scholarly journals The Markedly Increased PAI1 in Obesity Induces a Compensatory Increase of Hepatocyte Tpa Expression By Activating a LRP1-CREB1 Pathway

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3625-3625
Author(s):  
Ze Zheng ◽  
Keiko Nakamura ◽  
Shana Gershbaum ◽  
Ira Tabas

Tissue-type plasminogen activator (tPA) initiates fibrinolysis, the primary mechanism that dissolves a thrombus. We have shown that in lean mice the hepatocytes maintain a basal level of circulating tPA that influences fibrinolysis in the occurrence of a vessel injury. As a serine protease, tPA is inhibited by the serpin plasminogen activator inhibitor 1 (PAI1). Both PAI1 and tPA which can be produced by hepatocytes, which is important for regulating energy metabolism and is sensitive to metabolic stress. In obesity, despite an increase in plasma tPA, blood tPA activity and fibrinolysis are reduced primarily due to a larger increase in PAI1. However, the source and regulatory mechanism of this phenomena are unknown. Palmitate treatment of human primary hepatocytes causes an increase in tPA mRNA/protein, reflecting the situation in the obese liver. This increase, however, is overcompensated by a larger increase in PAI1 mRNA, resulting in decreased net tPA activity in the cell culture medium. Silencing PAI1 mRNA with si-SERPINE1 in these cells increased tPA activity in the culture medium. Surprisingly, silencing PAI1 also prevented the increase of tPA mRNA induced by palmitate. Building on this observation, we further treated the cells with active recombinant PAI1 (rPAI1), which induced tPA expression. Next, we fed PAI1fl/flmice with a diet-induced obesity (DIO) diet for three months and silenced their hepatic PAI1 using AAV8-TBG-Cre, which inactivates ~95% floxed gene expression in hepatocytes but not in other cell types of the liver or other tissues. We found that while plasma tPA activity was increased in hepatocyte-PAI1 knockout mice, plasma tPA protein concentration was reduced. In other words, reducing hepatocyte PAI1 in obesity stopped the compensatory increase in liver tPA mRNA and protein. Thus, PAI1 induces tPA, which is likely a compensatory response. To explore the mechanism whereby rPAI1 induces tPA, we considered CREB1, as it is a transcription activator of tPA expression in endothelial cells and is expressed in hepatocytes. We found that CREB1 was activated (phosphorylated) by rPAI1 in human primary hepatocytes and that silencing CREB1 prevented the elevated tPA expression induced by rPAI1. Next, we silenced hepatic CREB1 in obese mice by treating DIO diet-fed CREB1fl/flmice with AAV8-TBG-Cre, which blocked the compensatory increase in tPA and thus worsened the impaired fibrinolysis in obesity. LDL receptor-related protein 1 (LRP1), the major cellular receptor of PAI1, can stimulate CREB1 transcription activity in neurons and adipocytes. As LRP1 is expressed on the surface of hepatocytes, we hypothesized that PAI1 activates CREB1 through LRP1-mediated signaling to increase tPA expression in obesity. Indeed, silencing LRP1 with si-LRP1 stopped the increase of tPA expression induced by rPAI1 in human primary hepatocytes. Interestingly, treating the cells with a mutant rPAI1 lacking the LRP1-interacting heparin-binding domain was unable to induce tPA expression. In summary, hepatocyte tPA mRNA/protein is increased in obesity, but this increase is ultimately overcompensated by a larger increase in PAI1, resulting in decreased plasma tPA activity and fibrinolysis. The markedly increased PAI1, through activating LRP1-CREB1 signaling pathway, drives an increase in hepatic tPA expression as a "compensatory" pathway in obesity. Preventing this compensatory pathway in obesity resulted in the worsening of fibrinolysis. Therapeutic boosting of this compensatory pathway may provide novel strategies to restore effective fibrinolysis in obesity. Disclosures No relevant conflicts of interest to declare.

1999 ◽  
Vol 82 (11) ◽  
pp. 1497-1503 ◽  
Author(s):  
Hajime Tsuji ◽  
Hiromi Nishimura ◽  
Haruchika Masuda ◽  
Yasushi Kunieda ◽  
Hidehiko Kawano ◽  
...  

