scholarly journals JAK2V617F Clonal Hematopoiesis Stratifies By Peripheral Blood Counts.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1203-1203
Author(s):  
Andrew Sochacki ◽  
Shilin Zhao ◽  
Cosmin Adrian Bejan ◽  
Travis Spaulding ◽  
Shannon Stockton ◽  
...  

Background:Patients with clonal hematopoiesis (CH) in the absence of WHO-classified myeloid disease are of special interest given their increased prevalence with age, predisposition to morbid cardiovascular complications, and amplified risk of overt hematologic malignancy. Pts are often stratified by normal peripheral blood counts into clonal hematopoiesis of indeterminate potential (CHIP), or those with unexplained cytopenias as clonal cytopenias of undetermined significance (CCUS). However, less is known about pts with elevated counts and clonal hematopoiesis who do not fulfill WHO criteria for any myeloproliferative neoplasia (MPN). We leveraged Vanderbilt University Medical Center's unique biobank, BioVU, to identify the prevalence of JAK2V617Facross 48,000 pts to evaluate the clinical changes in progression from CH to overt myeloid disease. Methods:To develop a reference JAKV617Ftraining set, next generation sequencing via Illumina Trusight Myeloid Panel (NGS) was performed on BioVU samples (N=133) from pts with confirmed myeloproliferative malignancy. Of those pts, 78 harbored JAK2V617Fwith a range of variant allele frequencies (VAF). Matched samples in this training set (N=133) were also analyzed via Infinium® Expanded Multi-Ethnic Genotyping Array (MEGAEX). SNP array JAK2V617Fvariant intensity was extracted (rs77375493; NM_004972.3(JAK2): c.1849G>T (p.Val617Phe). A regression model was built using NGS VAF as a dependent variable and MEGAEX intensity data as independent variable (r2=0.9931).Based on this model, we imputed JAK2V617FVAF for all 48,000 pts in our cohort. Pts with JAK2V617Fwere subdivided into: clinically confirmed myeloid disease, or JAK2V617Fwithout a diagnosis of MPN. Upon review of the EMR, the latter group was further dived into: 1) probable undiagnosedMPN, 2) CHIP, 3) CCUS, or 4) CH with associated elevated peripheral blood counts (CHAPbc). Only lab values after the date of JAK2V617Fdetection were included. Confirmed malignancy was defined by WHO classification of disease. Pts with evidence of possible WHO classified PV or ET with Hgb >18.5g/dl in men, >16.5g/dl in women, or PLT count >450k/mcl regardless of gender were classified as probable undiagnosedMPN. CHIP was defined as JAK2V617Fwithout abnormal counts across a patient's EMR lifetime, except when confounding events, e.g. trauma surgery or overt iron deficiency anemia, incorrectly skewed values. CCUS was defined as JAK2V617Fin the presence of unexplained cytopenias; hemoglobin (Hgb) <13.5g/dl men or <12g/dl women, leukocyte count (WBC) <3.9x10^3/uL or platelet (PLT) <135 x10^3/mcL. We classified pts with elevated blood counts who did not meet the WHO classification of MPN [e.g. WBC >10.7 regardless of gender, Hgb 18-18.5 g/dL in men or 16.0-16.5 g/dL in women with maximum Hgb no greater than 18.5g/dl in men and 16.5g/dl in women, or PLT count between 371-450k/mcl regardless of gender (and no values >450k/mcl)] as CHAPbc. Results:We identified 410 of 48,000 pts who harbored JAK2V617F(0.85% prevalence). Of those, 270/410 had clinically diagnosed hematologic malignancy including primary myelofibrosis (PMF) (79), ET (48), PV (43) and Ph-MPN NOS (29). MDS (29), AML (15), NHL (16), plasma cell dyscrasias (5), CML (3), other (3). There were 19/410 with insufficient clinical data to determine diagnosis. The remaining 121/410 JAK2V617Fpts did not have a related diagnosis. Figure 1a demonstrates imputed VAF differences in JAK2V617Fbetween known MPN vs. CH (including undiagnosed MPN) by age (mean VAF 0.44 vs. 0.17 respectively P<0.001). We identified several undiagnosed MPNs (22), which subdivided into polycythemia predominant (1), thrombocythemia predominant (16) or a combination of polycythemia and thrombocythemia (5). The remaining 99/410 cases were CH,with CHIP (55), CCUS (29), and CHAPbc (15). Ranges of blood counts appear to be a continuous variable among JAK2V617Fpts with CH or undiagnosed MPN (Fig 1b-1d). Summary: We used an unbiased approach to identify the prevalence of JAK2V617Facross all pts at a single institution. In this cohort, hematologic malignancy and CH did stratify by imputed VAF. Further, within JAK2V617FCH, CHAPbc may be differentiated from CHIP by clinical phenotype and further investigation will be required to determine its impact on patient outcomes. Disclosures Savona: Sunesis: Research Funding; TG Therapeutics: Membership on an entity's Board of Directors or advisory committees, Research Funding; Incyte Corporation: Membership on an entity's Board of Directors or advisory committees, Research Funding; AbbVie: Membership on an entity's Board of Directors or advisory committees; Boehringer Ingelheim: Patents & Royalties; Selvita: Membership on an entity's Board of Directors or advisory committees; Karyopharm Therapeutics: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Celgene Corporation: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1091-1091
Author(s):  
Tarek H. Mouhieddine ◽  
Chidimma Nzerem ◽  
Robert A. Redd ◽  
Andrew Dunford ◽  
Matthew Joseph Leventhal ◽  
...  

