scholarly journals Global Expression Changes of Malignant Plasma Cells over Time Reveals the Evolutionary Development of Signatures of Aggressive Clinical Behavior

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4457-4457
Author(s):  
Eileen M Boyle ◽  
Adam Rosenthal ◽  
Yan Wang ◽  
Phil Farmer ◽  
Michael W Rutherford ◽  
...  

Abstract Introduction: Clustering of gene expression signatures at diagnosis has identified a number of distinct disease groups that correlate with outcome in multiple myeloma (MM). Some of these are defined by an etiologic genetic event whereas others, such as the proliferation cluster (PR) and GEP70 risk relate to acquired clinical behaviors regardless of the underlying background. The PR cluster has a number of important features, including markers of proliferation, and has been associated with an adverse outcome. This logic led us to study how gene expression patterns change over time with the aim of gaining insight into acquired features that could be targeted therapeutically or be used to predict outcome. Methods: We followed 784 newly diagnosed MM patients from the Total Therapy trials over a median of 9.5 years for whom repeated GEP of CD138+ plasma cells using Affymetrix U133 Plus 2.0 plus arrays were obtained. Raw data were MAS5 normalized and GEP70-based high-risk (HR) scores, translocation classification (TC) and molecular cluster classification were derived, as previously reported. Results: At diagnosis, 85.9% percent of patients (666/784) were identified as low-risk (LR). Among them, 23.1% (154/666) went on to develop HR status (defined by a GEP70 score > 0.66) at least once after initial diagnosis. Among the non-PR cases, 28.5% (193/677) were seen to develop a PR phenotype at some point during follow-up. Similarly, among the PR patients (n=107), we observed that 43.1% (25/58) identified as LR by GEP70 at presentation eventually develop HR status at least once during follow-up. We further analyzed 147 patients with paired diagnosis and relapse samples. Seventeen percent of patients (25/147) were PR at diagnosis. Most patients were from favorable TC prognostic groups [80% D1-D2, 8% t(11;14), 8% t(4;14) and 4% t(14;20)]. Seventy-six percent of PR patients remained PR at relapse (19/25) whereas 23% switched cluster in accordance to their translocation group. Fifteen percent of patients (22/147) became PR at relapse. They originated from four clusters and three TC groups [77% from the D1-D2, 14% t(4;14) and 9% from the t(11;14)]. Overall-survival from the time of relapse was inferior for patients categorized as PR at relapse compared to other subgroups (p< 0.0001); among PR patients at relapse, there was no difference in outcome between patients classified as PR or non-PR at diagnosis (p= 0.74). When looking at GEP70 defined risk scores, the incidence of HR status rose from 23% to 39% between diagnosis and relapse with a significant increase in mean GEP70 scores using paired t-test (p<0.0001). Patients identified as HR by GEP70 at relapse had an inferior post-relapse outcome compared to patients identified as LR (p< 0.0001); there was no difference in the outcome of patients identified as HR at relapse depending on their risk status at diagnosis (p = 0.10). Discussion: Following the introduction of therapeutic regimens aimed at maximizing response, long term survival in MM has improved. This also led to an apparent increase in the development of more aggressive disease patterns at relapse including extra-medullary disease and plasma cell leukemia. Here we show, that HR features both in terms of PR and GEP70 risk status, develop as a variable over time. At relapse, most acquired HR cases originate from standard-risk presentation cases, suggesting selective pressure for HR features. Moreover, we show that the detection of such behaviors is associated with an adverse outcome from the time of relapse. These data also suggest that repeating GEP during follow-up adds precision to better comprehend individual risk and may help identify patient specific therapeutic strategies. Indeed, understanding how these patterns develop, which genes are implicated, and their impact on the immune microenvironment should allow us to effectively utilize a wide array of treatment approaches ranging from immune-therapies to novel cell-cycle targeting agents to specifically address this type of aggressive behavior. Conclusion: The acquisition of high risk patterns captured by GEP70 risk and PR status is an ongoing process from initial diagnosis. Such high risk prognostic features have an adverse outcome from the time of development. Repeating GEP during follow-up may therefore help better predict outcome and identify patient specific therapeutic strategies. Disclosures Boyle: Janssen: Honoraria, Other: travel grants; Takeda: Consultancy, Honoraria; Gilead: Honoraria, Other: travel grants; Abbvie: Honoraria; Celgene: Honoraria, Other: travel grants; La Fondation de Frace: Research Funding; Amgen: Honoraria, Other: travel grants. Dumontet:Janssen: Honoraria; Roche: Research Funding; Merck: Consultancy, Membership on an entity's Board of Directors or advisory committees; Sanofi: Honoraria. Facon:Celgene: Honoraria, Research Funding; Janssen: Honoraria, Research Funding. Barlogie:Celgene: Consultancy, Research Funding; Multiple Myeloma Research Foundation: Other: travel stipend; European School of Haematology- International Conference on Multiple Myeloma: Other: travel stipend; Dana Farber Cancer Institute: Other: travel stipend; Millenium: Consultancy, Research Funding; ComtecMed- World Congress on Controversies in Hematology: Other: travel stipend; Myeloma Health, LLC: Patents & Royalties: : Co-inventor of patents and patent applications related to use of GEP in cancer medicine licensed to Myeloma Health, LLC; International Workshop on Waldenström's Macroglobulinemia: Other: travel stipend. Davies:TRM Oncology: Honoraria; Janssen: Consultancy, Honoraria; ASH: Honoraria; Amgen: Consultancy, Membership on an entity's Board of Directors or advisory committees; Abbvie: Consultancy; Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees; MMRF: Honoraria; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees. Morgan:Celgene: Consultancy, Honoraria, Research Funding; Takeda: Consultancy, Honoraria; Janssen: Research Funding; Bristol-Myers Squibb: Consultancy, Honoraria.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 723-723
Author(s):  
Shankara Anand ◽  
Mark Bustoros ◽  
Romanos Sklavenitis-Pistofidis ◽  
Robert A. Redd ◽  
Eileen M Boyle ◽  
...  