SummaryIn the present study, we demonstrate that brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) interact with angiotensin II (Ang II) in regulative blood coagulation and fibrinolysis by suppressing the expressions of both tissue factor (TF) and plasminogen activator inhibitor-1 (PAI-1) induced by Ang II. The expressions of TF and PAI-1 mRNA were analyzed by northern blotting methods, and the activities of TF on the surface of rat aortic endothelial cells (RAECs) and PAI-1 in the culture media were respectively measured by chromogenic assay.Both BNP and CNP suppressed the expressions of TF and PAI-1 mRNA induced by Ang II in a time- and concentration-dependent manner via cGMP cascade, which suppressions were accompanied by respective decrease in activities of TF and PAI-1. However, neither the expression of tissue factor pathway inhibitor (TFPI) nor tissue-type plasminogen activator (TPA) mRNA was affected by the treatment of BNP and CNP.


1992 ◽  
Vol 68 (05) ◽  
pp. 486-494 ◽  
Author(s):  
Malou Philips ◽  
Anne-Grethe Juul ◽  
Johan Selmer ◽  
Bent Lind ◽  
Sixtus Thorsen

SummaryA new assay for functional plasminogen activator inhibitor 1 (PAI-1) in plasma was developed. The assay is based on the quantitative conversion of PAI-1 to urokinase-type plasminogen activator (u-PA)-PAI-l complex the concentration of which is then determined by an ELISA employing monoclonal anti-PAI-1 as catching antibody and monoclonal anti-u-PA as detecting antibody. The assay exhibits high sensitivity, specificity, accuracy, and precision. The level of functional PAI-1, tissue-type plasminogen activator (t-PA) activity and t-PA-PAI-1 complex was measured in normal subjects and in patients with venous thromboembolism in a silent phase. Blood collection procedures and calibration of the respective assays were rigorously standardized. It was found that the patients had a decreased fibrinolytic capacity. This could be ascribed to high plasma levels of PAI-1. The release of t-PA during venous occlusion of an arm for 10 min expressed as the increase in t-PA + t-PA-PAI-1 complex exhibited great variation and no significant difference could be demonstrated between the patients with a thrombotic tendency and the normal subjects.


Author(s):  
Aleksandra Antovic ◽  
Maria Bruzelius

AbstractThe pathogenesis of the antiphospholipid syndrome (APS) is complex and involves the persistent presence of antiphospholipid antibodies (aPL) in the bloodstream causing a prothrombotic condition. aPL induce excessive activation of the endothelium, monocytes, and platelets in consort with aberrations in hemostasis/clotting, fibrinolytic system, and complement activation. Impaired fibrinolysis has been found in APS patients with thrombotic as well as obstetric manifestations. Increased levels of plasminogen activator inhibitor-1 and thrombin-activatable fibrinolysis inhibitor, together with the presence of aPL against annexin-2, tissue-type plasminogen activator, and plasminogen contribute to the compromised fibrinolytic activity in these patients. Furthermore, unfavorably altered fibrin morphology, less amenable to fibrinolysis, has been proposed as a novel prothrombotic mechanism in APS. This review aims to summarize the present knowledge of the mechanisms involved in impaired fibrinolysis in APS patients. We also present a case from clinical practice as an illustration of fibrinolysis impairment in APS patients from a real-life setting.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu Zuo ◽  
Mark Warnock ◽  
Alyssa Harbaugh ◽  
Srilakshmi Yalavarthi ◽  
Kelsey Gockman ◽  
...  

AbstractPatients with coronavirus disease-19 (COVID-19) are at high risk for thrombotic arterial and venous occlusions. However, bleeding complications have also been observed in some patients. Understanding the balance between coagulation and fibrinolysis will help inform optimal approaches to thrombosis prophylaxis and potential utility of fibrinolytic-targeted therapies. 118 hospitalized COVID-19 patients and 30 healthy controls were included in the study. We measured plasma antigen levels of tissue-type plasminogen activator (tPA) and plasminogen activator inhibitor-1 (PAI-1) and performed spontaneous clot-lysis assays. We found markedly elevated tPA and PAI-1 levels in patients hospitalized with COVID-19. Both factors demonstrated strong correlations with neutrophil counts and markers of neutrophil activation. High levels of tPA and PAI-1 were associated with worse respiratory status. High levels of tPA, in particular, were strongly correlated with mortality and a significant enhancement in spontaneous ex vivo clot-lysis. While both tPA and PAI-1 are elevated among COVID-19 patients, extremely high levels of tPA enhance spontaneous fibrinolysis and are significantly associated with mortality in some patients. These data indicate that fibrinolytic homeostasis in COVID-19 is complex with a subset of patients expressing a balance of factors that may favor fibrinolysis. Further study of tPA as a biomarker is warranted.


Stroke ◽  
2014 ◽  
Vol 45 (suppl_1) ◽  
Author(s):  
Qi Liu ◽  
Xiang Fan ◽  
Helen Brogren ◽  
Ming-Ming Ning ◽  
Eng H Lo ◽  
...  