Abstract Background: Recent studies have identified clinical and genomic factors contributing to worse clinical outcomes in patients with multiple myeloma (MM). Clonal hematopoiesis (CH) reflects the presence of somatic driver mutations in the blood or marrow of otherwise asymptomatic individuals. Using a variant allele frequency (VAF) cutoff of 2%, we recently reported CH in 21.6% of MM patients at the time of autologous stem cell transplant (ASCT) and found it was associated with shorter overall survival (OS) and progression-free survival (PFS) in those who did not receive maintenance therapy with an immunomodulatory drug (IMiD). However, this finding was based on a single tertiary center and only included MM patients who received ASCT. Methods: We studied a larger cohort of 986 newly diagnosed MM cases. Whole-exome sequencing (WES) data of peripheral blood and bone marrow samples of 986 MM patients (523 transplanted and 463 non-transplanted) from the Multiple Myeloma Research Foundation (MMRF) Clinical Outcomes in MM to Personal Assessment of Genetic Profile (CoMMpass, NCT0145429) study were analyzed. Both peripheral blood and tumor samples were analyzed to filter out myeloma mutations that could be contaminating the peripheral blood. Given the lower depth of coverage compared to prior targeted sequencing studies, small clones with a VAF below 2% were not detected. Altogether, the WES samples had a total depth of coverage of 117.68X. All data were analyzed using R version 3.5.0 (R Core Team). Results: Among the total cohort, 113 CH mutations were detected in 101/986 (10.24%) patients. CH was detected in 42/523 (8.03%) transplanted patients, compared to 59/463 (12.74%) non-transplanted patients. The most commonly mutated genes were DNMT3A, TET2, ASXL1, PPM1D, and TP53. The median age of the cohort was 63 years (range: 27 - 93), 60% were male, and median follow-up was 3.9 years (95% CI: 3.7 - 4.0). The presence of CH was associated with age (69 vs. 62 years, P &lt; 0.001). As expected, the median age of transplanted patients was lower (60 vs. 67 years) than in the non-transplanted group, which likely explains the higher prevalence of CH detected in the non-transplanted group. CH was associated with recurrent bacterial infections (P = 0.01) and increased cardiovascular disease (P = 0.006), but not with cerebrovascular disease (P = 0.74) or coagulopathies (P = 0.65). There was a trend towards worse PFS in non-ASCT patients with CH who were not treated with IMiDs (1.8 years) compared to non-CH IMiD-treated patients (2.7 years) (P &lt; 0.001). A CH effect on PFS was not detected in ASCT patients. OS was not different in those with or without CH in both ASCT and non-ASCT groups. 8 (0.8%) patients developed a second hematologic malignancy. CH at the time of MM diagnosis was not associated with an increased risk of developing a second hematologic malignancy (P = 0.58). To determine whether CH clones emerged or evolved during treatment, we examined serial samples from 52 patients (36 ASCT patients and 16 non-transplanted patients) with sequential samples. The median time between the first and second time point was 3.1 years (range: 1.0 - 5.4 years). At the first time point, only 3/52 (5.8%) patients had CH, but that number increased to 13/52 (25.0%) at the second time point. Five out of the 13 (38%) were non-transplanted patients. All but 1 patient were exposed to IMiDs. The most common emerging mutated gene was DNMT3A, found in 7 patient samples at the second time point, compared to 2 patients at the first time point. Conclusion: Using WES in a large cohort of newly diagnosed MM patients, we detected CH in 10.2% (VAF ≥ 2%) of patients. CH and non-IMiD treatment confers a shorter PFS in non-transplanted MM patients. However, throughout IMiD-based treatment, MM patients tend to acquire and/or expand previously undetected CH clones, particularly DNMT3A. The clinical significance of this clonal expansion during therapy is yet to be elucidated, and for now, this observation does not yet change clinical management. Figure 1 Figure 1. Disclosures Steensma: Novartis: Current Employment. Ebert: Deerfield: Research Funding; GRAIL: Consultancy; Exo Therapeutics: Membership on an entity's Board of Directors or advisory committees; Celgene: Research Funding; Skyhawk Therapeutics: Membership on an entity's Board of Directors or advisory committees. Soiffer: NMPD - Be the Match, USA: Membership on an entity's Board of Directors or advisory committees; Gilead, USA: Other: Career Development Award Committee; Rheos Therapeutics, USA: Consultancy; Kiadis, Netherlands: Membership on an entity's Board of Directors or advisory committees; Juno Therapeutics, USA: Other: Data Safety Monitoring Board; Precision Biosciences, USA: Consultancy; Jazz Pharmaceuticals, USA: Consultancy; Jasper: Consultancy; Takeda: Consultancy. Sperling: Adaptive: Consultancy. Getz: Scorpion Therapeutics: Consultancy, Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees; IBM, Pharmacyclics: Research Funding. Ghobrial: AbbVie, Adaptive, Aptitude Health, BMS, Cellectar, Curio Science, Genetch, Janssen, Janssen Central American and Caribbean, Karyopharm, Medscape, Oncopeptides, Sanofi, Takeda, The Binding Site, GNS, GSK: Consultancy.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 42-43
Author(s):  
Prajish Iyer ◽  
Lu Yang ◽  
Zhi-Zhang Yang ◽  
Charla R. Secreto ◽  
Sutapa Sinha ◽  
...  

Despite recent developments in the therapy of chronic lymphocytic leukemia (CLL), Richter's transformation (RT), an aggressive lymphoma, remains a clinical challenge. Immune checkpoint inhibitor (ICI) therapy has shown promise in selective lymphoma types, however, only 30-40% RT patients respond to anti-PD1 pembrolizumab; while the underlying CLL failed to respond and 10% CLL patients progress rapidly within 2 months of treatment. Studies indicate pre-existing T cells in tumor biopsies are associated with a greater anti-PD1 response, hence we hypothesized that pre-existing T cell subset characteristics and regulation in anti-PD1 responders differed from those who progressed in CLL. We used mass cytometry (CyTOF) to analyze T cell subsets isolated from peripheral blood mononuclear cells (PBMCs) from 19 patients with who received pembrolizumab as a single agent. PBMCs were obtained baseline(pre-therapy) and within 3 months of therapy initiation. Among this cohort, 3 patients had complete or partial response (responders), 2 patients had rapid disease progression (progressors) (Fig. A), and 14 had stable disease (non-responders) within the first 3 months of therapy. CyTOF analysis revealed that Treg subsets in responders as compared with progressors or non-responders (MFI -55 vs.30, p=0.001) at both baseline and post-therapy were increased (Fig. B). This quantitative analysis indicated an existing difference in Tregs and distinct molecular dynamic changes in response to pembrolizumab between responders and progressors. To delineate the T cell characteristics in progressors and responders, we performed single-cell RNA-seq (SC-RNA-seq; 10X Genomics platform) using T (CD3+) cells enriched from PBMCs derived from three patients (1 responder: RS2; 2 progressors: CLL14, CLL17) before and after treatment. A total of ~10000 cells were captured and an average of 1215 genes was detected per cell. Using a clustering approach (Seurat V3.1.5), we identified 7 T cell clusters based on transcriptional signature (Fig.C). Responders had a larger fraction of Tregs (Cluster 5) as compared with progressors (p=0.03, Fig. D), and these Tregs showed an IFN-related gene signature (Fig. E). To determine any changes in the cellular circuitry in Tregs between responders and progressors, we used FOXP3, CD25, and CD127 as markers for Tregs in our SC-RNA-seq data. We saw a greater expression of FOXP3, CD25, CD127, in RS2 in comparison to CLL17 and CLL14. Gene set enrichment analysis (GSEA) revealed the upregulation of genes involved in lymphocyte activation and FOXP3-regulated Treg development-related pathways in the responder's Tregs (Fig.F). Together, the greater expression of genes involved in Treg activation may reduce the suppressive functions of Tregs, which led to the response to anti-PD1 treatment seen in RS2 consistent with Tregs in melanoma. To delineate any state changes in T cells between progressors and responder, we performed trajectory analysis using Monocle (R package tool) and identified enrichment of MYC/TNF/IFNG gene signature in state 1 and an effector T signature in state 3 For RS2 after treatment (p=0.003), indicating pembrolizumab induced proliferative and functional T cell signatures in the responder only. Further, our single-cell results were supported by the T cell receptor (TCR beta) repertoire analysis (Adaptive Biotechnology). As an inverse measure of TCR diversity, productive TCR clonality in CLL14 and CLL17 samples was 0.638 and 0.408 at baseline, respectively. Fifty percent of all peripheral blood T cells were represented by one large TCR clone in CLL14(progressor) suggesting tumor related T-cell clone