scholarly journals Bone marrow–specific loss of ABI1 induces myeloproliferative neoplasm with features resembling human myelofibrosis

Blood ◽  
2018 ◽  
Vol 132 (19) ◽  
pp. 2053-2066 ◽  
Author(s):  
Anna Chorzalska ◽  
John Morgan ◽  
Nagib Ahsan ◽  
Diana O. Treaba ◽  
Adam J. Olszewski ◽  
...  

Abstract Although the pathogenesis of primary myelofibrosis (PMF) and other myeloproliferative neoplasms (MPNs) is linked to constitutive activation of the JAK-STAT pathway, JAK inhibitors have neither curative nor MPN-stem cell-eradicating potential, indicating that other targetable mechanisms are contributing to the pathophysiology of MPNs. We previously demonstrated that Abelson interactor 1 (Abi-1), a negative regulator of Abelson kinase 1, functions as a tumor suppressor. Here we present data showing that bone marrow-specific deletion of Abi1 in a novel mouse model leads to development of an MPN-like phenotype resembling human PMF. Abi1 loss resulted in a significant increase in the activity of the Src family kinases (SFKs), STAT3, and NF-κB signaling. We also observed impairment of hematopoietic stem cell self-renewal and fitness, as evidenced in noncompetitive and competitive bone marrow transplant experiments. CD34+ hematopoietic progenitors and granulocytes from patients with PMF showed decreased levels of ABI1 transcript as well as increased activity of SFKs, STAT3, and NF-κB. In aggregate, our data link the loss of Abi-1 function to hyperactive SFKs/STAT3/NF-κB signaling and suggest that this signaling axis may represent a regulatory module involved in the molecular pathophysiology of PMF.

Biomolecules ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 122
Author(s):  
Mariarita Spampinato ◽  
Cesarina Giallongo ◽  
Alessandra Romano ◽  
Lucia Longhitano ◽  
Enrico La Spina ◽  
...  

Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by hematopoietic stem-cell-derived clonal proliferation, leading to bone marrow (BM) fibrosis. Hematopoiesis alterations are closely associated with modifications of the BM microenvironment, characterized by defective interactions between vascular and endosteal niches. As such, neoangiogenesis, megakaryocytes hyperplasia and extensive bone marrow fibrosis, followed by osteosclerosis and bone damage, are the most relevant consequences of PMF. Moreover, bone tissue deposition, together with progressive fibrosis, represents crucial mechanisms of disabilities in patients. Although the underlying mechanisms of bone damage observed in PMF are still unclear, the involvement of cytokines, growth factors and bone marrow microenvironment resident cells have been linked to disease progression. Herein, we focused on the role of megakaryocytes and their alterations, associated with cytokines and chemokines release, in modulating functions of most of the bone marrow cell populations and in creating a complex network where impaired signaling strongly contributes to progression and disabilities.


Antioxidants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1037
Author(s):  
Alessandro Allegra ◽  
Giovanni Pioggia ◽  
Alessandro Tonacci ◽  
Marco Casciaro ◽  
Caterina Musolino ◽  
...  

Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) have recently been revealed to be related to chronic inflammation, oxidative stress, and the accumulation of reactive oxygen species. It has been proposed that MPNs represent a human inflammation model for tumor advancement, in which long-lasting inflammation serves as the driving element from early tumor stage (over polycythemia vera) to the later myelofibrotic cancer stage. It has been theorized that the starting event for acquired stem cell alteration may occur after a chronic inflammation stimulus with consequent myelopoietic drive, producing a genetic stem cell insult. When this occurs, the clone itself constantly produces inflammatory components in the bone marrow; these elements further cause clonal expansion. In BCR–ABL1-negative MPNs, the driver mutations include JAK 2, MPL, and CALR. Transcriptomic studies of hematopoietic stem cells from subjects with driver mutations have demonstrated the upregulation of inflammation-related genes capable of provoking the development of an inflammatory state. The possibility of acting on the inflammatory state as a therapeutic approach in MPNs appears promising, in which an intervention operating on the pathways that control the synthesis of cytokines and oxidative stress could be effective in reducing the possibility of leukemic progression and onset of complications.