Aims: Plasminogen activator inhibitor-1 (PAI-1) is the main and potent endogenous tissue-type plasminogen activator (tPA) inhibitor, but an important question on whether PAI-1 in blood stream responds and interferes with the exogenously administered tPA remains unexplored. We for the first time investigated temporal profiles of PAI-1 concentration and activity in circulation after stroke and tPA administration in rats. Methods: Permanent MCAO focal stroke of rats were treated with saline or 10mg/kg tPA at 3 hours after stroke (n=10 per group). Plasma (platelet free) PAI-1 antigen and activity levels were measured by ELISA at before stroke, 3, 4.5 (1.5 hours after saline or tPA treatments) and 24 hours after stroke. Since vascular endothelial cells and platelets are two major cellular sources for PAI-1 in circulation, we measured releases of PAI-1 from cultured endothelial cells and isolated platelets after direct tPA (4 μg/ml) exposures for 60 min in vitro by ELISA (n=4 per group). Results: At 3 hours after stroke, both plasma PAI-1 antigen and activity were significantly increased (3.09±0.67, and 3.42±0.57 fold of before stroke baseline, respectively, all data are expressed as mean±SE). At 4.5 hours after stroke, intravenous tPA administration significantly further elevated PAI-1 antigen levels (5.26±1.24), while as expected that tPA neutralized most elevated PAI-1 activity (0.33±0.05). At 24 hours after stroke, PAI-1 antigen levels returned to the before baseline level, however, there was a significantly higher PAI-1 activity (2.51±0.53) in tPA treated rats. In vitro tPA exposures significantly increased PAI-1 releases into culture medium in cultured endothelial cells (1.65±0.08) and platelets (2.02±0.17). Conclution: Our experimental results suggest that tPA administration may further elevate stroke-increased blood PAI-1 concentration, but also increase PAI-1 activity at late 24 hours after stroke. The increased PAI-1 releases after tPA exposures in vitro suggest tPA may directly stimulate PAI-1 secretions from vascular walls and circulation platelets, which partially contributes to the PAI-1 elevation observed in focal stroke rats. The underlying regulation mechanisms and pathological consequence need further investigation.


2002 ◽  
Vol 88 (07) ◽  
pp. 137-143 ◽  
Author(s):  
Ann Gils ◽  
Jean-Marie Stassen ◽  
Herbert Nar ◽  
Joerg Kley ◽  
Wolfgang Wienen ◽  
...  

SummaryPlasminogen activator inhibitor-1 (PAI-1), the primary physiological inhibitor of both tissue-type plasminogen activator and urokinasetype plasminogen activator in plasma, is a well established risk factor in thrombotic diseases. Reduction of active PAI-1 levels may lead to a decreased tendency of thrombosis. Compounds that can suppress pharmacologically active PAI-1 levels are therefore considered as putative drugs.In the present study, we describe the PAI-1 neutralizing properties and mechanism of a newly selected compound (i. e. fendosal, HP129) in comparison to four previously reported compounds (i. e. AR-H029953XX, XR1853, XR5118 and the peptide TVASS) using different assays. The inhibitory effect of these compounds on active PAI-1 was analyzed by a plasmin-coupled chromogenic assay (Coaset® t-PA), direct chromogenic assays (t-PA, u-PA) and quantification of complex formation by ELISA, SDS-PAGE and surface plasmon resonance. Comparative evaluation of the obtained IC50 values reveals large differences [i. e. IC50 of 15 µM (HP129) vs. >1000 µM (XR5118) determined at 37° C using SDS-PAGE] between the compounds studied.Importantly, the relative potency of the various compounds is also dependent on the method used (10 to 170-fold differences in IC50 values). Characterization of the PAI-1 forms (i. e. active, non-reactive and substrate) generated upon inactivation reveals that the newly described compound HP129 induces a unique pathway (i. e. active to non-reactive conversion via a substrate-behaving intermediate) of inactivation compared to the other compounds.Taken together, these data strongly suggest that the various compounds act through different mechanisms. In addition, the results stress the necessity for a careful selection of the method used for the evaluation of PAI-1 inhibitors, preferably requiring a panel of screening methods.