expansion. In contrast, RS2(responder) contained a profile of diverse T cell clones with a clonality of 0.027 (Fig. H). Pembrolizumab therapy did not change the clonality of the three patients during the treatment course (data not shown). In summary, we identified enriched Treg signatures delineating responders from progressors on pembrolizumab treatment, paradoxical to the current understanding of T cell subsets in solid tumors. However, these data are consistent with the recent observation that the presence of Tregs suggests a better prognosis in Hodgkin lymphoma, Follicular lymphoma, and other hematological malignancies. Figure 1 Disclosures Kay: Pharmacyclics: Membership on an entity's Board of Directors or advisory committees, Research Funding; Oncotracker: Membership on an entity's Board of Directors or advisory committees; Rigel: Membership on an entity's Board of Directors or advisory committees; Juno Theraputics: Membership on an entity's Board of Directors or advisory committees; Agios Pharma: Membership on an entity's Board of Directors or advisory committees; Cytomx: Membership on an entity's Board of Directors or advisory committees; Astra Zeneca: Membership on an entity's Board of Directors or advisory committees; Morpho-sys: Membership on an entity's Board of Directors or advisory committees; Tolero Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol Meyer Squib: Membership on an entity's Board of Directors or advisory committees, Research Funding; Acerta Pharma: Research Funding; Sunesis: Research Funding; Dava Oncology: Membership on an entity's Board of Directors or advisory committees; Abbvie: Research Funding; MEI Pharma: Research Funding. Ansell:AI Therapeutics: Research Funding; Takeda: Research Funding; Trillium: Research Funding; Affimed: Research Funding; Bristol Myers Squibb: Research Funding; Regeneron: Research Funding; Seattle Genetics: Research Funding; ADC Therapeutics: Research Funding. Ding:Astra Zeneca: Research Funding; Abbvie: Research Funding; Octapharma: Membership on an entity's Board of Directors or advisory committees; MEI Pharma: Membership on an entity's Board of Directors or advisory committees; alexion: Membership on an entity's Board of Directors or advisory committees; Beigene: Membership on an entity's Board of Directors or advisory committees; DTRM: Research Funding; Merck: Membership on an entity's Board of Directors or advisory committees, Research Funding. OffLabel Disclosure: pembrolizumab


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 9-10
Author(s):  
Piers Blombery ◽  
Ella R Thompson ◽  
Xiangting Chen ◽  
Tamia Nguyen ◽  
Mary Ann Anderson ◽  
...  

Venetoclax (Ven) is an effective element of treatments for chronic lymphocytic leukemia (CLL) with high response rates observed in the upfront and relapsed/refractory (R/R) settings. In addition to inducing apoptosis in CLL cells, Ven also induces apoptosis within normal and malignant myeloid lineage populations (accounting for its efficacy in the treatment of acute myeloid leukemia). We investigated the effects of Ven outside the target tumor compartment in patients (pts) with CLL receiving long-term continuous Ven and make the novel observation of the development of BAX-mutated clonal hematopoiesis in this heavily pre-treated patient group. 92 pts with CLL receiving continuous non time-limited Ven have been treated at our institutions on clinical trials. Of these, 41 had sufficient (&gt;6 mo) follow up (median 70; range 14-95 mo) and suitable samples available for further analysis. 38/41 (93%) pts had received previous treatment with alkylators and/or fludarabine. In order to assess the non-CLL compartment in these 41 pts we identified those with peripheral blood or bone marrow aspirate samples taken during deep response to Ven demonstrating either minimal (&lt;5%) or no CLL involvement by flow cytometry (sensitivity 10-4). We initially performed unique molecular index (UMI)-based targeted next generation sequencing of apoptosis pathway genes as well a panel of 60 genes recurrently mutated in lymphoid and myeloid malignancy. From these 41 pts we identified mutations in the apoptosis effector BAX in samples from 12 (29%). 20 different BAX mutations were observed across these 12 pts at variant allele frequencies (VAF) consistent with their occurrence in the non-CLL compartment. Mutations included frameshift, nonsense, canonical splice site and missense mutations occurring in key structural elements of BAX consistent with a loss-of-function mechanism (Fig 1A). Interestingly, an enrichment of missense and truncating mutations predicted to escape nonsense mediated decay were observed at the C-terminus of the BAX protein affecting the critical α9 helix. Mutations in this region have previously been shown in cell lines to cause aberrant intracellular BAX localization and abrogation of normal BAX function in apoptosis (Fresquet Blood 2014; Kuwana J Biol Chem 2020). For comparison, NGS targeted sequencing for BAX mutations was performed on samples from cohorts of pts with (i) myeloid or lymphoid malignancy (n=80) or (ii) R/R CLL treated with BTK inhibitors (n=15) after a similar extent of preceding chemotherapy. Neither of these cohorts had previous exposure to Ven. BAX mutations were not detected in any samples from these pts. Longitudinal sampling from pts on Ven harboring BAX mutations in the non-CLL compartment was performed to further understand compartment dynamics over time (in 9 pts over 21-93 months of follow up). Multiple pts demonstrated a progressive increase in VAF of single BAX mutations over time to become clonally dominant within the non-CLL compartment and with observed VAFs consistent with their presence in the myeloid compartment. Mutations in other genes implicated in clonal hematopoiesis and myeloid malignancy including ASXL1, DNMT3A, TET2, U2AF1 and ZRSR2 were also detected in these pts samples. Targeted amplicon single cell sequencing (Mission Bio) demonstrated the co-occurrence of clonally progressive BAX mutations within the same clones as mutations in DNMT3A and ASXL1 as well as the existence of further BAX mutations at low VAF outside these dominant clones which remained non-progressive over time (Fig 1B). In addition, fluctuations in the presence and VAF of myeloid-disease associated mutations was noted with Ven exposure. In aggregate these data are consistent with the existence of a selective pressure within the myeloid compartment of these pts and an interplay of BAX with other mutations in determining survival and enrichment of these clones over time with ongoing Ven therapy. In summary, we have observed the development of BAX-mutated clonal hematopoiesis specifically in pts with CLL treated with long-term Ven. These data are consistent with a multi-lineage pharmacological effect of Ven leading to a survival advantage for clones harboring BAX mutations within the myeloid compartment during chronic Ven exposure. Finally, our data support the further investigation of BAX mutations as a potential resistance mechanism in myeloid malignancies treated with Ven. Disclosures Blombery: Invivoscribe: Honoraria; Amgen: Consultancy; Janssen: Honoraria; Novartis: Consultancy. Anderson:Walter and Eliza Hall Institute: Patents & Royalties: milestone and royalty payments related to venetoclax.. Seymour:Celgene: Consultancy, Honoraria, Research Funding; F. Hoffmann-La Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Janssen: Consultancy, Honoraria, Research Funding; AstraZeneca: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Gilead: Consultancy; Mei Pharma: Consultancy, Honoraria; Morphosys: Consultancy, Honoraria; Nurix: Honoraria; AbbVie: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Tam:Janssen: Honoraria, Research Funding; AbbVie: Honoraria, Research Funding; BeiGene: Honoraria. Huang:Servier: Research Funding; Walter and Eliza Hall Institute: Patents & Royalties: milestone and royalty payments related to venetoclax.; Genentech: Research Funding. Wei:Janssen: Honoraria, Other; Walter and Eliza Hall Institute: Patents & Royalties; AMGEN: Honoraria, Other: Advisory committee, Research Funding; Novartis: Honoraria, Research Funding, Speakers Bureau; Astellas: Honoraria, Other: Advisory committee; Pfizer: Honoraria, Other: Advisory committee; Macrogenics: Honoraria, Other: Advisory committee; Abbvie: Honoraria, Other: Advisory committee, Research Funding, Speakers Bureau; Genentech: Honoraria, Other: Advisory committee; Servier: Consultancy, Honoraria, Other: Advisory committee; Celgene: Honoraria, Other: Advisory committee, Speakers Bureau; Astra-Zeneca: Honoraria, Other: Advisory committee, Research Funding. Roberts:Janssen: Research Funding; Servier: Research Funding; AbbVie: Research Funding; Genentech: Patents & Royalties: for venetoclax to one of my employers (Walter & Eliza Hall Institute); I receive a share of these royalties.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1962-1962
Author(s):  
Sandhya R. Panch ◽  
Brent R. Logan ◽  
Jennifer A. Sees ◽  
Bipin N. Savani ◽  
Nirali N. Shah ◽  
...  

