scholarly journals Enhanced thrombopoietin but not G-CSF receptor stimulation induces self-renewing hematopoietic stem cell divisions in vivo

Blood ◽  
2016 ◽  
Vol 127 (25) ◽  
pp. 3175-3179 ◽  
Author(s):  
Larisa V. Kovtonyuk ◽  
Markus G. Manz ◽  
Hitoshi Takizawa

Key Points Mpl agonist, but not granulocyte colony-stimulating factor, induces self-renewing HSC divisions and expansions.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4815-4815
Author(s):  
Haruko Tashiro ◽  
Ryosuke Shirasaki ◽  
Yoko Oka ◽  
Tadashi Yamamoto ◽  
Nobu Akiyama ◽  
...  

Abstract Abstract 4815 Background and Aims: We reported that acute myelogenous leukemia blasts and chronic myelogenous leukemia cells converted to stromal myofibroblasts to create an environment for the proliferation of leukemic cells in vitro and also in a non-obese diabetes/ severe combined immunodeficiency (NOD/SCID) murine bone-marrow in vivo. In normal hematopoiesis, hematopoietic stem cell (HSC) and stromal immature mesenchymal stem cell (MSC) are speculated to have a cross-talk, and some reports indicate that the HSC generates MSC, and also a specific fraction of MSC shares similar molecular expressions to that of HSC. We made a hypothesis that HSC might be generated from MSC. To make clear this issue, expression cloning was performed to isolate a molecule that stimulated bone-marrow stromal myofibroblasts to express hematopoietic stem cell marker, CD34. And, we also observed the effect of the isolated molecule to an adult human dermal fibroblast (HDF). Materials and Methods: cDNA-expression library was constructed using PHA-P-stimulated normal human blood lymphocytes, and the prepared plasmids were transfected to COS7 cells. After 3 days of culture, supernatants were added to the normal human bone-marrow-derived myofibroblasts (final 10%), and cells were further cultured for one week. RNA was extracted from the cultured myofibroblasts, and cDNA was synthesized. Positive clones were selected on CD34-expression with reverse transcription-polymerase chain reaction, and a single clone was isolated. The purified protein from the isolated single clone was added to HDF-culture, and the morphological changes and the expression of specific hematopoiesis-related proteins were analyzed. Results and Discussion: Isolated single clone was human interleukin 1β (IL-1β). When the purified IL-1β protein was added to the bone-marrow-derived myofibroblast cultures, cell growth was increased, and up-regulation of the expression of several hematopoietic specific proteins, including cytokine receptors and transcription factor SCL, was observed. Based on these observations, we determined the effect of IL-1β to HDF. When HDFs were cultured with human IL-1β for 3 weeks, the expression of granulocyte colony-stimulating factor (G-CSF)-receptor, and SCL was increased. When these IL-1β-stimulated cells were cultured in a non-coated dish, cells were floating, and budding of the cells was also observed. When HDF were cultured with IL-1β for 3 weeks, and then G-CSF and erythropoietin were added to the cultures, expression of transcription factor GATA-1 and CEBPA was significantly increased after one week. These observations indicate that IL-1β can stimulate to induce HDF toward hematopoietic cells. Now we determine the precise actions of human IL-1β to HDF using NOD/SCID transplantation model in vivo. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1991 ◽  
Vol 78 (8) ◽  
pp. 1954-1962 ◽  
Author(s):  
TR Ulich ◽  
J del Castillo ◽  
IK McNiece ◽  
ES Yi ◽  
CP Alzona ◽  
...  

Abstract Recombinant rat stem cell factor (rrSCF) and recombinant human granulocyte colony-stimulating factor (G-CSF) coinjected for 1 week in rats cause a synergistic increase in mature marrow neutrophils accompanied by a striking decrease in erythroid and lymphoid marrow elements. The spleens of the same rats show increased granulopoiesis as well as increased erythropoiesis as compared with the spleens of rats treated with either growth factor alone. Splenic extramedullary erythropoiesis may act to compensate for the decrease in marrow erythropoiesis. The coinjection of rrSCF and G-CSF causes an increase in marrow mast cells at the end of 1 week, but the increase is much less than in rrSCF-alone-treated rats. The combination of rrSCF and G- CSF increases the rate of release of marrow neutrophils into the circulation and causes a dramatic synergistic peripheral neutrophilia, beginning especially after 4 days of treatment. Colony-forming assays of all experimental groups showed a synergistic increase in colony- forming unit granulocyte-macrophage (CFU-GM) in the marrow, but not in peripheral blood, after coincubation with SCF plus granulocyte- macrophage CSF (GM-CSF) as opposed to GM-CSF alone, showing anatomic compartmentalization between a more primitive marrow CFU-GM subset and a more mature peripheral blood CFU-GM subset. In vivo daily administration of SCF plus GM-CSF results in a synergistic increase in marrow neutrophils, but not the striking synergistic increase in circulating neutrophils that is observed with SCF plus G-CSF.