1995 ◽  
Vol 268 (6) ◽  
pp. E1065-E1069 ◽  
Author(s):  
M. Yamashita ◽  
D. N. Darlington ◽  
E. J. Weeks ◽  
R. O. Jones ◽  
D. S. Gann

Large hemorrhage leads to hypercoagulability, a phenomenon that has never been well explained. Because an elevation of plasminogen activator inhibitor (PAI)-1 increases procoagulant activity, we have determined whether plasma PAI activity and tissue PAI-1 mRNA are elevated after hemorrhage. Sprague-Dawley rats were bled (20 or 15 ml/kg) 4 days after cannulation. Plasma PAI activity was determined by the capacity of plasma to inhibit tissue-type plasminogen activator activity. Changes of PAI-1 mRNA in various tissues were detected by high-performance liquid chromatography after reverse transcription and polymerase chain reaction. Hemorrhage (20 ml/kg) significantly elevated plasma PAI activity at 0.5, 1, 2, 4, 6, and 8 h after hemorrhage and PAI-1 mRNA in liver at 1, 2, 4, and 6 h after hemorrhage. The PAI-1 message was also significantly elevated in lung, heart, and kidney at 4 h after hemorrhage. The increases of PAI-1 mRNA after 20 ml/kg hemorrhage were significantly greater than those after 15 ml/kg hemorrhage. These findings indicate that large hemorrhage can induce the increases in PAI activity and PAI-1 message and suggest that induction of PAI-1 may be involved in the thrombogenic responses observed after large hemorrhage.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4217-4217
Author(s):  
Gabriela Chang ◽  
Helen M. Atkinson ◽  
Leslie R. Berry ◽  
Anthony K.C. Chan

Abstract Introduction: Unfractionated heparin (UFH) and low molecular weight heparin (LMWH) are widely used anticoagulants for thrombosis treatment. However, these anticoagulants have limitations such as increased bleeding, variable dose response, required frequent monitoring, and, in the case of LMWH, inability to inhibit thrombin. This has led to the development of a covalent complex of antithrombin and heparin (ATH), which has been shown to overcome many of these shortcomings. ATH has faster rates of inhibition of many coagulation factors, is able to inhibit clot-bound thrombin, and is a more effective inhibitor of both venous and arterial thrombosis in animal models. Moreover, in a rabbit thrombosis model, ATH has been shown to decrease clot mass and fibrin accretion, while the contrary was observed for UFH. From these observations, it was suggested that ATH may enhance fibrin breakdown and thus led to investigations into the effects of UFH and ATH on fibrinolysis. In vitro studies have shown that UFH enhances antithrombin inhibition of plasmin. In addition, ATH displays a slightly greater inhibition of plasmin generation and activity. Such studies were conducted in purified systems, in the absence of other plasmin inhibitors naturally present in plasma. Therefore, the aim of the present study was to compare the effects of UFH, LMWH, and ATH on plasmin generation in plasma. Methods: At 37°C tissue plasminogen activator (tPA) and soluble fibrin fragments (fib) were added to normal adult pooled platelet poor plasma supplemented with 0.35, 0.7, 1.4, or 2.1 U anti-Xa/ml UFH, LMWH, or ATH, to initiate plasmin generation (8.93nM tPA and 300µg/ml fib). At various time points, subsamples were mixed with excess plasminogen activator inhibitor 1 (PAI-1) (55.12nM) to stop further plasmin generation. The plasmin concentration at each time point was determined using a plasmin-specific chromogenic substrate and a standard curve produced from purified plasmin. Results: Comparisons of mean area under the curve (AUC) for plasmin generation displayed a significant decrease in plasmin generation in the presence of all three anticoagulants at all doses tested (p<0.05). Comparing the anticoagulants at similar doses, plasmin generation was significantly decreased in the presence of ATH (15384.66±1930.23nM/min) compared to LMWH (23892.28±3090.54nM/min) at 0.7 U/ml (p<0.05). At a dose of 1.4 U/ml, there was significantly less plasmin generated, over time, in the presence of UFH (20089.49±3022.1623nM/min) and ATH (19273.86±1805.7323nM/min) when compared to LMWH (24743.18±1265.1023nM/min) (p<0.05). There was no significant difference in plasmin inhibition between UFH and ATH at any of the doses tested. Conclusion: The present study supports previous findings that UFH and ATH can facilitate antithrombin inhibition of plasmin. It is also observed that LMWH catalyzes the inhibition of plasmin by antithrombin but possibly to a lesser extent. These findings suggest that ATH has a similar inhibitory effect on plasmin generation and activity in plasma compared to UFH, despite its overall superior anticoagulant properties. Therefore, previous in vivo observations displaying decrease in clot mass with administration of ATH was due to its enhanced anticoagulant abilities and not fibrinolysis enhancement. These findings add to our understanding of ATH mechanisms of action and aid in its development for clinical use. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document