Introduction: Approximately 7% of unrelated hematopoietic stem cell (HSC) donors are asked to donate a subsequent time to the same or different recipient. In a recent large CIBMTR study of second time donors, Stroncek et al. incidentally found that second peripheral blood stem cell (PBSC) collections had lower total CD34+ cells, CD34+ cells per liter of whole blood processed, and CD34+ cells per kg donor weight. Based on smaller studies, the time between the two independent PBSC donations (inter-donation interval) as well as donor sex, race and baseline lymphocyte counts appear to influence CD34+ cell yields at subsequent donations. Our objective was to retrospectively evaluate factors contributory to CD34+ cell yields at subsequent PBSC donation amongst NMDP donors. Methods. The study population consisted of filgrastim (G-CSF) mobilized PBSC donors through the NMDP/CIBMTR between 2006 and 2017, with a subsequent donation of the same product. evaluated the impact of inter-donation interval, donor demographics (age, BMI, race, sex, G-CSF dose, year of procedure, need for central line) and changes in complete blood counts (CBC), on the CD34+ cell yields/liter (x106/L) of blood processed at second donation and pre-apheresis (Day 5) peripheral blood CD34+ cell counts/liter (x106/L) at second donation. Linear regression was used to model log cell yields as a function of donor and collection related variables, time between donations, and changes in baseline values from first to second donation. Stepwise model building, along with interactions among significant variables were assessed. The Pearson chi-square test or the Kruskal-Wallis test compared discrete variables or continuous variables, respectively. For multivariate analysis, a significance level of 0.01 was used due to the large number of variables considered. Results: Among 513 PBSC donors who subsequently donated a second PBSC product, clinically relevant decreases in values at the second donation were observed in pre-apheresis CD34+ cells (73.9 vs. 68.6; p=0.03), CD34+cells/L blood processed (32.2 vs. 30.1; p=0.06), and total final CD34+ cell count (x106) (608 vs. 556; p=0.02). Median time interval between first and second PBSC donations was 11.7 months (range: 0.3-128.1). Using the median pre-apheresis peripheral blood CD34+ cell counts from donation 1 as the cut-off for high versus low mobilizers, we found that individuals who were likely to be high or low mobilizers at first donation were also likely to be high or low mobilizers at second donation, respectively (Table 1). This was independent of the inter-donation interval. In multivariate analyses, those with an inter-donation interval of >12 months, demonstrated higher CD34+cells/L blood processed compared to donors donating within a year (mean ratio 1.15, p<0.0001). Change in donor BMI was also a predictor for PBSC yields. If donor BMI decreased at second donation, so did the CD34+cells/L blood processed (0.74, p <0.0001). An average G-CSF dose above 960mcg was also associated with an increase in CD34+cells/L blood processed compared to donors who received less than 960mcg (1.04, p=0.005). (Table 2A). Pre-apheresis peripheral blood CD34+ cells on Day 5 of second donation were also affected by the inter-donation interval, with higher cell counts associated with a longer time interval (>12 months) between donations (1.23, p<0.0001). Further, independent of the inter-donation interval, GCSF doses greater than 960mcg per day associated with higher pre-apheresis CD34+ cells at second donation (1.26, p<0.0001); as was a higher baseline WBC count (>6.9) (1.3, p<0.0001) (Table 2B). Conclusions: In this large retrospective study of second time unrelated PBSC donors, a longer inter-donation interval was confirmed to be associated with better PBSC mobilization and collection. Given hematopoietic stem cell cycling times of 9-12 months in humans, where possible, repeat donors may be chosen based on these intervals to optimize PBSC yields. Changes in BMI are also to be considered while recruiting repeat donors. Some of these parameters may be improved marginally by increasing G-CSF dose within permissible limits. In most instances, however, sub-optimal mobilizers at first donation appear to donate suboptimal numbers of HSC at their subsequent donation. Disclosures Pulsipher: CSL Behring: Membership on an entity's Board of Directors or advisory committees; Miltenyi: Research Funding; Bellicum: Consultancy; Amgen: Other: Lecture; Jazz: Other: Education for employees; Adaptive: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Medac: Honoraria. Shaw:Therakos: Other: Speaker Engagement.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 15-16
Author(s):  
Danny Luan ◽  
Paul J Christos ◽  
Michael Ancharski ◽  
Danielle Guarneri ◽  
Roger Pearse ◽  
...  