Abstract Introduction: Multiple Myeloma (MM) is an incurable plasma cell malignancy commonly preceded by the asymptomatic stage smoldering multiple myeloma (SMM). MM is characterized with significant genomic heterogeneity of chromosomal gains and losses (CNVs), translocations, and point mutations (SNVs); alterations that are also observed in SMM patients. However, current SMM risk models rely solely on clinical markers and do not accurately capture progression risk. While incorporating some genomic biomarkers improves prediction, using all MM genomic features to comprehensively stratify patients may increase risk stratification precision in SMM. Methods: We obtained a total of 214 patient samples at SMM diagnosis. We performed whole-exome sequencing on 166 tumors; of these, RNA sequencing was performed on 100. Targeted capture was done on 48 additional tumors. Upon binarization of DNA features, we performed consensus non-negative matrix factorization to identify distinct molecular clusters. We then trained a random forest classifier on translocations, SNVs, and CNVs. The predicted clinical outcomes for the molecular subtypes were further validated in an independent SMM cohort of 74 patients. Results: We identified six genomic subtypes, four with hyperdiploidy (&gt;48 chromosomes, HMC, HKR, HNT, HNF) and two with IgH translocations (FMD, CND) (Table 1). In multivariate analysis accounting for IMWG (20-2-20) clinical risk stages, high-risk (HMC, FMD, HKR) and intermediate-risk (HNT, HNF) genetic subtypes were independent predictors of progression (Hazards ratio [HR]: 3.8 and 5.5, P = 0.016 and 0.001, respectively). The low-risk, CND subtype harboring translocation (11;14) was enriched for the previously defined CD-2 MM signature defined by the B cell markers CD20 and CD79A (FDR = 0.003 ), showed upregulation of CCND1, E2F1, and E2F7 (FDR = 0.01, 0.0004, 0.08), and was enriched for G2M checkpoint, heme metabolism, and monocyte cell signature (FDR = 0.003, 0.003, 0.003, respectively). The FMD subtype with IgH translocations (4;14) and (14;16) was enriched for P53, mTORC1, unfolded protein signaling pathways and plasmacytoid dendritic cell signatures (FDR = 0.01, 0.005, 0.008, respectively). The HKR tumors were enriched for inflammatory cytokine signaling, MYC target genes, T regulatory cell signature, and the MM proliferative (PR) signatures (FDR = 0.02, 0.03, 0.007, 0.02, respectively). The APOBEC mutational signature was enriched in HMC and FMD tumors (P = 0.005), while there was no statistical difference across subtypes in the AID signature. The median follow-up for the primary cohort is 7.1 years. Median TTP for patients in HMC, FMD, and HKR was 3.8, 2.6, and 2.2 years, respectively; TTP for HNT and HNF was 4.3 and 5.2, respectively, while it was 11 years in CND patients (P = 0.007). Moreover, by analyzing the changes in MM clinical biomarkers over time, we found that patients from high-risk subgroups had higher odds of developing evolving hemoglobin and monoclonal protein levels over time (P = 0.01 and 0.002, respectively); Moreover, the absolute increase in M-protein was significantly higher in patients from the high-risk genetic subtypes at one, two, and five years from diagnosis (P = 0.001, 0.03, and 0,01, respectively). Applying the classifier to the external cohort replicated our findings where intermediate and high-risk genetic subgroups conferred increased risk of progression to MM in multivariate analysis after accounting for IMWG staging (HR: 5.5 and 9.8, P = 0.04 and 0.005, respectively). Interestingly, within the intermediate-risk clinical group in the primary cohort, patients in the high-risk genetic subgroups had increased risk of progression (HR: 5.2, 95% CI 1.5 - 17.3, P = 0.007). In the validation cohort, these patients also had an increased risk of progression to MM (HR: 6.7, 95% CI 1.2 - 38.3, P = 0.03), indicating that molecular classification improves the clinical risk-stratification models. Conclusion: We identified and validated in an independent dataset six SMM molecular subgroups with distinct DNA alterations, transcriptional profiles, dysregulated pathways, and risks of progression to active MM. Our results underscore the importance of molecular classification in addition to clinical evaluation in better identifying high-risk SMM patients. Moreover, these subgroups may be used to identify tumor vulnerabilities and target them with precision medicine efforts. Figure 1 Figure 1. Disclosures Bustoros: Janssen, Bristol Myers Squibb: Honoraria, Speakers Bureau; Takeda: Consultancy, Honoraria. Casneuf: Janssen: Current Employment. Kastritis: Amgen: Consultancy, Honoraria, Research Funding; Takeda: Honoraria; Pfizer: Consultancy, Honoraria, Research Funding; Genesis Pharma: Honoraria; Janssen: Consultancy, Honoraria, Research Funding. Walker: Bristol Myers Squibb: Research Funding; Sanofi: Speakers Bureau. Davies: Takeda: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Abbvie: Consultancy, Honoraria; BMS: Consultancy, Honoraria; Roche: Consultancy, Honoraria; Janssen: Consultancy, Honoraria. Dimopoulos: Amgen: Honoraria; BMS: Honoraria; Takeda: Honoraria; Beigene: Honoraria; Janssen: Honoraria. Bergsagel: Genetech: Consultancy, Honoraria; Oncopeptides: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; Pfizer: Consultancy, Honoraria; Novartis: Consultancy, Honoraria, Patents & Royalties: human CRBN mouse; GSK: Consultancy, Honoraria; Celgene: Consultancy, Honoraria. Yong: BMS: Research Funding; Autolus: Research Funding; Takeda: Honoraria; Janssen: Honoraria, Research Funding; Sanofi: Honoraria, Research Funding; GSK: Honoraria; Amgen: Honoraria. Morgan: BMS: Membership on an entity's Board of Directors or advisory committees; Jansen: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Oncopeptides: Membership on an entity's Board of Directors or advisory committees; GSK: Membership on an entity's Board of Directors or advisory committees. Getz: IBM, Pharmacyclics: Research Funding; Scorpion Therapeutics: Consultancy, Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees. Ghobrial: AbbVie, Adaptive, Aptitude Health, BMS, Cellectar, Curio Science, Genetch, Janssen, Janssen Central American and Caribbean, Karyopharm, Medscape, Oncopeptides, Sanofi, Takeda, The Binding Site, GNS, GSK: Consultancy.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4569-4569 ◽  
Author(s):  
Frits van Rhee ◽  
Sharmilan Thanendrarajan ◽  
Carolina D. Schinke ◽  
Jeffery R. Sawyer ◽  
Adam Rosenthal ◽  
...  

