scholarly journals Pharmacological Inhibition of the RNA m6a Writer METTL3 As a Novel Therapeutic Strategy for Acute Myeloid Leukemia

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 403-403 ◽  
Author(s):  
Konstantinos Tzelepis ◽  
Etienne De Braekeleer ◽  
Eliza Yankova ◽  
Justyna Rak ◽  
Demetrios Aspris ◽  
...  

Acute myeloid leukemia (AML) is an aggressive cancer with a poor prognosis, for which the therapeutic landscape has changed little for decades. New evidence has revealed an important role for RNA modifications in cancer development and maintenance via the catalytic function of RNA-modifying enzymes. We and others have recently shown that METTL3, the RNA methyltransferase responsible for the deposition of N-6-methyl groups on adenosine (m6A) in mRNA, is a promising therapeutic target for AML1,2. Here we present the in vitro and in vivo characterization of novel small molecule inhibitors of METTL3 as an effective therapeutic strategy in AML. Recently, we generated a comprehensive catalogue of RNA-modifying enzymes that are essential for AML cells using CRISPR-Cas9 recessive screens and characterised METTL3 as a novel therapeutic candidate through its effects on mRNA translational efficiency of key leukemia oncogenes1. Using a structure-guided medicinal chemistry platform we developed and optimised small molecule inhibitors of METTL3 from 2 distinct chemical series. Here we demonstrate that compounds 1 and 2 show biochemical inhibition of METTL3 enzyme with single digit nanomolar potency, while direct binding to METTL3 was confirmed by Surface Plasmon Resonance (SPR) analysis with comparable potency between compounds. Additionally, we developed compound 3 as an inactive analog which was confirmed inactive in enzyme assays (>50 µM IC50). Importantly, we verified that compounds 1 and 2 are selective for METTL3 and do not inhibit a panel of other RNA, DNA or protein methyltransferases tested (>10 µM IC50). Cellular target engagement was confirmed by demonstrating that compounds 1 and 2 reduced m6A levels and inhibited the protein expression of METTL3-dependent m6A substrates in mouse and human AML models, including SP1, with nanomolar potency. Furthermore, treatment of MOLM13 cells with compounds 1 and 2 inhibited their proliferation with comparable potency to SP1 inhibition. The same anti-proliferative effect was observed using a large panel of human AML cell lines. In addition, polyribosome profiling in MOLM13 cells treated with compounds 1 and 2 revealed enhanced blocking of mRNA translation, mirroring the effects derived from the genetic inhibition of METTL3. Notably, all of the above effects were not observed when the inactive analog (compound 3) was used, further highlighting the specificity and sensitivity of our active candidates. We subsequently performed in vivo characterisation of compound 1. This compound exhibited excellent bioavailability after oral or intraperitoneal administration with good dose-proportional exposure in mice and a half-life of 3.5 hours. It also appeared to be well-tolerated with no body weight loss or clinical signs of toxicity. We also evaluated its anti-tumor effects in patient derived xenotransplantation experiments (PDX) as well as transplantation experiments using an MLL-AF9 driven primary murine AML model. Daily dosing of 30 mg/kg significantly inhibited AML expansion and reduced spleen weight compared to vehicle control, indicating a pronounced anti-tumor effect in vivo. Target engagement was confirmed in bone marrow and spleen as measured by the reduction of METTL3-dependent m6A targets. Importantly, we went on to demonstrate that, while the pharmacological inhibition of METTL3 is required for AML cell survival, it was dispensable for normal hematopoiesis. Collectively, we describe the detailed characterization of potent and selective inhibitors of the METTL3 RNA methyltransferase, and demonstrate their activity and utility using biochemical, cellular and in vivo systems. We show that inhibition of METTL3 by small molecules in vivo leads to strong anti-tumor effects in physiologically and clinically relevant models of AML. To our knowledge, this is the first study demonstrating in vivo activity of inhibitors of an RNA methyltransferase, hence providing proof of concept that RNA modifying enzymes represent a new target class for anti-cancer therapeutics. References Barbieri, I. et al. Promoter-bound METTL3 maintains myeloid leukaemia by m(6)A-dependent translation control. Nature552, 126-131, doi:10.1038/nature24678 (2017). Vu, L. P. et al. The N(6)-methyladenosine (m(6)A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med23, 1369-1376, doi:10.1038/nm.4416 (2017). Disclosures Yankova: STORM THERAPEUTICS: Employment. Fosbeary:STORM THERAPEUTICS: Employment. Hendrick:STORM THERAPEUTICS: Employment. Leggate:STORM THERAPEUTICS: Employment. Ofir-Rosenfeld:STORM THERAPEUTICS: Employment. Sapetschnig:STORM THERAPEUTICS: Employment. Albertella:STORM THERAPEUTICS: Employment. Blackaby:STORM THERAPEUTICS: Employment. Rausch:STORM THERAPEUTICS: Employment. Vassiliou:Kymab Ltd: Consultancy, Other: Minor Stockholder; Oxstem Ltd: Consultancy; Celgene: Research Funding. Kouzarides:STORM THERAPEUTICS: Equity Ownership.