Background: Daratumumab (DARA) is a monoclonal antibody which targets CD38 on plasma cells and B cell progenitors. DARA has been effectively combined with other therapies in newly diagnosed and relapsed/refractory multiple myeloma (RRMM), while DARA-based induction regimens in transplant-eligible patients (pts) are increasingly being used in clinical practice. Given that hematopoietic stem cells also express CD38, DARA may potentially affect stem cell mobilization and hematopoietic reconstitution following autologous stem cell transplant (ASCT). Although no clinically significant impact of DARA on stem cell mobilization or hematopoietic recovery was described in large phase 3 trials of triplet induction regimens +/- DARA in newly diagnosed MM, stem cell yields were lower and plerixafor more commonly used in the DARA-containing arms [Moreau et al, Lancet 2019; Voorhees et al, Blood 2020]. Significantly longer time to neutrophil (PMN) engraftment was also reported in pts receiving DARA-based induction who underwent upfront ASCT [Al Saleh et al, Am J Hematol 2020]. In this study, we examine the impact of timing of DARA administration pre-mobilization on day 4 pre-harvest peripheral blood CD34 cell count, stem cell apheresis yield, and post-ASCT engraftment. Methods: Between 1/1/2016 and 12/31/2019, newly diagnosed and RRMM pts receiving DARA-based induction regimens with ≥1 dose of DARA administered within 1 month prior to stem cell mobilization were identified retrospectively and compared to matched controls receiving similar induction regimens without DARA. Granulocyte colony-stimulating factor (G-CSF) was administered per institutional standards and plerixafor added based on day 4 pre-harvest peripheral blood CD34 counts. PMN and platelet engraftment post-ASCT was defined as the first of 3 consecutive days with sustained PMN count &gt;500 x 106/L and independence from platelet transfusion in the preceding 7 days with a count &gt;20 x 109/L, respectively. Pre-harvest peripheral blood CD34 counts and stem cell apheresis yields were obtained from the Cellular Therapy Laboratory at NewYork-Presbyterian Hospital. The study was approved by the Weill Cornell Medicine IRB. Results: We identified 16 pts who received DARA-based induction with ≥1 dose of DARA administered within 1 month of apheresis (DARA group) and 16 non-DARA-containing regimen-matched controls (non-DARA group). Demographics of the DARA and non-DARA groups were well matched (Table 1). DARA pts received their last dose of DARA a mean of 17.3 days prior to the first day of apheresis, with 8 pts receiving their last dose within 2 weeks and the remaining 8 pts between 2 weeks and 1 month prior. Overall, mobilization outcomes were inferior in the DARA group (Table 2). DARA pts had significantly lower day 4 pre-harvest peripheral blood CD34 counts compared to non-DARA pts (17.2 vs 35.4 cells/µL; P=0.0146). Institutional algorithm required plerixafor to be given for day 4 CD34 count ≤40 cells/µL. Fifteen of the 16 DARA pts received plerixafor vs. 11 non-DARA pts (P=0.07). Additionally, DARA pts required significantly more apheresis days (2.4 vs 1.6 days; P=0.0279). Differences in stem cell yield were not significant (8 vs 10 x106cells/kg; P=0.1391). Hematopoietic recovery post-ASCT was not affected by DARA administered in the month preceding mobilization. Conclusions: In summary, we report lower day 4 pre-harvest peripheral blood CD34 count, increased requirement for plerixafor, and longer apheresis duration in newly diagnosed and RRMM pts receiving DARA within 1 month ofstem cell mobilization. These limitations are largely overcome by plerixafor usage which, combined with G-CSF, resulted in successful stem cell collection in all patients. Limitations in our study include small sample sizes, retrospective control selection, and fewer pts in the DARA group achieving ≥VGPR prior to mobilization. Nevertheless, our findings are consistent with inferior mobilization outcomes reported in the DARA-containing arms of phase 3 trials of triplet induction +/- DARA and highlight the nearly universal requirement for plerixafor usage when DARA is administered within a month prior to apheresis. Prospective study of day 4 pre-harvest peripheral blood CD34 counts and other predictors of stem cell yield should be incorporated into future clinical trials of CD38 monoclonal antibody-based induction regimens for transplant-eligible MM pts. Disclosures Rossi: Janssen: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees; BMS: Membership on an entity's Board of Directors or advisory committees. Niesvizky:GSK: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; BMS: Consultancy, Honoraria; Karyopharm: Consultancy, Honoraria; Takeda: Consultancy, Honoraria. Rosenbaum:Amgen: Research Funding; GlaxoSmithKline: Research Funding; Akcea: Honoraria; Celgene: Honoraria; Janssen: Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2431-2431
Author(s):  
Marta Coscia ◽  
Francesca Pantaleoni ◽  
Chiara Riganti ◽  
Candida Vitale ◽  
Micol Rigoni ◽  
...  

Abstract Abstract 2431 Chronic lymphocytic leukemia (CLL) is a clinically heterogeneous disease. A very reliable prognosticator is the mutational status of the tumor immunoglobulin heavy chain variable region (IGHV): patients with unmutated (UM) IGHV have a worse prognosis than patients with mutated (M) IGHV. Soluble factors (i.e. IL-4 and CD40L) and cellular components of the local microenvironment [i.e. bone marrow stromal cells (BMSC) and nurse-like cells (NLCs)] are important survival factors for CLL B cells. It is currently unknown to what extent UM and M CLL cells depend on the local microenvironment for their survival. We have evaluated the spontaneous apoptotic rate of tumor cells isolated by immunomagnetic selection from the peripheral blood (PB) of M and UM CLL patients. Both M and UM CLL B cells underwent spontaneous apoptosis throughout the culture period. However, the UM CLL B cells showed a significantly higher degree of apoptosis in 7-day cultures as compared to M CLL B cells. In both M and UM CLL B cells, high basal levels of Bcl-2 expression and NF-kB activity were detected. On day 7, the percentage of Bcl-2+ leukemic cells was significantly lower in UM than in M CLL B cells. EMSA test showed that NF-kB was totally inactivated in UM CLL B cells and only partially reduced in M CLL B cells. Quantitative analysis of RelA and RelB subunits showed that NF-kB inactivation in UM CLL B cells consisted in a strong reduction of both RelA and RelB nuclear expression. CD40L, IL-4 and stromal cells significantly improved UM CLL B cells viability and significantly recovered Bcl-2 expression. The protective effect exerted by these stimuli was totally independent from the recovery of NF-kB expression. Indeed, after 7 days of culture, the UM CLL B cells had completely lost the nuclear form of NF-kB, and none of the stimuli was capable of restoring it. We observed that UM CLL cells were less susceptible to spontaneous apoptosis when cultured as unfractionated peripheral blood mononuclear cells (M or UM PBMC) as compared to purified leukemic cells (M and UM CLL B cells). The reduced apoptosis detected in UM PBMC was accompanied by a retained expression of Bcl-2 and by a restored activity of NF-kB and suggested the presence of a pro-survival element in the peripheral blood of these patients. To investigate the role of NLC in rescuing UM CLL B cells from apoptosis we first evaluated whether M and UM PBMC generated NLC with the same efficiency. Unexpectedly, the former generated significantly higher numbers of NLC than UM PBMC. Despite the lack of generation of NLC, CLL B cells viability was very similar in the non-adherent fraction of M and UM PBMC on day 7 and 14 of culture. This observation ruled out a role for NLC in supporting UM CLL B cells survival. Conversely, a pro-survival effect on UM CLL B cells was exerted by autologous T cells. Indeed, a significant reduction in the apoptotic rate of leukemic cells was observed when purified UM CLL B cells were cultured in the presence of autologous peripheral blood T cells (UM CLL B cell/T cell co-cultures). NF-kB activity was completely lost in UM CLL B cells cultured for 7 days in medium alone whereas it was restored in UM CLL B cells / T cells co-cultures. The prosurvival effect of circulating T cells was exerted both in cell-to-cell contact and in trans-well condition and was associated to increased secretions of tumor necrosis factor-alpha (TNF-α), platelet-derived growth factor (PDGF)-BB and interleukin-8 (IL-8) as detected by analyses of supernatants through a Multiplex system. These data indicate that despite their more aggressive features, UM CLL B cells are more susceptible to spontaneous apoptosis and depend from environmental prosurvival signals. This vulnerability of UM CLL B cells can be exploited as a selective target of therapeutic interventions. Disclosures: Boccadoro: Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen-Cilag: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding. Massaia: Novartis: Honoraria, Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2668-2668
Author(s):  
Connie Batlevi ◽  
Franck Rapaport ◽  
Andrew M. Intlekofer ◽  
Anne Reiner ◽  
Craig H Moskowitz ◽  
...  