Background. The TT approach has significantly improved the outcome of multiple myeloma (MM) by combining new drugs with a regimen that comprises induction, tandem autologous stem cell transplantation (ASCT), consolidation and maintenance. However, a group of 15% of patients with high risk multiple myeloma (HRMM) have derived little benefit despite similar response rates to induction chemotherapy and ASCT when compared to low risk MM. The poor outcome of HRMM is explained by early relapse post ASCT resulting in a short progression free survival (PFS) with only 15-20% of patients surviving long-term. Daratumumab (Dara) is a human IgG1k anti-CD38 monoclonal antibody that has shown favorable results in early single-arm studies and more recently in phase III studies for relapsed/refractory and newly diagnosed MM. In TT7, we introduced Dara during all phases of therapy, including immune consolidation early post ASCT, to improve responses rate and PFS in HRMM. Methods. Patients had newly diagnosed HRMM as defined by high risk cytogenetic abnormalities, presence of extramedullary disease, >3 focal lesions on CT-PET, elevated LDH due to MM, or ISS II/III with cytogenetic abnormality. Dara (16mg/kgx1) was added to induction with KTD-PACE (carfilzomib, thalidomide, dexamethasone; and four-day continuous infusions of cisplatin, doxorubicin, cyclophosphamide, etoposide). Conditioning for tandem autologous stem cell transplantation (ASCT) was with fractionated melphalan (50mg/m2x4) (fMEL) based on prior observations that patients with adverse cytogenetics fare better with fMEL rather than single high dose MEL200mg/m2.In the inter tandem ASCT period immunological consolidation with Dara (16mg/kg) alone for 2 doses was followed by Dara (16mg/kg) on day 1 combined with K (36mg/m2) and D (20mg) weekly for 2 cycles. DaraKD was administered to avoid treatment free periods allowing for myeloma regrowth. The 2nd ASCT was followed by further immunological consolidation with Dara (16mg/k) for 2 doses, and maintenance therapy for 3 yrs with 3-months block of alternating Dara-KD (dara 16mg/kg day 1; K 36mg/m2 and dex 20mg weekly) and Dara-lenalidomide (R)D (dara 16mg/kg day 1; R 15mg day 1-21 q28 and D 20mg weekly). Results. TT7 enrolled 43 patients thus far. The median follow-up was 11 months (range: 1-22). The median age was 61 yrs (range 44-73). Sixteen patients were ≥65 yrs (37.2%). A mean of 29.4x106 CD34+ cells/kg (range: 4.6-86.4) were collected. 36 patients completed ASCT #1 (83.7%) and 18 (41.9%) ASCT #2, whilst 14 patients have proceeded to the maintenance phase. R-ISS II/III or metaphase cytogenetic abnormalities were present in 85.1 and 58.1% of patients, respectively. Elevated LDH or >3FL on CT-PET were noted in 30 and 41.8%. The 1-yr cumulative incidence estimates for reaching VGPR and PR were 87 and 83%, respectively. A CR or sCR was achieved in 68 and 46%. The 1-yr estimates of PFS and OS were 91.6 and 87.2%. 40 subjects are alive, whilst 5 progressed on study therapy and 3 subsequently died. 38 patients are progression free at the time of reporting. Dara was well-tolerated and no subjects discontinued therapy due to dara-related side effects. The CR and sCR rates compared favorably to the predecessor HRMM TT5 protocol where CR and sCR rates were 59 and 27%. Conclusion. The early results of TT7 point to increased response rates of HRMM to a dara-based TT regimen with especially higher rates of CR and sCR. Longer follow-up is required to determine if these early results translate into superior PFS and OS. Figure Disclosures van Rhee: Karyopharm Therapeutics: Consultancy; Kite Pharma: Consultancy; Adicet Bio: Consultancy; Takeda: Consultancy; Sanofi Genzyme: Consultancy; Castleman Disease Collaborative Network: Consultancy; EUSA: Consultancy. Walker:Celgene: Research Funding. Morgan:Amgen, Roche, Abbvie, Takeda, Celgene, Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Other: research grant, Research Funding. Davies:Amgen, Celgene, Janssen, Oncopeptides, Roche, Takeda: Membership on an entity's Board of Directors or advisory committees, Other: Consultant/Advisor; Janssen, Celgene: Other: Research Grant, Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 20-21
Author(s):  
Melody R Becnel ◽  
Sandra B. Horowitz ◽  
Sheeba K. Thomas ◽  
Swami P. Iyer ◽  
Krina K. Patel ◽  
...  

Background: Anti-CD38 monoclonal antibodies (mAb) like daratumumab (dara) have become integral in managing relapsed/refractory (RR) and newly diagnosed (ND) multiple myeloma (MM). Isatuximab (isa), a newer CD38 mAb, induces direct rather than indirect apoptosis of MM cells. However, little is known about whether the use of one prior CD38 mAb will alter the efficacy of another in subsequent lines of therapy. Methods: All patients (pts) with MM treated at MD Anderson with isa after receiving dara in prior lines of therapy were identified. We conducted a retrospective analysis with data points including patient and disease characteristics, responses to dara, response to isa, the presence of high risk features, and the presence of t(11,14). Results: 9 pts were identified, ages 56-72. 5 pts (55%) were male. 5 pts (55%) were alive at the time of data cutoff. 5 pts were Hispanic, 3 White, and 1 Black. 8 pts (89%) had high risk features as represented by the presence of del17p, t(4,14), t(14,16), t(14,20), p53 mutations, gain 1q, extramedullary disease (EMD), CNS disease, early relapse (within 1 year) after autologous transplant, or an increased (&gt;5%) peripheral blood plasma cells (PBPC). 2 (22%) had t(11,14). 4 (44%) had IgG MM. 2 (22%) with light chain disease, 2 (22%) with IgA MM, and 1 (11%) with IgD MM. Dara was initially used in lines 2-7. Dara combinations with pomalidomide (pom), bortezomib (bor), thalidomide (thal), lenalidomide (len), or carfilzomib (car); and pom combinations that also included elotuzumab (elo) or Cytoxan (cytox) are noted in table 1. Dara was discontinued (dc'd) in 8 pts due to progressive disease (PD) and in 1 pt due to toxicity. 8 pts (89%) experienced a best overall response (ORR) of partial response (PR) to dara; 1 pt had stable disease (SD). All pts received prior len and 8 pts received prior pom at some time during the treatment of MM. All pts received isa in combination with pom/dexamethasone (dex). Best ORR to isa/pom/dex: 5 pt (55%) had PR, 2 pt with minimal response (MR), 1 SD, 1 PD. Median treatment duration of isa/pom/dex was 5 weeks (2-14 weeks) at data cutoff. 3 pts dc'd isa/pom/dex due to infections, and 2 due to later progression. 2 pts remain on therapy. 1 pt chose to dc all MM therapy for quality of life purposes despite PR with isa/pom/dex. 1 pt died from cardiac disease unrelated to MM or treatment. Conclusions: Our current study of heavily pretreated pts with RRMM demonstrates that despite prior anti-CD38 therapy with dara, most patients (77%) experienced a response of MR or better with treatment with another anti-CD38 therapy isa. To our knowledge, this is the first report of outcomes to isa in patients with prior dara therapy. Further long term follow up will be needed to determine the length of response. Additional studies are planned to further evaluate this patient population. Table 1 Disclosures Thomas: Pharmacyclics: Other: Advisory Boards; BMS: Research Funding; Ascentage: Membership on an entity's Board of Directors or advisory committees, Research Funding; X4 Pharma: Research Funding; Xencor: Research Funding; Genentech: Research Funding. Iyer:Rhizen: Research Funding; CRISPR: Research Funding; Spectrum: Research Funding; Merck: Research Funding; Curio Biosciences: Honoraria; Target Oncology: Honoraria; Afffimed: Research Funding; Daiichi Sankyo: Consultancy; Legend Biotech: Consultancy; Trillium: Research Funding; Seattle Genetics, Inc.: Research Funding. Patel:Celgene: Consultancy, Research Funding; Cellectis: Research Funding; Nektar: Consultancy, Research Funding; Oncopeptides: Consultancy; Poseida: Research Funding; Precision Biosciences: Research Funding; Takeda: Consultancy, Research Funding; Janssen: Consultancy, Research Funding; Bristol Myers Squibb: Consultancy, Research Funding. Manasanch:Adaptive Biotechnologies: Honoraria; GSK: Honoraria; Sanofi: Honoraria; BMS: Honoraria; Takeda: Honoraria; Quest Diagnostics: Research Funding; Merck: Research Funding; JW Pharma: Research Funding; Novartis: Research Funding; Sanofi: Research Funding. Kaufman:Janssen: Research Funding; Bristol Myers Squibb: Research Funding; Karyopharm: Honoraria. Lee:Genentech: Consultancy; GlaxoSmithKline: Consultancy, Research Funding; Takeda: Consultancy, Research Funding; Amgen: Consultancy, Research Funding; Celgene: Consultancy, Research Funding; Janssen: Consultancy, Research Funding; Sanofi: Consultancy; Daiichi Sankyo: Research Funding; Regeneron: Research Funding; Genentech: Consultancy. Orlowski:Sanofi-Aventis, Servier, Takeda Pharmaceuticals North America, Inc.: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen, Inc., AstraZeneca, BMS, Celgene, EcoR1 Capital LLC, Forma Therapeutics, Genzyme, GSK Biologicals, Ionis Pharmaceuticals, Inc., Janssen Biotech, Juno Therapeutics, Kite Pharma, Legend Biotech USA, Molecular Partners, Regeneron Pharmaceuticals, Inc.,: Honoraria, Membership on an entity's Board of Directors or advisory committees; STATinMED Research: Consultancy; Founder of Asylia Therapeutics, Inc., with associated patents and an equity interest, though this technology does not bear on the current submission.: Current equity holder in private company, Patents & Royalties; Laboratory research funding from BioTheryX, and clinical research funding from CARsgen Therapeutics, Celgene, Exelixis, Janssen Biotech, Sanofi-Aventis, Takeda Pharmaceuticals North America, Inc.: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1911-1911 ◽  
Author(s):  
Meena Bansal ◽  
David S. Siegel ◽  
Jaeil Ahn ◽  
Rena Feinman ◽  
David H. Vesole ◽  
...  