Leukemia ◽  
2021 ◽  
Author(s):  
Madeline Niederkorn ◽  
Chiharu Ishikawa ◽  
Kathleen M. Hueneman ◽  
James Bartram ◽  
Emily Stepanchick ◽  
...  

AbstractUbiquitin-specific peptidase 15 (USP15) is a deubiquitinating enzyme implicated in critical cellular and oncogenic processes. We report that USP15 mRNA and protein are overexpressed in human acute myeloid leukemia (AML) as compared to normal hematopoietic progenitor cells. This high expression of USP15 in AML correlates with KEAP1 protein and suppression of NRF2. Knockdown or deletion of USP15 in human and mouse AML models significantly impairs leukemic progenitor function and viability and de-represses an antioxidant response through the KEAP1-NRF2 axis. Inhibition of USP15 and subsequent activation of NRF2 leads to redox perturbations in AML cells, coincident with impaired leukemic cell function. In contrast, USP15 is dispensable for human and mouse normal hematopoietic cells in vitro and in vivo. A preclinical small-molecule inhibitor of USP15 induced the KEAP1-NRF2 axis and impaired AML cell function, suggesting that targeting USP15 catalytic function can suppress AML. Based on these findings, we report that USP15 drives AML cell function, in part, by suppressing a critical oxidative stress sensor mechanism and permitting an aberrant redox state. Furthermore, we postulate that inhibition of USP15 activity with small molecule inhibitors will selectively impair leukemic progenitor cells by re-engaging homeostatic redox responses while sparing normal hematopoiesis.


Blood ◽  
2010 ◽  
Vol 115 (16) ◽  
pp. 3341-3345 ◽  
Author(s):  
Ke Cheng ◽  
Paolo Sportoletti ◽  
Keisuke Ito ◽  
John G. Clohessy ◽  
Julie Teruya-Feldstein ◽  
...  

Abstract Although NPM1 gene mutations leading to aberrant cytoplasmic expression of nucleophosmin (NPMc+) are the most frequent genetic lesions in acute myeloid leukemia, there is yet no experimental model demonstrating their oncogenicity in vivo. We report the generation and characterization of a transgenic mouse model expressing the most frequent human NPMc+ mutation driven by the myeloid-specific human MRP8 promoter (hMRP8-NPMc+). In parallel, we generated a similar wild-type NPM trans-genic model (hMRP8-NPM). Interestingly, hMRP8-NPMc+ transgenic mice developed myeloproliferation in bone marrow and spleen, whereas nontransgenic littermates and hMRP8-NPM transgenic mice remained disease free. These findings provide the first in vivo evidence indicating that NPMc+ confers a proliferative advantage in the myeloid lineage. No spontaneous acute myeloid leukemia was found in hMPR8-NPMc+ or hMRP8-NPM mice. This model will also aid in the development of therapeutic regimens that specifically target NPMc+.


Blood ◽  
2011 ◽  
Vol 117 (12) ◽  
pp. 3286-3293 ◽  
Author(s):  
Takashi Sato ◽  
Xiaochuan Yang ◽  
Steven Knapper ◽  
Paul White ◽  
B. Douglas Smith ◽  
...  

AbstractWe examined in vivo FLT3 inhibition in acute myeloid leukemia patients treated with chemotherapy followed by the FLT3 inhibitor lestaurtinib, comparing newly diagnosed acute myeloid leukemia patients with relapsed patients. Because we noted that in vivo FLT3 inhibition by lestaurtinib was less effective in the relapsed patients compared with the newly diagnosed patients, we investigated whether plasma FLT3 ligand (FL) levels could influence the efficacy of FLT3 inhibition in these patients. After intensive chemotherapy, FL levels rose to a mean of 488 pg/mL on day 15 of induction therapy for newly diagnosed patients, whereas they rose to a mean of 1148 pg/mL in the relapsed patients. FL levels rose even higher with successive courses of chemotherapy, to a mean of 3251 pg/mL after the fourth course. In vitro, exogenous FL at concentrations similar to those observed in patients mitigated FLT3 inhibition and cytotoxicity for each of 5 different FLT3 inhibitors (lestaurtinib, midostaurin, sorafenib, KW-2449, and AC220). The dramatic increase in FL level after chemotherapy represents a possible obstacle to inhibiting FLT3 in this clinical setting. These findings could have important implications regarding the design and outcome of trials of FLT3 inhibitors and furthermore suggest a rationale for targeting FL as a therapeutic strategy.