Blood ◽  
2010 ◽  
Vol 116 (9) ◽  
pp. 1528-1538 ◽  
Author(s):  
Juan Li ◽  
Dominik Spensberger ◽  
Jong Sook Ahn ◽  
Shubha Anand ◽  
Philip A. Beer ◽  
...  

The JAK2 V617F mutation is found in most patients with a myeloproliferative neoplasm and is sufficient to produce a myeloproliferative phenotype in murine retroviral transplantation or transgenic models. However, several lines of evidence suggest that disease phenotype is influenced by the level of mutant JAK2 signaling, and we have therefore generated a conditional knock-in mouse in which a human JAK2 V617F is expressed under the control of the mouse Jak2 locus. Human and murine Jak2 transcripts are expressed at similar levels, and mice develop modest increases in hemoglobin and platelet levels reminiscent of human JAK2 V617F–positive essential thrombocythemia. The phenotype is transplantable and accompanied by increased terminal erythroid and megakaryocyte differentiation together with increased numbers of clonogenic progenitors, including erythropoietin-independent erythroid colonies. Unexpectedly, JAK2V617F mice develop reduced numbers of lineage−Sca-1+c-Kit+ cells, which exhibit increased DNA damage, reduced apoptosis, and reduced cell cycling. Moreover, competitive bone marrow transplantation studies demonstrated impaired hematopoietic stem cell function in JAK2V617F mice. These results suggest that the chronicity of human myeloproliferative neoplasms may reflect a balance between impaired hematopoietic stem cell function and the accumulation of additional mutations.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2193-2193
Author(s):  
Munir Shahjahan ◽  
Jorge Alamo ◽  
Sergio Giralt ◽  
Michelle Detry ◽  
Mark Munsell ◽  
...  

Abstract Allogeneic HSCT has the potential to cure patients with AML or MDS, but is associated with significant morbidity and complications that can affect the QOL of survivors. We examined QOL of AML/MDS patients surviving 2 years or more in remission after allo HSCT, including physical, psychosocial and functional well being. OBJECTIVES: We seek to describe QOL of long-term survivors (LTS) with AML/MDS and to compare QOL as a function of age at transplant. METHODS: Long-term survivorship was defined as survival in remission beyond 2 years from HSCT; 2 years was chosen given the stabilization of the failure rate on the 3rd year after HSCT. There were 544 adult AML/MDS patients treated with allogeneic HSCT between January 1976 and September 2001. Of these, 129 (24%) were in remission for at least 2 years and were eligible for the study. QOL was assessed using the standardized Functional Assessment of Cancer Therapy-BMT (FACT-BMT) questionnaire that measures multidimensional QOL concepts and consists of 5 subscales measuring physical (PWB), functional (FWB), social/family (SFWB), and emotional well being (EWB), including satisfaction with the doctor-patient relationship (RWD) (McQuellon et al., Bone Marrow Transplant, 1997). There was an additional concern (AC) subscale that asked questions related to job, appetite, body appearance, tiredness, interest in sexual activity etc. FACT-BMT allowed for responses to have values ranging from 0 (not at all) to 4 (very much). Specified QOL questions were recorded so that higher score reflected a higher QOL in the reported dimension. The questionnaire was mailed, and delivery could be confirmed for 121 patients out of whom 82 (68%) responded. Demographic and clinical characteristics were collected from patient charts and clinical database. RESULTS: Median age at transplant was 38.44 years (range 18.54–68.08). Median time from HSCT to receipt of questionnaire was 4.53 years. Gender: 47 males and 35 females. Diagnosis: AML (n=70) and MDS (n=12). Conditioning regimens were of reduced intensity in 29 cases and myeloablative in 53 cases. Stem cell source: bone marrow (n=52), and peripheral blood (n=30). GVHD prophylaxis: tacrolimus based in 61 cases and cyclosporine based in 18 cases; none in 2 cases. Disease status at HSCT: complete remission (n=40), relapsed (n= 37) and untreated disease (n=5). Median follow-up time was 4.53 years (range 2.0–21.1 yrs). There were no significant differences in QOL scores between the older and younger patients (above and below the median age at transplant) in the PWB, SFWB, EWB, FWB and RWD subscales. In the AC subscale, however, older patients had higher QOL scores than younger patients (mean score 37.97 vs. 33.25, p=0.005). When we compared non-myeloablative (NMA) vs. myeloablative (MA) regimens, there were no significant differences in mean QOL scores in all but the AC subscale where NMA group did better (39.00 vs. 33.34, p=0.001). Acute graft versus host disease (aGVHD) did not impact long-term QOL but lack of chronic GVHD was associated with better QOL score in the PWB, EWB, FWB and AC subscales (PWB: 25.04 vs. 20.62, p=0.005; EWB: 21.77 vs. 18.98, p=0.003; FWB: 22.91 vs. 18.00, p=0.008; and AC: 40.00 vs. 34.28, p=0.002). CONCLUSIONS: Among LTS with AML/MDS, older age did not affect QOL at a median of 4.5 yrs post HSCT.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3106-3106
Author(s):  
Pietro Sodani ◽  
Buket Erer ◽  
Javid Gaziev ◽  
Paola Polchi ◽  
Andrea Roveda ◽  
...  

