complement activation, often following a triggering event such as an infection. It is possible to break the process of etiological diagnosis of TMA into 2 distinct steps. The first covers the initial presentation and diagnostic workup, including the processes of identifying the presence of TMA, appropriate initial tests and referrals, and empiric treatments when appropriate. The second step involves confirming the etiological diagnosis and moving to definitive treatment. For many forms of TMA, the ultimate response to therapies and the outcome of the patient depends on the rapid and accurate identification of the presence of TMA and then a standardized approach to seeking the etiological diagnosis. We present a structured approach to identifying the presence of TMA and steps to identifying the etiology including standardized lab panels. We emphasize the importance of early consultation with appropriate specialists in hematology and nephrology, as well as identification of whether the patient requires plasma exchange. Clinicians should consider appropriate empiric therapies while following the steps we have recommended toward definitive etiologic diagnosis and management of the TMA. Limitations: The evidence base for our recommendations consists of small clinical studies, case reports, and case series. They are generally not controlled or randomized and do not lend themselves to a stricter guideline-based methodology or a Grading of Recommendations Assessment, Development and Evaluation (GRADE)-based approach.


Sign in / Sign up

Export Citation Format

Share Document