Blood ◽  
1990 ◽  
Vol 75 (10) ◽  
pp. 1951-1959 ◽  
Author(s):  
AR Migliaccio ◽  
G Migliaccio ◽  
DC Dale ◽  
WP Hammond

Abstract The number and growth factor requirements of committed progenitor cells (colony-forming units-granulocyte/macrophage and burst-forming units- erythroid) in three patients with cyclic neutropenia (two congenital, one acquired) were studied before and during therapy with recombinant human granulocyte colony-stimulating factor (G-CSF; 3 to 10 micrograms/kg/d). When the patients with congenital disease were treated with G-CSF, the cycling of blood cells persisted, but the cycle length was shortened from 21 days to 14 days, and the amplitude of variations in blood counts increased. There was a parallel shortening of the cycle and increase of the amplitude of variations (from two- to three-fold to 10- to 100-fold) in the number of both types of circulating progenitor cells in these two patients. In the patient with acquired cyclic neutropenia, cycling of both blood cells and progenitors could not be seen. In cultures deprived of fetal bovine serum, erythroid and myeloid bone marrow progenitor cells from untreated patients and from normals differed in growth factor responsiveness. As examples, maximal growth of granulocyte/macrophage (GM) colonies was induced by granulocyte/macrophage (GM)-CSF plus G-CSF in the patients, whereas a combination of GM-CSF, G-CSF and interleukin- 3 (IL-3) was required in the normals, and erythropoietin alone induced fourfold more erythroid bursts from cyclic neutropenic patients than from normal donors (46% versus 11% of the maximal colony number, respectively). The growth factor responsiveness of marrow progenitor cells slightly changed during the treatment toward the values observed with normal progenitors. These results indicate that treatment with G- CSF not only ameliorated the neutropenia, but also increased the amplitude and the frequency of oscillation of circulating progenitor cell numbers. These data are consistent with the hypothesis that G-CSF therapy affects the proliferation of the hematopoietic stem cell.


Blood ◽  
1994 ◽  
Vol 84 (5) ◽  
pp. 1482-1491 ◽  
Author(s):  
DM Bodine ◽  
NE Seidel ◽  
MS Gale ◽  
AW Nienhuis ◽  
D Orlic

Abstract Cytokine-mobilized peripheral blood cells have been shown to participate in hematopoietic recovery after bone marrow (BM) transplantation, and are proposed to be useful targets for retrovirus- mediated gene transfer protocols. We treated mice with granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF) to mobilize hematopoietic progenitor cells into the peripheral blood. These cells were analyzed for the number and frequency of pluripotent hematopoietic stem cells (PHSC). We found that splenectomized animals treated for 5 days with G-CSF and SCF showed a threefold increase in the absolute number of PHSC over normal mice. The number of peripheral- blood PHSC increased 250-fold from 29 per untreated mouse to 7,200 in peripheral-blood PHSC in splenectomized animals treated for 5 days with G-CSF and SCF. Peripheral blood PHSC mobilized by treatment with G-CSF and SCF were analyzed for their ability to be transduced by retroviral vectors. Peripheral-blood PHSC from splenectomized animals G-CSF and SCF were transduced with a recombinant retrovirus containing the human MDR-1 gene. The frequency of gene transfer into peripheral blood PHSC from animals treated for 5 and 7 days was two-fold and threefold higher than gene transfer into PHSC from the BM of 5-fluorouracil-treated mice (P < .01). We conclude that peripheral blood stem cells mobilized by treatment with G-CSF and SCF are excellent targets for retrovirus- mediated gene transfer.


Blood ◽  
1993 ◽  
Vol 82 (6) ◽  
pp. 1720-1723 ◽  
Author(s):  
RA Briddell ◽  
CA Hartley ◽  
KA Smith ◽  
IK McNiece

Abstract Splenectomized mice treated for 7 days with pegylated recombinant rat stem cell factor (rrSCF-PEG) showed a dose-dependent increase in peripheral blood progenitor cells (PBPC) that have enhanced in vivo repopulating potential. A dose of rrSCF-PEG at 25 micrograms/kg/d for 7 days produced no significant increase in PBPC. However, when this dose of rrSCF-PEG was combined with an optimal dose of recombinant human granulocyte colony-stimulating factor (rhG-CSF; 200 micrograms/kg/d), a synergistic increase in PBPC was observed. Compared with treatment with rhG-CSF alone, the combination of rrSCF-PEG plus rhG-CSF resulted in a synergistic increase in peripheral white blood cells, in the incidence and absolute numbers of PBPC, and in the incidence and absolute numbers of circulating cells with in vivo repopulating potential. These data suggest that low doses of SCF, which would have minimal, if any, effects in vivo, can synergize with optimal doses of rhG-CSF to enhance the mobilization of PBPC stimulated by rhG-CSF alone.


Sign in / Sign up

Export Citation Format

Share Document