Abstract Background: Lymphoma is a clinically and molecularly heterogenous disease. Next generation sequencing of primary lymphoma samples has identified common recurring genomic alterations (GAs). The distribution and frequency of recurring GAs across lymphoma subtypes remains unknown because prior studies vary in sequencing methods, depth of coverage, and specimen source. In this study, we benchmark the distribution of GAs across different lymphoma subtypes by prospectively analyzing lymphoma cases and performing comprehensive DNA/RNA targeted sequencing of genes commonly found in hematologic malignancies using the Foundation One Heme (F1H) clinical assay. Methods: After obtaining proper consent, archived specimens from 183 samples [formalin fixed paraffin embedded (FFPE) N=141, peripheral blood N=28, BM aspirate N=14] distributed across lymphoma subtypes (including 62 DLBCL, 38 T cell lymphoma, 32 FL, 17 CLL, 13 MCL) were sequenced to high, uniform coverage averaging >600x for DNA, >20 million pairs for RNA. GAs were determined, including base substitutions, small insertions and deletions, rearrangements, and copy number alterations. Significant non-synonymous variants were identified as mutations from the COSMIC database, amplifications of established oncogenes, or homozygous deletions and/or clear loss-of-function mutations of known tumor suppressors. Fisher's exact test with Monte Carlo estimation corrected by false discovery rate was used for associations. Results: Samples from prospectively consented patients were banked for a median of 30 days prior to genomic analysis, range 1 day to 6.5 yr. Sequencing data was reported a median of 16 days from sample date receipt. GAs were identified in 95% of samples, with a median of 4 GAs/sample. The most common GAs were TP53 (29%), MLL2 (27%), BCL2 (25%), CDKN2A/B (17%) and CREBBP (14%). Alterations of chromatic modifiers (80%), BCR/NFkB components (51%), and cell cycle pathway (44%) were most common. In our group of unpaired follicular lymphoma samples (N=7 treatment naïve, N=25 treatment exposed), the number of GAs increased with treatment exposure. We found similar gene and biological signatures regardless of prior therapy; however differences emerge in genes of potential clinical relevance. Sequencing profiles augmented or altered the pathologic diagnosis in 11 of 183 (6%) of the cases. Importantly we were able to classify the GAs as actionable, potentially actionable and variants of unclear significance to better define the clinical relevance of targeted genomic sequencing. Conclusions: Integration of comprehensive next generation targeted genomic sequencing and clinical analysis in lymphoma provides an opportunity to describe the spectrum and incidence of GAs across different lymphoma subtypes and provide guidance on application of genomic profiling. This work serves to benchmark GAs across all lymphoma subtypes in a clinically relevant population and enables design of basket trials selecting patients based on shared genomic and biologic similarity instead of lymphoma subtype. To our knowledge, this is the largest repository of clinically annotated genomic sequencing in lymphoma. Table 1. Total Specimens N = 183 Median Age at Diagnosis 57 Range 21 - 84 Median Age at Biopsy 61 Range 21 - 91 Sex • Male • Female 113 70 62% 38% Biospecimen source • Paraffin embedded • Peripheral blood • Marrow aspirate 141 28 14 77% 15% 8% Patient consent • Prospective consent • Retrospective consent 145 38 79% 21% Prospectively consented patients (N=145) Median Days to Result Median Age of Sample 16 30 days 8 - 81 1 day - 6.5 yr Disclosures Palomba: Janssen: Consultancy. Gerecitano:Genentech: Consultancy, Other: Advisory Board; AbbVie: Consultancy, Other: Advisory Board. Matasar:Spectrum: Consultancy; Genentech: Consultancy. Straus:Millenium Pharmaceuticals: Research Funding. He:Foundation Medicine, Inc.: Employment, Equity Ownership. Balasubramanian:Foundation Medicine: Employment, Equity Ownership. Stephens:Foundation Medicine, Inc.: Employment, Equity Ownership. Miller:Foundation Medicine: Employment. Levine:Loxo Oncology: Membership on an entity's Board of Directors or advisory committees; CTI BioPharma: Membership on an entity's Board of Directors or advisory committees; Foundation Medicine: Consultancy. Younes:Celgene: Honoraria; Johnson and Johnson: Research Funding; Novartis: Research Funding; Bayer: Honoraria; Bristol Meyer Squibb: Honoraria; Sanofi-Aventis: Honoraria; Seattle Genetics: Honoraria, Research Funding; Curis: Research Funding; Janssen: Honoraria; Takeda Millenium: Honoraria; Incyte: Honoraria.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 689-689
Author(s):  
John S. Welch ◽  
Allegra Petti ◽  
Christopher A. Miller ◽  
Daniel C. Link ◽  
Matthew J. Walter ◽  
...  