Introduction: Patients with high-risk multiple myeloma (HRMM) who have undergone autologous stem cell transplant (ASCT) will inevitably relapse and have a progression free survival (PFS) ranging from 8-14 months (Gaballa et al, American Journal of Hematology, 2016) and 24-39 months while on lenalidomide (Len) maintenance therapy (Jackson et al, The Lancet Oncology, 2019). Unlike in solid tumors, PD-1 blockade has no single agent activity in relapsed and refractory multiple myeloma (MM) patients suggesting that immune stimulating agents, immunomodulatory agents (IMiDs), such as lenalidomide (Len) or pomalidomide (Pom) are necessary in combination with anti-PD-1 blockade to increase depth and duration of response post-ASCT. The Keynote-023 study revealed an overall response rate (ORR) of 76% with the combination of pembrolizumab (Pem), Len and dexamethasone (Dex). Similarly, the Keynote 135 study using the combination of Pem, Pom, and Dex revealed an ORR of 60%. Unfortunately, the phase III studies comparing an IMiD vs Pem with the IMiD upfront at the early relapsed setting were halted because of increased deaths on the Pem arm and a decreased median PFS. With our Phase II study currently on clinical hold by the FDA, we are presenting here the 2-year follow-up of the original patient cohort including some preliminary safety and efficacy data of Pem-Len-Dex in HRMM patients as post-ASCT consolidation (NCT02906332). Methods: Patients with HRMM who have undergone induction therapy followed by single or tandem melphalan-based ASCT were considered eligible 2-6 months post ASCT. HRMM criteria are defined by any of the following: ISS stage 3; del 13q by cytogenetics; FISH with 1q amplification, 1p deletion (del), p53 del, t(4;14), t(14;16), t(14;20), hypodiploidy; or a high-risk gene expression profile score. Patients were excluded if they had progression of disease at time of screening or if there was evidence of organ dysfunction. Patients received Pem 200 mg IV at day 1;Len 25 mg po daily at days 1-14; and Dex 40 mg daily at days 1,8,15 of a 21-day cycle for a total of 2 cycles and then an additional 2 cycles of Pem + Len without Dex at the same dose and frequency. Survival outcomes post-ASCT were measured using the log-rank test. Results: Of 15 patients screened, 12 received at least one dose of therapy and were deemed evaluable. One patient withdrew consent and did not follow up after cycle 2. Baseline characteristics are shown in Table 1. Thirty-three percent were ISS 3, 66.7% had a p53 deletion by FISH, 41.6% received induction Bortezomib-Len-Dex; 33% received induction Carfilzomib-Len-Dex, and the remaining 24.9% received other bortezomib-based induction. Best ORR during the 2 year follow up showed 8 patients (73%) achieving stringent complete remission, 2 patients (18%) showing complete remission and 1 (9%) achieving very good partial remission. Table 2 shows best response to treatment by cycle of therapy. Table 3 shows best response during follow-up visits, which were 3 months apart. Of the 11 patients who completed therapy, 8 had minimal residual disease (MRD) status assessed and among them, 7 were MRD negative by flow cytometry, tested 30 days after the fourth cycle. With a median follow-up of 32.2 months, median PFS was 27.6 months. The PFS rates at 1 year and 2 year are 91.3% and 65.2%, respectively. All patients had adverse events (AEs), AEs were attributed to Pem, Len, or Dex rather than from ASCT. Of the 90 AEs that were reported, 5.6% were grade 3 and 94% were grade 1 or 2 (Table 3). The most common hematologic AE was neutropenia (41.7%), with 3 pts (25%) grade 1 and 2, and 2 pts (16.6%) grade 3. The most common non-hematologic AEs were intermittent constipation (16.6%), diarrhea (16.6%), fatigue (8.3%), and increased ALT (8.3%) and were graded as 1 or 2. Non-hematologic grade 3 AEs occurred in 2 pts and included hypoxia and maculopapular rash. There was 1 serious AE, H. influenza pneumonia requiring inpatient admission, which was not considered to be related to Pem. Conclusions: The combination of Pem, Len, and Dex given to HRMM patients in the post-ASCT consolidation setting is well tolerated. In comparison to historical controls of HRMM patients post-ASCT with a median PFS of 8-14 months, the PFS rates of 91.3% and 65.2% at 1 and 2 year post-ASCT respectively suggest an efficacy signal for the use of Pem, Len, and Dex as post-ASCT consolidation. Larger prospective studies are needed to validate these results. Disclosures Siegel: Janssen: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Bristol-Myers Squibb Company: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Amgen: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Rowley:Allergan: Equity Ownership; Fate Therapeutics: Consultancy. Biran:Amgen: Consultancy, Honoraria, Research Funding; Merck: Research Funding; Janssen: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; Bristol Meyers Squibb: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1852-1852
Author(s):  
Noemi Puig ◽  
Teresa Contreras ◽  
Bruno Paiva ◽  
María Teresa Cedena ◽  
José J Pérez ◽  
...  