Abstract Approximately 60% of thalassemic patients can not apply to “gene therapy today” which the insertion of one allogenic HLA identical stem cell into the empty bone marrow as the vector of the normal gene for beta globin chain synthesis. We studied the use of the haploidentical mother as the donor of hematopoietic stem cells assuming that the immuno-tollerance established during the pregnancy will help to bypass the HLA disparity and allow the hemopoietic allogeneic reconstitution in the thalassemic recipient of the transplant. We have employed a new preparative regimen for the transplant in fourteen thalassemic children aged 3 to 12 years (median age 5 years) using T cell depleted peripheral blood stem cell (PBSCTs) plus bone marrow (BM) stem cells. All patients received hydroxyurea (OHU) 60 mg/kg and azathioprine 3 mg/kg from day -59 until day-11, fludarabine (FLU) 30 mg/m 2 from day -17 to day -11, busulphan (BU) 14 mg/kg starting on day -10, and cyclophosphamide(CY) 200mg/kg, Thiotepa 10 mg/kg and ATG Sangstat 2.5 mg/kg, followed by a CD34 + t cell depleted (CliniMacs system), granulocyte colony stimulating factor (G-csf) mobilized PBSC from their HLA haploidentical mother. The purity of CD34+ cells after MACS sorting was 98–99%, the average number of transplanted CD34+ cells was 15, 4 x 10 6/kg and the average number of infused T lymphocytes from BM was 1,8 x 10 5/Kg.The patients received cyclosporin after transplant for graft versus host disease(GVHD) prophylaxis during the first two months after the bone marrow transplantation. Results. Thirteen patients are alive. Four patients rejected the transplant and are alive with thalassemia One patients died six months after bone marrow transplant for central nervous system diffuse large B cell lymphoma EBV related. Nine patients are alive disease free with a median follow up of 30 months (range12–47). None of the seven patients showed AGVHD and CGVHD. This preliminary study suggest that the transplantation of megadose of haploidentical CD34+ cell from the mother is a realistic therapeutic option for those thalassemic patients without genotipically or phenotipically HLA identical donor.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. SCI-20-SCI-20
Author(s):  
Margaret A. Goodell