Abstract To determine how AML subclonal architecture changes during decitabine treatment, and whether specific mutations might correlate with sensitivity vs. resistance to decitabine, we performed exome sequencing at multiple time points during single agent decitabine therapy. We enrolled 69 patients with either AML (age ≥ 60, or with relapsed/refractory disease, N = 45) or MDS (N = 24) on a phase I clinical trial. All subjects were treated with decitabine 20 mg/m2 on days 1-10 of 28 day cycles. With a median follow-up of 13.7 months, the intention to treat clinical response (complete remission with or without complete count recovery: CR/CRi) is 40%, with survival correlating with response (median survival - CR/CRi: 583 days; partial response/stable disease (PR/SD): 260 days; progressive disease (PD) or failure to complete cycle 1: 36 days, p < 0.0001). We performed exome sequencing on unfractionated bone marrow cells at diagnosis (day 0), cycle 1 day 10, cycle 1 day 28, cycle 2 day 28, and, when possible, during remission and at clinical relapse/progression. We have completed sequencing analysis for the first 34 cases (outcomes: 5 CR, 15 CRi, 3 PR, 8 SD, and 3 PD). Several important themes have emerged, as follows: 1) We correlated mutation status at diagnosis with clinical response. All six patients with TP53 mutations obtained clinical CR or CRi, and exome analysis demonstrated near complete elimination of the TP53- associated founding clones by the end of cycle 2 (p < 0.03). Long-term outcomes were similar in these patients compared with other patients who achieved CR/CRi: four patients relapsed after 8, 9, 10, or 17 cycles; 1 patient is doing well post-transplant; and one patient died of an infectious complication after cycle 2. No other mutations were significantly associated with clinical response or with consistent mutation clearance. 2) We observed a reduction in blast counts, which preceded mutation elimination in fourteen cases with CR, CRi or PR. This suggests that decitabine may induce morphological blast differentiation in vivo prior to mutation elimination. 3) In eight of nine cases with a clinical response followed by relapse, clinical progression was associated with expansion of a pre-existing subclone. We have not yet observed any recurrent mutations that reliably predict whether a subclone will contribute to relapse. Intriguingly, in two of these cases, the relapse-associated subclone was detectable at diagnosis and was eliminated more slowly than the founding clone mutations, suggesting that this subclone harbored intrinsic decitabine-resistance. 4) Complete remission can occur with concomitant non-malignant, clonal hematopoiesis. In three cases with a CR, a new clonal population was selected for during the remission. In two of these cases, there were no shared mutations between the founding clone and the emergent, non-malignant, clonal hematopoiesis, suggesting that these clones were unrelated. 5) Mutational architecture is generally stable, but differential chemo-sensitivity can be detected even between subclones in the same patient. In ten cases with PR or SD, we observed minimal shifts within the mutational burden over the course of eight weeks, suggesting that "clonal drift" is a relatively slow process. However, in four cases with SD, what appeared clinically to be simple persistent disease was in fact a dynamic elimination of one subclone, and its replacement by a different subclone. Similarly, in three cases with CRi, we observed rapid clearance of a subclone with slower clearance of the founding clone, again suggesting differential chemo-sensitivity among subclones. 6) Finally, we correlated pharmacologic markers with clinical outcomes. We observed no correlation between steady-state plasma decitabine levels and clinical responses. Using Illumina 450k methylation arrays, we observed a correlation between response and the extent of decitabine-induced hypomethylation in total bone marrow cells that persisted on cycle 1 day 28 (p < 0.01), but not on cycle 1 day 10 (p < 0.1). In summary, these data reveal that response to decitabine is associated with morphologic blast clearance before mutations are eliminated, that relapse is associated with subclonal outgrowth that may be identified early in the treatment course, and that TP53 mutations may be predictive of rapid clinical responses, although, like most responses to decitabine, these are not necessarily durable. Disclosures Off Label Use: Decitabine treatment of AML.. Uy:Novartis: Research Funding. Oh:CTI Biopharma: Membership on an entity's Board of Directors or advisory committees; Incyte: Membership on an entity's Board of Directors or advisory committees. Abboud:Novartis: Research Funding; Gerson Lehman Group: Consultancy; Pharmacyclics: Membership on an entity's Board of Directors or advisory committees; Pfizer: Research Funding; Merck: Research Funding; Teva Pharmaceuticals: Research Funding. Cashen:Celgene: Speakers Bureau. Schroeder:Celgene: Other: Azacitidine provided for this trial by Celgene; Incyte: Consultancy. Jacoby:Sunesis: Research Funding; Novo Nordisk: Consultancy.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2186-2186
Author(s):  
Alissa Visram ◽  
Natasha Kekre ◽  
Christopher N. Bredeson ◽  
Jason Tay ◽  
Lothar B. Huebsch ◽  
...  

Abstract Background/Objective: Mobilized peripheral blood hematopoietic progenitor cells are the most common stem cell source for autologous hematopoietic stem cell transplantation (auto-HSCT). Successful short-term stem cell engraftment requires collection of at least 2x106 CD34+ cells/kg. The American Society of Bone Marrow Transplantation (ASBMT) recommends a stem cell infusion target of 3-5 x106 cells/kg (Giralt et al. 2014). However, the number of CD34+ cells to reinfuse to ensure long-term engraftment has not been established. Plerixafor, a reversible CXCR4 antagonist, increases CD34+ cell yield at collection even in patients who are predicted poor mobilizers (PPM). Although plerixafor could be used universally for all collections, this may not be the most cost-effective strategy (Veltri et al. 2012). This study sought to determine the minimum number of CD34+ cells/kg required for adequate long-term hematopoiesis, identify factors associated with poor long-term hematopoiesis, and determine if plerixafor mobilization improved long-term peripheral blood counts. Methods: A retrospective chart review was conducted on patients who underwent auto-HSCT between January 2004 and September 2013 at The Ottawa Hospital, for management of hematological malignancies. Peripheral blood cell counts were collected from 1 to 5 years after auto-HSCT, or until disease relapse. Poor long-term hematopoiesis was defined as an ANC <1 x109/L, hemoglobin <100 g/L, or platelets <100 x109/L. Patients were stratified into groups based on the infused CD34+ concentration (in cells/kg), and the proportion of patients with poor long-term hematopoiesis at 1, 2, 3, 4, and 5 years post auto-HSCT was compared with chi square tests. Long-term clinical outcomes (platelet and packed red blood cell transfusions, and post auto-HSCT infection rates) were compared between plerixafor-mobilized patients and PPM (defined as patients with pre-collection CD34+ <2 x 106 cells/kg) with standard mobilization regimens. Results: This study included 560 patients who underwent auto-HSCT, 210 with multiple myeloma and 350 with lymphoma. At 1 and 5 years post auto-HSCT 377 and 104 patients were included, respectively. A dose dependent improvement 1 year after auto-HSCT was seen in patients who received 0-2.99 x 106 CD34+ cells/kg (24.4%, n= 41) compared to patients who received 5-9.99 x 106 CD34+ cells/kg (11%, n=154, p=0.051) and ³10 x 106 CD34+ cells/kg (4.5%, n=66, p=0.006). Though there was a trend towards lower CD34+ infusions and poorer hematopoietic function (see table 1), there was no statistically significant difference in hematopoietic function based on CD34+ infusion concentrations after 1 year post auto-HSCT. 10 patients received <2 x106 CD34+ cells/kg, of whom the rate of inadequate hematopoiesis was 33% at 1 year (n=6) and 0% (n=1) at 5 years post auto-HSCT. Factors that increased the risk of poor hematopoiesis over the course of study follow up, based on a univariate analysis, included advanced age (OR 1.189, p=0.05), multiple prior collections (OR 2.978, p=0.035), and prior treatment with more than two chemotherapy lines (OR 2.571, p=0.02). Plerixafor-mobilized patients (n=25), compared to PPM (n=197), had a significantly higher median CD34+ cell collection (4.048 x109/L and 2.996 x109/L cells/kg, respectively, p=0.005). There was no significant difference in overall cytopenias, transfusion requirements, or infection rates between plerixafor-mobilized and PPM patients over the course of the study follow up. Conclusion: Low pre-collection CD34+ counts, advanced age, multiple prior collections, and more than two prior chemotherapy treatments adversely affected long-term hematopoiesis post auto-HSCT. We support the transfusion target of 3-5 x 106 cells/kg, as proposed by the ASBMT, given that at 5 years post auto-HSCT there was no statistical or clinically significant difference in hematopoietic function with higher CD34+ infusion targets. While mobilization with plerixafor significantly increased overall CD34+ cell collection when compared with PPM, long-term hematopoietic function and clinical outcomes were not different. This finding supports the practise of limiting plerixafor use only to patients who are PPM, thereby facilitating adequate stem cell collection and early engraftment, as opposed to universal plerixafor mobilization. Disclosures Sabloff: Lundbeck: Research Funding; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis Canada: Membership on an entity's Board of Directors or advisory committees; Gilead: Research Funding; Alexion: Honoraria.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 7-8
Author(s):  
William A. Wood ◽  
Donna S. Neuberg ◽  
John Colton Thompson ◽  
Martin S. Tallman ◽  
Mikkael A. Sekeres ◽  
...  