Introduction: The GEM-CESAR trial is a potentially curative strategy for high-risk smoldering multiple myeloma (HRsMM) patients (pts) in which the primary endpoint is the achievement of bone marrow minimal residual disease (MRD) negativity. However, other methods of disease evaluation in serum such as heavy+light chain (HLC) assessment, with a potential complementary value to the IMWG response criteria, have also been tested. Aim: To evaluate the performance of HLC assay in HRsMM pts at diagnosis and after consolidation, comparing the results with standard serological methods and Next Generation Flow (NGF) for the assessment of bone marrow MRD. Patients and Methods: Ninety HRsMM pts included in the GEM-CESAR trial received six 4-weeks cycles of carfilzomib, lenalidomide and dexamethasone followed by high dose melphalan and 2 further cycles of consolidation with the same regimen. All pts received maintenance treatment with lenalidomide for up to 2 years. SPEP and IFE were performed using standard procedures. Serum IgGk, IgGl, IgAk and IgAl HLC concentrations were measured using Hevylite (The Binding Site Group Ltd, Birmingham, UK) on a SPA PLUS turbidimeter. HLC concentrations and ratios were considered abnormal if they were outside the 95% reference ranges provided by the manufacturer. MRD was analyzed by flow cytometry following EuroFlow recommendations (sensitivity, 2x10-6). Standard response assignment was carried out as per the IMWG guidelines. Hevylite responses were assigned and HLC-pair suppression was defined as in Michalet et al (Leukemia 2018). Results: Out of 90 HRsMM pts, 75 had monoclonal intact immunoglobulin and samples available at diagnosis (50 IgG and 25 IgA). HLC ratio was abnormal in 98% of IgG pts and in 100% of IgA pts. Response assessment by Hevylite and standard IMWG criteria were available in 62 pts post-consolidation (Table 1). A good agreement was found between the two methods (kappa quadratic weighting = 0,6327 (0,4016 - 0,8638)). Among 46 pts with assigned CR as per the IMWG response criteria, there were 3 and 8 pts in PR and VGPR according to the Hevylite method, respectively. In 62 cases, paired Hevylite and MRD assessment data were available. Concordant results were found in 72.5% of cases (45/62; HLC+/NGF+ in 15 and HLC-/NGF- in 30 cases) while in the remaining 27.4% of cases results were discordant (17/62; HLC-/NGF+ in 6 and HLC+/NGF- in 11 cases). Post-consolidation, 24, 25.8 and 42.3% of the 62 samples were positive by SPEP, NGF and Hevylite, respectively. HLC-pair suppression was identified in 13/62 pts; 10 had severe HLC-pair suppression at the end of consolidation. After a median follow-up of 32 months (8-128), 93% of pts remain alive and progression-free. Three patients that have already progressed had their responses assessed post-consolidation. The first pt was assigned VGPR by the standard IMWG criteria and PR by Hevylite and was MRD positive by NGF; the second pt was assigned CR by IMWG criteria and Hevylite but had severe HLC-pair immunosuppression and was MRD positive by NGF; the third pt was in CR by IMWG and HLC criteria and was MRD positive by MFC. Conclusions: Moderate agreement was found between response assessment by Hevylite and the standard IMWG methods as well as between Hevylite and MRD assessment by NGF. Most discordances were a result of Hevylite detecting disease in samples negative by the standard methods, but longer follow-up is needed to ascertain its clinical value. HLC assessment could have anticipated the progression noted in 2 (out of 3) patients. Disclosures Puig: Takeda, Amgen: Consultancy, Honoraria; The Binding Site: Honoraria; Janssen: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Paiva:Amgen, Bristol-Myers Squibb, Celgene, Janssen, Merck, Novartis, Roche and Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene, Janssen, Sanofi and Takeda: Consultancy. Rodriguez Otero:Kite Pharma: Consultancy; Celgene Corporation: Consultancy, Honoraria, Speakers Bureau; BMS: Honoraria; Janssen: Consultancy, Honoraria; Takeda: Consultancy. Oriol:Celgene, Amgen, Takeda, Jansse: Consultancy, Speakers Bureau. Rios:Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees. Alegre:Celgene, Amgen, Janssen, Takeda: Membership on an entity's Board of Directors or advisory committees. de la Rubia:Amgen: Consultancy; Janssen: Consultancy; Celgene: Consultancy; Takeda: Consultancy; AbbVie: Consultancy. De Arriba:Celgene: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Takeda: Honoraria. Ocio:Celgene: Consultancy, Honoraria, Research Funding; Sanofi: Research Funding; BMS: Honoraria; Novartis: Consultancy, Honoraria; Array Pharmaceuticals: Research Funding; Pharmamar: Consultancy; Seattle Genetics: Consultancy; Mundipharma: Research Funding; Amgen: Consultancy, Honoraria, Research Funding; Takeda: Consultancy, Honoraria; AbbVie: Consultancy; Janssen: Consultancy, Honoraria. Bladé:Janssen, Celgene, Amgen, Takeda: Membership on an entity's Board of Directors or advisory committees; Irctures: Honoraria. Mateos:Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Pharmamar: Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees; GSK: Membership on an entity's Board of Directors or advisory committees; Abbvie: Membership on an entity's Board of Directors or advisory committees; EDO: Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Adaptive: Honoraria; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3116-3116 ◽  
Author(s):  
Elisabet E. Manasanch ◽  
Sundar Jagannath ◽  
Hans C. Lee ◽  
Krina K. Patel ◽  
Connor Graham ◽  
...  

Background High risk smoldering multiple myeloma (HRSMM), defined as having immunoparesis and at least 95% abnormal plasma cells/all plasma cells by advanced flow cytometry, has a risk of progression to multiple myeloma of about 75% after 5 years of diagnosis. These patient have no symptoms and current standard is to follow them without treatment. Isatuximab is an IgG1 monoclonal antibody that binds to CD38 highly expressed in myeloma cells. Isatuximab has activity as monotherapy (overall response rate (ORR) 35%), with lenalidomide/dexamethasone (ORR 56%) and pomalidomide/dexamethasone (ORR 62%) in relapsed MM. We designed a phase II study to test the efficacy of isatuximab in high risk smoldering myeloma. Our study is registered in clinicaltrials.gov as NCT02960555. Methods The primary endpoint of the study is the ORR of isatuximab 20 mg/kg IV days 1, 8, 15, 22 cycle 1; days 1, 15 cycles 2-6 and day 1 cycles 7-30 in high risk smoldering myeloma. 24 patients were accrued in the first stage (of maximum 61 patients). Secondary endpoints are PFS, OS, clinical benefit rate (CBR). Exploratory endpoints are quality of life analysis (QoL), MRD, molecular/immune characterization using DNA/RNA sequencing of myeloma cells and the microenvironment before and after treatment. Results 24 patients with HRSMM were accrued from 02/08/2017 until 12/21/2018 (Table 1). All patients are evaluable for response. Best responses: ORR (≥PR) 15(62.5%), CR MRD- flow at 10-5 1 (5%), VGPR 4 (17%), PR 10 (42%), minor response (MR) 4 (18%), stable disease 5 (21%); CBR (≥MR) 79%. Median number of cycles received were 11.5 (range 6-30). Five patients have stopped treatment (one has completed the study, one with heavy history of smoking was diagnosed with squamous cell cancer of the tongue, one could no longer travel to treatments due to relocation, two progressed to active multiple myeloma after 16 and 6 cycles of treatment, respectively). There have been no deaths. DNA/RNA seq is ongoing for biomarkers of response. There were 5 grade 3 severe treatment-related adverse events (RAE) which resolved to baseline: dyspnea -related to infusion reaction (n=2), headache (n=1), ANC decrease (n=1), urinary tract infection (n=1). Most common grade 1-2 related adverse events (n): nausea (7), vomit (5), WBC decrease (3), diarrhea (3), fatigue (6), headache (4), mucositis (4), myalgia (4) and infusion reaction (3). In patients