2018 ◽  
Author(s):  
Gerard Minuesa ◽  
Steven K. Albanese ◽  
Arthur Chow ◽  
Alexandra Schurer ◽  
Sun-Mi Park ◽  
...  

SUMMARYThe MUSASHI family of RNA binding proteins (MSI1 and MSI2) contribute to a wide spectrum of cancers including acute myeloid leukemia. We found that the small molecule Ro 08–2750 (Ro) directly binds to MSI2 and competes for its RNA binding in biochemical assays. Ro treatment in mouse and human myeloid leukemia cells resulted in an increase in differentiation and apoptosis, inhibition of known MSI-targets, and a shared global gene expression signature similar to shRNA depletion of MSI2. Ro demonstrated in vivo inhibition of c-MYC and reduced disease burden in a murine AML leukemia model. Thus, we have identified a small molecule that targets MSI’s oncogenic activity. Our study provides a framework for targeting RNA binding proteins in cancer.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 913-913
Author(s):  
Cheuk-Him Man ◽  
Chae-Yin Cher ◽  
Stephen S.Y. Lam ◽  
Eric S.K. Ho ◽  
Nelson K.L. Ng ◽  
...  

Abstract Increase in Tescalcin (TESC) gene expression and intracellular pH (pHi) have been associated with drug resistance in acute myeloid leukemia (AML). Tescalcin was shown to stabilize the membrane sodium/hydrogen exchanger (NHE1) that maintains a high pHi by H+ efflux in exchange for Na+. NHE1 has also been shown to be activated by PDGFR, PKC, calmodulin, p90-RSK and ROCK-RhoA, but their relevance to leukemogenesis and drug resistance in AML was unknown. We hypothesized that targeting NHE1 and its upstream activators might offer a novel and effective therapeutic strategy in AML. AML cell lines and mononuclear cell fraction from peripheral blood (PB) or bone marrow (BM) of AML patients (comprising primarily myeloblasts as shown by microscopic review of cytospin preparations) were treated with inhibitors for 3 days (concentrations: 0.1nM to 10mM) that target potential activators of NHE1. The anti-leukemia effects of these inhibitors were evaluated by PrestoBlue® Cell Viability Reagent as a measure of viable cell number. Their effects on pHi and apoptosis were evaluated by SNARF-1 and Annexin V/7-AAD staining respectively by flow cytometry. AML cell lines ML2, Kasumi-1, MOLM-13 and MV4-11 (IC50 in mM: 12.2, 13.1, 11.6 and 9.2 respectively) were more sensitive than KG1, NB4, THP-1 and OCI-AML3 (IC50 in mM: 30.7, 24.8, 119.2 and 49.4 respectively) to the growth inhibitory effects of NHE1 inhibitor, 5-(N,N-hexamethylene) amiloride (HMA), accompanied with a larger extent of cellular acidification and apoptosis induction in those 4 HMA-sensitive lines. To look for the upstream activators of NHE1 relevant to AML, the cell lines were treated with specific inhibitors targeting potential NHE1 activators. Both HMA-sensitive and insensitive cell lines were susceptible to the intracellular acidification and growth inhibition by PDGFR and p90-RSK inhibitors. Furthermore, FLT3 inhibitors, sorafenib and quizartinib, also reduced pHi of FLT3-ITD+ (Fms-Like Tyrosine Kinase 3 - Internal Tandem Duplication) AML cell lines, MOLM-13 and MV4-11, suggesting that FLT3-ITD might also activate NHE1, resulting in high pHi of FLT3-ITD+ AML. Different primary AML samples were treated with inhibitors to NHE1 (n=50), PDGFR (n=50) and p90-RSK (n=36) (Concentration: 100nM to 10mM) in vitro. Their response to the growth inhibitory effect of HMA, accompanied by effective pHi reduction (n=10), correlated with that of PDGFR and p90-RSK inhibitors (Pearson r=0.74, p<0.001 and r=0.73, p<0.001 respectively), supporting the proposition that these signaling pathways might be the critical and common activators of NHE1. Synergism of anti-leukemia effects could also be demonstrated between HMA and PDGFR inhibitors, calculated by Excess over Bliss Additivism (EOBA). To evaluate the clinical relevance of the study, serum was obtained from medical patients treated with high dose amiloride (20 mg daily), an NHE1 inhibitor, for underlying congestive heart failure. Compared with the serum of healthy volunteers, the amiloride-containing serum significantly reduced the pHi (n=10, p=0.001), induced apoptosis (n=4, p=0.04) and potentiated the inhibitory effects of PDGFR inhibitors (n=4, p=0.04) in primary AML samples. NHE1 might be a potential target in drug-resistant AML and activated by PDGFR, PKC, p90-RSK or both in a patient-specific fashion. Therefore, employing specific inhibitors to target NHE1 and its upstream activators should be explored as novel therapeutic strategy in this group of patients. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document