Introduction: The coronavirus disease 2019 (COVID-19) is an illness resulting from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that emerged in late 2019. Many patients with blood cancer have underlying immune dysfunction, and many are treated with chemotherapies and immunotherapies that are themselves profoundly immunosuppressive. Additionally, patients with blood cancer are often older, may have comorbid illness including hypertension and diabetes, and may be especially susceptible to complications of COVID-19 include hypercoagulability and thrombosis. For patients with hematologic malignancies, overall risk of morbidity and mortality from COVID-19 infection, and how this risk varies as a function of age, disease status, type of malignancy, and cancer therapy, has not yet been well defined. Methods: The ASH Research Collaborative COVID-19 Registry for Hematology was developed to study features and outcomes of COVID-19 infection in patients with underlying blood disorders, such as hematologic malignancies. The Registry opened for data collection on April 1, 2020. The Registry is a global effort and is housed on a secure data platform hosted by Prometheus Research, an IQVIA company. The Registry collects data from patients of all ages with a current or history of hematological disease, and either a laboratory-confirmed or presumptive diagnosis of SARS-CoV-2 infection. Data are made available and regularly updated on the ASH Research Collaborative website to guide the provider and patient communities. Data presented here are limited to malignant hematologic diseases only. Contributors are individual providers or designees submitting data on behalf of providers. Results: At the time of this analysis, data from 250 patients with blood cancers from 74 sites around the world had been entered into the Registry. The most commonly represented malignancies were acute leukemia (33%), non-Hodgkin lymphoma (27%), and myeloma or amyloidosis (16%). Patients presented with a myriad of symptoms, most frequently fever (73%), cough (67%), dyspnea (50%), and fatigue (40%). Use of COVID-19-directed therapies such as hydroxychloroquine (N=76) or azithromycin (N=59) was common. Overall mortality was 28%. Patients with a physician-estimated prognosis from the underlying hematologic malignancy of less than 12 months at the time of COVID-19 diagnosis and those with relapsed/refractory disease experienced a higher proportion of moderate/severe COVID-19 disease and death. In some instances, death occurred after a decision was made to forego ICU admission in favor of a palliative approach. Conclusions: Taken together, these data support the emerging consensus that patients with hematologic malignancies experience significant morbidity and mortality from COVID-19 infection. However, we see no reason, based on our data, to withhold intensive therapies from patients with underlying hematologic malignancies and favorable prognoses, if aggressive supportive care is consistent with patient preferences. Batch submissions from sites with high incidence of COVID-19 infection are ongoing. The Registry has been expanded to include non-malignant hematologic diseases, and the Registry will continue to accumulate data as a resource for the hematology community. Figure Disclosures Wood: Pfizer: Research Funding; Teladoc/Best Doctors: Consultancy; ASH Research Collaborative: Honoraria. Neuberg:Celgene: Research Funding; Madrigak Pharmaceuticals: Current equity holder in publicly-traded company; Pharmacyclics: Research Funding. Tallman:Amgen: Research Funding; UpToDate: Patents & Royalties; Bioline rx: Membership on an entity's Board of Directors or advisory committees; Daiichi-Sankyo: Membership on an entity's Board of Directors or advisory committees; KAHR: Membership on an entity's Board of Directors or advisory committees; Rigel: Membership on an entity's Board of Directors or advisory committees; Delta Fly Pharma: Membership on an entity's Board of Directors or advisory committees; Oncolyze: Membership on an entity's Board of Directors or advisory committees; BioSight: Membership on an entity's Board of Directors or advisory committees, Research Funding; Cellerant: Research Funding; Orsenix: Research Funding; ADC Therapeutics: Research Funding; Roche: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Jazz Pharma: Membership on an entity's Board of Directors or advisory committees; Rafael: Research Funding; Glycomimetics: Research Funding; Abbvie: Research Funding. Sekeres:BMS: Consultancy; Takeda/Millenium: Consultancy; Pfizer: Consultancy. Sehn:Karyopharm: Consultancy, Honoraria; Gilead: Consultancy, Honoraria; Kite: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria; Apobiologix: Consultancy, Honoraria; AstraZeneca: Consultancy, Honoraria; Celgene: Consultancy, Honoraria; Acerta: Consultancy, Honoraria; TG therapeutics: Consultancy, Honoraria; Chugai: Consultancy, Honoraria; Servier: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; Teva: Consultancy, Honoraria, Research Funding; Seattle Genetics: Consultancy, Honoraria; F. Hoffmann-La Roche Ltd: Consultancy, Honoraria, Research Funding; MorphoSys: Consultancy, Honoraria; Merck: Consultancy, Honoraria; Lundbeck: Consultancy, Honoraria; Genentech, Inc.: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria; Verastem Oncology: Consultancy, Honoraria. Anderson:Janssen: Membership on an entity's Board of Directors or advisory committees; Sanofi-Aventis: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Oncopep and C4 Therapeutics.: Other: Scientific Founder of Oncopep and C4 Therapeutics.; Gilead: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Millenium-Takeda: Membership on an entity's Board of Directors or advisory committees. Goldberg:Dava Oncology: Honoraria; ADC Therapeutics: Research Funding; Genentech: Consultancy, Membership on an entity's Board of Directors or advisory committees; Daiichi Sankyo: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Consultancy; Aptose: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; AbbVie: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Research Funding; Celularity: Research Funding; AROG: Research Funding; Aprea: Research Funding. Pennell:Astrazeneca: Consultancy; BMS: Consultancy; Eli Lilly: Consultancy; Amgen: Consultancy; Genentech: Consultancy; Cota: Consultancy; Merck: Consultancy; Inivata: Consultancy; G1 Therapeutics: Consultancy. Niemeyer:Celgene: Consultancy; Novartis: Consultancy. Hicks:Gilead Sciences: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document