with available QoL functional scores (n=9 at baseline and n=7 after 6 months of therapy), isatuximab was effective in reducing their anxiety and worry of progression to multiple myeloma. Isatuximab also improved general QoL scores by the end of cycle 6 of treatment which were now comparable to those in the general population (Figure 1). Conclusion Isatuximab is very well tolerated, results in high response rates in HRSMM and has the potential to change the natural history of this disease. In ongoing QoL analysis, initial data shows improvement in QoL and decreased cancer worry after isatuximab treatment. Immune-genomic analysis is ongoing and may identify patients that benefit the most from treatment. Disclosures Manasanch: celgene: Honoraria; merck: Research Funding; quest diagnostics: Research Funding; sanofi: Research Funding; BMS: Honoraria; Sanofi: Honoraria. Jagannath:Multiple Myeloma Research Foundation: Speakers Bureau; BMS: Consultancy; Celgene: Consultancy; Novartis: Consultancy; Medicom: Speakers Bureau; Merck: Consultancy. Lee:Daiichi Sankyo: Research Funding; Celgene: Consultancy, Research Funding; GlaxoSmithKline plc: Research Funding; Sanofi: Consultancy; Takeda: Consultancy, Research Funding; Amgen: Consultancy, Research Funding; Janssen: Consultancy, Research Funding. Patel:Poseida Therapeutics, Cellectis, Abbvie: Research Funding; Oncopeptides, Nektar, Precision Biosciences, BMS: Consultancy; Takeda, Celgene, Janssen: Consultancy, Research Funding. Kaufman:Janssen: Other: travel/lodging, Research Funding. Thomas:Xencor: Research Funding; BMS: Research Funding; Celgene: Research Funding; Amgen: Research Funding. Mailankody:Takeda Oncology: Research Funding; Juno: Research Funding; Celgene: Research Funding; Janssen: Research Funding; CME activity by Physician Education Resource: Honoraria. Lendvai:Janssen: Employment. Neelapu:Acerta: Research Funding; Celgene: Consultancy, Research Funding; BMS: Research Funding; Kite, a Gilead Company: Consultancy, Research Funding; Incyte: Consultancy; Merck: Consultancy, Research Funding; Allogene: Consultancy; Cellectis: Research Funding; Poseida: Research Funding; Karus: Research Funding; Pfizer: Consultancy; Unum Therapeutics: Consultancy, Research Funding; Novartis: Consultancy; Precision Biosciences: Consultancy; Cell Medica: Consultancy. Orlowski:Poseida Therapeutics, Inc.: Research Funding. Landgren:Sanofi: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Adaptive: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Theradex: Other: IDMC; Abbvie: Membership on an entity's Board of Directors or advisory committees; Merck: Other: IDMC. OffLabel Disclosure: Isatuximab for the treatment of smoldering myeloma


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4370-4370
Author(s):  
Michael J Mason ◽  
Carolina D. Schinke ◽  
Christine Eng ◽  
Fadi Towfic ◽  
Fred Gruber ◽  
...  

Multiple myeloma (MM) is a hematological malignancy of terminally differentiated plasma cells residing within the bone marrow with 25,000-30,000 patients diagnosed in the United States each year. The disease's clinical course depends on a complex interplay chromosomal abnormalities and mutations within plasma cells and patient socio-demographic factors. Novel treatments extended the time to disease progression and overall survival for the majority of patients. However, a subset of 15%-20% of MM patients exhibit an aggressive disease course with rapid disease progression and poor overall survival regardless of treatment. Accurately predicting which patients are at high-risk is critical to designing studies with a better understanding of myeloma progression and enabling the discovery of novel therapeutics that extend the progression free period of these patients. To date, most MM risk models use patient demographic data, clinical laboratory results and cytogenetic assays to predict clinical outcome. High-risk associated cytogenetic alterations include deletion of 17p or gain of 1q as well as t(14;16), t(14;20), and most commonly t(4,14), which leads to juxtaposition of MMSET with the immunoglobulin heavy chain locus promoter, resulting in overexpression of the MMSET oncogene. While cytogenetic assays, in particular fluorescence in situ hybridization (FISH), are widely available, their risk prediction is sub-optimal and recently developed gene expression based classifiers predict more accurately rapid progression. To investigate possible improvements to models of myeloma risk, we organized the Multiple Myeloma DREAM Challenge, focusing on predicting high-risk, defined as disease progression or death prior to 18 months from diagnosis. This effort combined 4 discovery datasets providing participants with clinical, cytogenetic, demographic and gene expression data to facilitate model development while retaining 4 additional datasets, whose clinical outcome was not publicly available, in order to benchmark submitted models. This crowd-sourced effort resulted in the unbiased assessment of 171 predictive algorithms on the validation dataset (N = 823 unique patient samples). Analysis of top performing methods identified high expression of PHF19, a histone methyltransferase, as the gene most strongly associated with disease progression, showing greater predictive power than the expression level of the putative high-risk gene MMSET. We show that a simple 4 feature model composed of age, stage and the gene expression of PHF19 and MMSET is as accurate as much larger published models composed of over 50 genes combined with ISS and age. Results from this work suggest that combination of gene expression and clinical data increases accuracy of high risk models which would improve patient selection in the clinic. Disclosures Towfic: Celgene Corporation: Employment, Equity Ownership. Dalton:MILLENNIUM PHARMACEUTICALS, INC.: Honoraria. Goldschmidt:Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; John-Hopkins University: Research Funding; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Mundipharma: Research Funding; Amgen: Consultancy, Research Funding; Chugai: Honoraria, Research Funding; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Molecular Partners: Research Funding; MSD: Research Funding; Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Adaptive Biotechnology: Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy, Research Funding; Dietmar-Hopp-Stiftung: Research Funding; John-Hopkins University: Research Funding. Avet-Loiseau:takeda: Consultancy, Other: travel fees, lecture fees, Research Funding; celgene: Consultancy, Other: travel fees, lecture fees, Research Funding. Ortiz:Celgene Corporation: Employment, Equity Ownership. Trotter:Celgene Corporation: Employment, Equity Ownership. Dervan:Celgene: Employment. Flynt:Celgene Corporation: Employment, Equity Ownership. Dai:M2Gen: Employment. Bassett:Celgene: Employment, Equity Ownership. Sonneveld:SkylineDx: Research Funding; Takeda: Honoraria, Research Funding; Karyopharm: Honoraria, Research Funding; Janssen: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; BMS: Honoraria; Amgen: Honoraria, Research Funding. Shain:Amgen: Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; AbbVie: Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees; Sanofi Genzyme: Membership on an entity's Board of Directors or advisory committees; Adaptive Biotechnologies: Consultancy. Munshi:Abbvie: Consultancy; Takeda: Consultancy; Oncopep: Consultancy; Celgene: Consultancy; Adaptive: Consultancy; Amgen: Consultancy; Janssen: Consultancy. Morgan:Bristol-Myers Squibb, Celgene Corporation, Takeda: Consultancy, Honoraria; Celgene Corporation, Janssen: Research Funding; Amgen, Janssen, Takeda, Celgene Corporation: Other: Travel expenses. Walker:Celgene: Research Funding. Thakurta:Celgene: Employment, Equity Ownership.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2749-2749
Author(s):  
Omar Nadeem ◽  
Robert A. Redd ◽  
Julia Prescott ◽  
Kelsey Tague ◽  
Veronica Romines ◽  
...  