Bone marrow failure (BMF), the inability to regenerate the differentiated cells of the blood, has a number of genetic and environmental etiologies, such as mutation of telomere-associated protein genes and immune-related aplastic anemia. Recently, mutations in DNA methyltransferase 3A (DNMT3A) have been found to be associated with approximately 15% of cases of primary myelofibrosis (MF), which can be a cause of BMF. The role of DNMT3A more broadly in hematopoiesis, and specifically in BMF, is currently poorly understood. DNMT3A is one of two de novo DNA methylation enzymes important in developmental fate choice. We showed that Dnmt3a is critical for normal murine hematopoiesis, as hematopoietic stem cells (HSCs) from Dnmt3a knockout (KO) mice displayed greatly diminished differentiation potential while their self-renewal ability was markedly increased1, in effect, leading to failure of blood regeneration or BMF. Combined with loss of Dnmt3b, HSCs exhibited a profound differentiation block, mediated in part by an increase of stabilized b-catenin. While we did not initially observe bone marrow pathology or malignancy development in mice transplanted with Dnmt3a KO HSCs, when we aged a large cohort of mice, all mice succumbed to hematologic disease within about 400 days. Roughly one-third of mice developed frank leukemia (acute lymphocytic leukemia or acute myeloid leukemia), one-third developed MDS, and the remainder developed primary myelofibrosis or chronic myelomonocytic leukemia. The pathological characteristics of the mice broadly mirror those of patients, suggesting the Dnmt3a KO mice can serve as a model for human DNMT3A-mutation associated disease. Strikingly, bone marrow of mice with different disease types exhibit distinct DNA methylation features. These will findings and the implications for disease development will be discussed. We are currently investigating the factors that drive different outcomes in the mice, including stressors such as exposure to interferons. We have hypothesized that HSC proliferation accelerates the Dnnmt3a-associated disease phenotypes. We have previously shown that interferons directly impinge on HSCs in the context of infections. Interferons activate HSCs to divide, generating differentiated progeny and cycling HSCs. Repeated interferon stimulation may permanently impair HSC function and bias stem cell output. When combined with loss of Dnmt3a, interferons may promote BMF. We will discuss broadly how external factors such as aging and infection may collaborate with specific genetic determinants to affect long-term hematopoiesis and malignancy development. Reference: Challen GA, Sun D, Jeong M, et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet 2012; 44: 23-31 Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


MD-Onco ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 61-65
Author(s):  
Yu. E. Ryabukhina ◽  
P. A. Zeynalova ◽  
O. I. Timofeeva ◽  
F. M. Abbasbeyli ◽  
T. V. Ponomarev ◽  
...  

Chronic myeloproliferative neoplasms (CMPN), Ph-negative, are of clonal nature, develop on the level of hematopoietic stem cell and are characterized by proliferation of one or more hematopoietic pathways. Currently, the group of Ph-negative CMPN includes essential thrombocythemia, primary myelofibrosis, polycythemia vera, myeloproliferative neoplasm unclassifiable.Identification of mutations in the Jak2 (V617F), CALR, and MPL genes extended understanding of biological features of Ph-negative CMPN and improved differential diagnosis of myeloid neoplasms. Nonetheless, clinical practice still encounters difficulties in clear separation between such disorders as primary myelofibrosis, early-stage and transformation of essential thrombocythemia into myelofibrosis with high thrombocytosis. Thrombocytosis is one of the main risk factors for thromboembolic complications, especially in elderly people.A clinical case of an elderly patient with fracture of the left femur developed in the context of Ph-negative CMPN (myelofibrosis) with high level of thrombocytosis is presented which in combination with enforced long-term immobilization and presence of additional risk created danger of thrombosis and hemorrhage during surgery and in the postoperative period.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1462-1462
Author(s):  
Lindsay Meg Gurska ◽  
Rachel Okabe ◽  
Meng Maxine Tong ◽  
Daniel Choi ◽  
Kristina Ames ◽  
...  

Abstract The Philadelphia-chromosome negative myeloproliferative neoplasms (MPNs), including polycythemia vera (PV), essential thrombocytosis (ET), and primary myelofibrosis (PMF), are clonal hematopoietic stem cell disorders characterized by the proliferation of one or more myeloid lineage compartments. Activation of JAK/STAT signaling is a major driver of all Ph-negative MPNs. During disease progression, MPN patients experience increased pro-inflammatory cytokine secretion, leading to remodeling of the bone marrow microenvironment and subsequent fibrosis. The JAK inhibitor ruxolitinib is an approved targeted therapy for MPN patients and has shown promise in its ability to reduce splenomegaly and the cytokine storm observed in patients. However, JAK inhibitors alone are not sufficient to reduce bone marrow fibrosis or to eliminate the JAK2-mutated clone. Furthermore, JAK inhibitor persistence, or reactivation of JAK/STAT signaling upon chronic JAK inhibitor treatment, has been observed in both MPN mouse models and MPN patients. Therefore, there is an urgent need for new treatment options in MPN. The tyrosine kinase RON, a member of the MET kinase family, has well-characterized roles in erythroblast proliferation and pro-inflammatory cytokine production. RON can be phosphorylated by JAK2 to stimulate erythroblast proliferation. However, the role of RON in MPN pathogenesis is unknown. We found that the ALK/MET/RON/ROS1 inhibitor crizotinib inhibited colony formation by MPN patient CD34+ cells, regardless of their disease subtype, mutation status, or JAK2 inhibitor treatment history (Figure 1A). To determine whether this is due to inhibition of the JAK/STAT signaling pathway, we performed phospho-flow cytometry of STAT3 and STAT5 in myelofibrosis patient erythroblasts treated with crizotinib ex vivo as well as Western blot analysis in the JAK2-mutated cell lines SET2 and HEL. We found that crizotinib inhibits the phosphorylation of JAK2, STAT3, and STAT5 (Figure 1B). Since crizotinib has not been reported to directly inhibit JAK2, we asked whether these effects of crizotinib in MPN cells could be explained by RON inhibition. Consistent with this hypothesis, we observed that shRNA knockdown of multiple RON isoforms also decreases the phosphorylation of JAK2, STAT5, and STAT3 in HEL cells (Figure 1C-D). To determine whether crizotinib can alter the MPN disease course in vivo, we tested crizotinib by oral gavage in the MPLW515L bone marrow transplant murine model of myelofibrosis at 100mg/kg daily for 2 weeks. We showed that crizotinib decreased the disease burden of MPL-W515L mice, as evidenced by decreased spleen and liver weights (Figure 1E). To determine the effects of RON genetic deletion on MPN pathogenesis, we tested whether genetic deletion of Stk (mouse gene for RON) impairs disease progression in the JAK2V617F bone marrow transplant MPN model by transplanting Stk-/- c-Kit+ bone marrow cells transduced with the JAK2V617F-GFP retrovirus into lethally irradiated recipients. We observed a significant delay in disease onset in Stk-/- transplant recipients compared to WT controls (Figure 1F). However, we found that Stk-/- mice have normal numbers of hematopoietic stem and progenitor cells, and normal bone marrow myeloid colony forming capacity, suggesting that RON is a safe therapeutic target. To determine whether RON plays a role in the JAK inhibitor persistence phenotype, we generated persistent cells by treating SET2 cells with increasing doses of ruxolitinib over 8 weeks, and confirmed persistent proliferation and JAK/STAT activation. Interestingly, we found that RON phosphorylation is enhanced in JAK inhibitor persistent cells, and that dual inhibition of RON and JAK2 overcomes JAK inhibitor persistence in SET2 cells (Figure 1G-H), suggesting that RON may potentiate the JAK2 persistence phenotype in response to ruxolitinib. Importantly, we showed by immunoprecipitation that phospho-RON and phospho-JAK2 physically interact in JAK inhibitor persistent SET2 cells, and that this interaction is disrupted by crizotinib (Figure 1I). In summary, our data demonstrate that RON kinase is a novel mediator of JAK/STAT signaling in MPNs, and that it plays a particularly important role in JAK inhibitor persistence. Our work suggests that therapeutic strategies to inhibit RON, such as crizotinib, should be investigated in MPN patients. Figure 1 Figure 1. Disclosures Halmos: Guardant Health: Membership on an entity's Board of Directors or advisory committees; Apollomics: Membership on an entity's Board of Directors or advisory committees; TPT: Membership on an entity's Board of Directors or advisory committees; Eli-Lilly: Research Funding; Advaxis: Research Funding; Blueprint: Research Funding; Elevation: Research Funding; Mirati: Research Funding; Pfizer: Membership on an entity's Board of Directors or advisory committees, Research Funding; GSK: Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Boehringer-Ingelheim: Membership on an entity's Board of Directors or advisory committees, Research Funding; AbbVie: Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Astra-Zeneca: Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees, Research Funding; Merck: Membership on an entity's Board of Directors or advisory committees, Research Funding. Gritsman: iOnctura: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document