Abstract Background: Early therapeutic intervention in high-risk SMM (HR-SMM) has demonstrated benefit based on previous studies that included treatment with lenalidomide or lenalidomide and dexamethasone (Mateos et al. N Engl J Med 2013; Lonial et al. J Clin Oncol 2020). Combination therapy with triplets has shown higher rates of deep response and improved outcomes in patients with multiple myeloma, including the combination of ixazomib, lenalidomide, and dexamethasone (Moreau et al. N Eng J Med 2016). We present our results of phase II study of ixazomib, lenalidomide and dexamethasone in HR-SMM. Methods: Patients enrolled on the study met eligibility for high-risk SMM based on the defined criteria proposed by Rajkumar et al. (Blood 2014). The treatment plan was designed to be administered on an outpatient basis where patients receive 9 cycles of induction therapy of ixazomib (4mg) at days 1, 8, and 15, in combination with lenalidomide (25mg) at days 1-21 and dexamethasone at days 1, 8, 15, and 22. The induction phase was followed by ixazomib (4mg) and lenalidomide (15mg) maintenance for another 15 cycles. A treatment cycle was defined as 28 consecutive days for a total of 24 months period. Bone marrow samples of all patients were obtained before starting therapy for baseline assessment for minimal residual disease (MRD) testing, whole-exome sequencing (WES), and RNA sequencing of plasma and bone marrow microenvironment cells. Moreover, blood samples were obtained at screening and before each cycle for isolating cell-free DNA (cfDNA) and circulating tumor cells (CTCs). Results: Sixty-one patients have been enrolled in this study from February 2017 to 2020. The median age of the patients at enrollment was 64 years (range, 40 to 84), with 33 males (54.1%). The analysis was conducted on patients who have completed at least 2 cycles of therapy (n=55). Thus far, 42 (69%) patients have completed the planned 24 cycles of therapy. High-risk cytogenetics (defined as the presence of t(4;14), 17p deletion, and 1q gain) were found in 14 patients out of the 33 evaluable (42.4%) Interphase fluorescence in situ hybridization (iFISH) results. The median number of cycles completed was 24 cycles (range: 2-24). According to the new IMWG risk stratification model (20-2-20), baseline markers showed that 32 patients (58%) were high risk, 18 (33%) were intermediate risk, and 5 (9%) were low risk. The most common grades 3 or greater toxicities were neutropenia (20%), hypophosphatemia (13%), leukopenia (11%), rash (9%), lymphocytopenia (5%), and thrombocytopenia (5%). Stem cells were collected from all eligible patients by the end of the induction phase. No patients discontinued treatment due to toxicity. At the time of data cut off, the overall response rate (partial response or better) in participants who completed at least 2 cycles of treatment was 90.9% (50 of 55), with 12 complete responses (CR, 21.8%), 10 very good partial responses (VGPR, 18.2%), 28 partial responses (50.9%), and 4 minimal responses (MR, 7.3%). ORR in patients who completed the induction phase (≥9 cycles) was 92.3% (n= 48 of 52), with 22 (40%) deep remissions including 12 (23.1%) and 10 (19.2%) having achieved a CR and VGPR, respectively. All patients who had a CR have also achieved a stringent CR. No patients developed progression to overt or active MM while on study therapy. After completion of study therapy, 4 patients progressed to active MM during follow up, 3 additional patients developed biochemical progression and started a new course of therapy but did not meet CRAB criteria and 7 patients confirmed biochemical PD and remain off therapy. Conclusions: The combination of ixazomib, lenalidomide, and dexamethasone is an effective all oral well-tolerated intervention in high-risk smoldering myeloma that demonstrated an ORR of &gt;90% and deep remission in &gt;40% of patients. While no patients progressed to overt MM while on therapy, some developed progression after completion of planned study therapy, indicating the possible need for higher intensification of therapy or maintenance therapy beyond 2 years in this high-risk group of patients. Longer follow-up for disease outcome is ongoing. Disclosures Nadeem: BMS: Membership on an entity's Board of Directors or advisory committees; Adaptive Biotechnologies: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; GSK: Membership on an entity's Board of Directors or advisory committees. Mo: Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees; Karyopharm: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria; GSK: Consultancy, Membership on an entity's Board of Directors or advisory committees; Epizyme: Consultancy; Eli Lilly: Consultancy; BMS: Membership on an entity's Board of Directors or advisory committees; AbbVIE: Consultancy. Sperling: Adaptive: Consultancy. Richardson: AstraZeneca: Consultancy; Secura Bio: Consultancy; Regeneron: Consultancy; AbbVie: Consultancy; Janssen: Consultancy; Karyopharm: Consultancy, Research Funding; Protocol Intelligence: Consultancy; Sanofi: Consultancy; Takeda: Consultancy, Research Funding; Oncopeptides: Consultancy, Research Funding; GlaxoSmithKline: Consultancy; Celgene/BMS: Consultancy, Research Funding; Jazz Pharmaceuticals: Consultancy, Research Funding. Ghobrial: AbbVie, Adaptive, Aptitude Health, BMS, Cellectar, Curio Science, Genetch, Janssen, Janssen Central American and Caribbean, Karyopharm, Medscape, Oncopeptides, Sanofi, Takeda, The Binding Site, GNS, GSK: Consultancy.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 580-580 ◽  
Author(s):  
Mark Bustoros, MD ◽  
Omar Nadeem ◽  
Adam S Sperling ◽  
Giada Bianchi ◽  
Lily Ardente ◽  
...  

Background.This study aimed to determine the progression-free survival and response rate using early therapeutic intervention in patients with high-risk smoldering multiple myeloma (SMM) using the combination of ixazomib, lenalidomide, and dexamethasone. Methods.Patients enrolled on study met eligibility for high-risk SMM based on the newly defined criteria proposed by Rajkumar et al. (Blood 2014). The treatment plan was designed to be administered on an outpatient basis where patients receive 9 cycles of induction therapy of ixazomib (4mg) at days 1, 8, and 15, in combination with lenalidomide (25mg) at days 1-21 and dexamethasone at days 1, 8, 15, and 22. The induction phase was followed by ixazomib (4mg) and lenalidomide (15mg) maintenance for another 15 cycles. A treatment cycle was defined as 28 consecutive days for a total of 24 months period. Bone marrow samples of all patients were obtained before starting therapy for baseline assessment for minimal residual disease (MRD) testing, whole-exome sequencing (WES), and RNA sequencing of plasma and bone marrow microenvironment cells. Moreover, blood samples were obtained at screening and before each cycle for isolating cell-free DNA (cfDNA) and circulating tumor cells (CTCs). Results.In total, 53 of the planned 62 patients have been enrolled in this study from February 2017 to May 2019. The median age of the patients enrolled was 61 years (range, 41 to 84) with 22 male (41.5%). The analysis was conducted on patients who have completed at least 1 cycle of therapy (n=45). The median follow-up for the trial is 14.4 months (range: 2- 27.6). Interphase fluorescence in situ hybridization (iFISH) was successful in 37 patients (82.2%). High-risk cytogenetics (defined as the presence of t(4;14), 17p deletion, and 1q gain) were found in 20 patients (54%). The median number of cycles completed was 14 cycles (range: 1-24). According to the study's inclusion criteria, baseline markers showed that 15, 14, and 13 patients had 3, 4, and 5 high-risk features, respectively. Moreover, 24 patients (53.3%) met the criteria of high-risk SMM, according to the Mayo 2018 model. The most common grade 3 adverse events were hypertension (6.3%), hypophosphatemia (4.2%), and rash (4.2%). Grade 4 thrombocytopenia and neutropenia were each reported in 4.4% of patients, and hyperglycemia was reported in 2.2%. Stem cells were collected in all eligible patients by the end of the induction phase. As of the abstract date, the overall response rate (partial response or better) in participants who completed at least 1 cycle of treatment was 91.1% (41/45), with 14 Complete Responses (CR, 31.1%), 9 very good partial responses (VGPR, 20%), 18 partial responses (40%), and 4 minimal Responses (MR, 10%). ORR in patients who completed the induction phase (≥9 cycles) was 97% (n= 32/33), with 14(42.4%) and 9 (27.2%) having CR and VGPR, respectively. All patients who had a CR have also achieved a stringent CR. Six patients have completed the treatment protocol and are currently on follow-up. As of July 2019, none of the patients have progressed to overt MM. MRD testing by next-generation sequencing is ongoing for patients who achieved CR or VGPR and will be presented at the meeting. Conclusion.The combination of ixazomib, lenalidomide, and dexamethasone is an effective and well-tolerated intervention in high-risk smoldering myeloma with 91% ORR and 54.7% CR and VGPR to date. The high response rate, convenient schedule and manageable toxicity build on prior studies which have shown efficacy of lenalidomide and dexamethasone in high risk smoldering myeloma. Longer follow-up for disease outcome is ongoing. Disclosures Bustoros, MD: Takeda: Honoraria. Nadeem:Celgene: Consultancy; Janssen: Consultancy; Amgen: Consultancy; Sanofi: Consultancy. Prescott:Janssen: Equity Ownership. Munshi:Takeda: Consultancy; Janssen: Consultancy; Celgene: Consultancy; Adaptive: Consultancy; Abbvie: Consultancy; Abbvie: Consultancy; Adaptive: Consultancy; Amgen: Consultancy; Celgene: Consultancy; Takeda: Consultancy; Oncopep: Consultancy; Oncopep: Consultancy; Amgen: Consultancy; Janssen: Consultancy. Anderson:OncoPep: Other: Scientific founder ; C4 Therapeutics: Other: Scientific founder ; Gilead Sciences: Other: Advisory Board; Janssen: Other: Advisory Board; Sanofi-Aventis: Other: Advisory Board. Richardson:Oncopeptides: Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Sanofi: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees. Ghobrial:Amgen: Consultancy; Celgene: Consultancy; BMS: Consultancy; Sanofi: Consultancy; Janssen: Consultancy; Takeda: Consultancy. OffLabel Disclosure: Ixazomib, Lenalidomide and Dexamethasone is an investigational combination in high-risk smoldering multiple myeloma and has not been approved by the US Food and Drug Administration or any other regulatory agency worldwide for the use under investigation.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5770-5770
Author(s):  
Rashid Z Khan ◽  
Yogesh Jethava ◽  
Xenofon Papanikolaou ◽  
Caleb K Stein ◽  
Adam Rosenthal ◽  
...  

Abstract Introduction: Gene expression profiling (GEP)-defined high-risk de novo multiple myeloma (HI-MM) has a dismal prognosis with median PFS and OS stagnating at 2 and 3 years, respectively, despite the incorporation of novel agents into our Total Therapy (TT) trials. Having seen encouraging results in relapsed-refractory MM with an extended 16-day metronomic therapy (Papanikolaou, Haematologica 2014), we tested this approach in a small cohort of untreated patients with HI-MM. METRO emphasizes targeting neo-angiogenesis and other components of the bone marrow micro-environment while avoiding cytokine surges with recovering hematopoiesis following myelotoxic therapy. Patients and Methods: 10 previously untreated patients with HI-MM, who were either ineligible or unwilling for our Total Therapy protocols received a single cycle of METRO. Therapy comprised of SC bortezomib 1.0mg/m2 (0.8mg/m2 in case of grade >2 peripheral neuropathy) on days 1, 4, 7, 10, 13, 16, 19, 22, 25 and 28 schedule, PO dexamethasone 12mg (8mg in case of prior intolerance of higher dose or diabetes mellitus) on days 1 to 4, 7 to 10, 13 to 16, 19 to 22 and 25 to 28, PO Thalidomide 100mg (50mg in case of peripheral neuropathy grade >2) and continuous IV infusions of doxorubicin and cisplatin at 1.0mg/m2 daily for 28 days. Cisplatin was dose-reduced for Cr >2mg/dL and omitted for Cr >3mg/dL. Arsenic tri-oxide was given at a fixed dose of 0.01mg/kg on the days after bortezomib. Laboratory monitoring for response and toxicities were done on a Monday-Wednesday-Friday schedule. Maximal responses, based on current IMWG definitions, were measured within 30 days of completion of cycle 1, and at least monthly thereafter. KM curves were current as of 07/31/14. The Institutional Review Board granted permission for our retrospective data review, the results of which are presented here. Results: Patient characteristics included age >=65 in 8, 5 male, 5 female with ISS III in 5 patients. Metaphase cytogenetic abnormalities (CA) were detected in 7 patients. GEP70 based high risk MM was present in all 10 patients, and GEP proliferation (PR) subgroup was dominant in 8 out of 10 patients. All 10 patients achieved at least PR, including 3 qualifying for VGPR and 4 for CR. Bone Marrow responses were equally encouraging in that 8 of 10 patients qualified for complete morphologic negativity including 4 with no minimal residual disease (MRD) by 8-color flow cytometry. Of 8 patients with FDG-avid PET-CT focal lesions, 6 achieved PET-CT CR; all patients showed decreases in SUV-max and SUV-diff (background SUV). Number and/or apparent diffusion coefficient (ADC) mapping of focal lesions and background marrow on diffusion-weighted MRI improved in all 7 evaluable patients. GEP70 risk morphed from high risk to low risk in 3/4 evaluable patients. Pre and post serologic, urinary and radiologic responses are shown in Figure 1. The median follow-up time for the population was 3.2 months (98 days). All 10 patients are alive from 1 to 7 months, and 1 suffered progression (Figure 2). Overall tolerance was good. Non-hematologic grade 3/4 SEs included fatigue, electrolyte abnormalities (20%), dyspnea, hypotension, LE edema and transaminitis (10%). Conclusion: Primary 28-day metronomic therapy is highly effective and well-tolerated in patients with previously untreated HI-MM. Further prospective studies with longer follow-up are currently being devised in an attempt to improve outcomes in this population. Figure 1: Individual responses Figure 1:. Individual responses Figure 2 Figure 2. Figure 3 Figure 3. Disclosures van Rhee: Janssen: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Millenium: Membership on an entity's Board of Directors or advisory committees; Sanofi: Membership on an entity's Board of Directors or advisory committees. Zangari:Norvartis: Membership on an entity's Board of Directors or advisory committees; Onyx: Research Funding; Millennium: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document