scholarly journals Critical Requirement of U2AF1 in the Maintenance and Function of Hematopoietic Stem Cells

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1195-1195
Author(s):  
Avik Dutta ◽  
Yue Yang ◽  
Bao Le ◽  
Golam Mohi

Mutations in the RNA spliceosome genes have been frequently found in myelodysplastic syndromes (MDS). U2AF1 is involved in the recognition of the 3' splice site required for the recruitment of the U2 snRNP during pre-mRNA splicing. U2AF1 mutations have been identified in ~11% cases of MDS and are associated with poor prognosis. However, the role of wild type U2AF1 in normal hematopoiesis has remained unknown. To determine the role of U2AF1 in hematopoietic stem/progenitor cell (HSPC) function and normal hematopoiesis, we have generated a conditional U2AF1 knockout (floxed) mouse. We crossed the U2AF1 floxed mouse with Mx1Cre mouse and the expression of Cre recombinase was induced with pI-pC injection at 4 weeks after birth. All induced Mx1Cre;U2AF1fl/fl (U2AF1-deleted) mice became moribund or died between 11-12 days after pI-pC induction. U2AF1-deleted mice exhibited marked decrease in bone marrow (BM) cellularity and significantly reduced numbers of WBC, neutrophil, RBC and platelet counts in their peripheral blood compared with control animals. Flow cytometric analyses revealed a dramatic decrease in myeloid, erythroid and megakaryocytic precursor cells in U2AF1-deficient mice compared with control animals. Hematopoietic progenitor colony assays showed a marked decrease in myeloid (CFU-GM), erythroid (BFU-E), and megakaryocytic (CFU-Mk) colonies in the BM of U2AF1-deficient mice. Histopathologic analysis revealed severe BM aplasia in U2AF1-deficient mice. Together, these data suggest that deletion of U2AF1 results in profound defects in hematopoietic development. The fatal BM failure in U2AF1-deficient mice prompted us to examine the HSPC compartments in the BM of these animals. We observed a marked decrease in Lin-Sca-1+c-kit+(LSK) and long-term hematopoietic stem cells (LT-HSC), short-term HSC (ST-HSC), and multipotential progenitors (MPP) as well as early progenitors including common myeloid progenitors (CMP), granulocyte-macrophage progenitors (GMP), and megakaryocyte-erythroid progenitors (MEP) in the BM of U2AF1-deficient mice, indicating a defect at the earliest stage of adult hematopoietic development. To determine whether the loss of HSCs in U2AF1-deficient animals is cell autonomous, BM cells from uninduced control (U2AF1fl/fl; no cre) and Mx1Cre;U2AF1fl/fl mice were transplanted into lethally irradiated WT C57BL/6 mice. Six weeks after transplantation, recipients were injected with pI-pC to induce the deletion of U2AF1. All the recipients of U2AF1-deficient BM became moribund within 14 days after pI-pC induction. Deletion of U2AF1 in the recipient animals resulted in pancytopenia and marked decrease in HSC/progenitors, myeloid, erythroid and megakaryocytic cells similar to that observed in the primary U2AF1-deficient mice, suggesting that the hematopoietic defects in U2AF1-deficient HSCs is cell intrinsic. We performed competitive repopulation assays to further evaluate the function of U2AF1-deficient HSCs. BM cells from uninduced control (U2AF1fl/fl; no cre) and Mx1Cre;U2AF1fl/fl mice (CD45.2+) were mixed with CD45.1+competitor BM cells at a ratio of 1:1 and then transplanted into lethally irradiated congenic recipient animals (CD45.1+). Chimerism analysis in the transplanted animals revealed that U2AF1-deficient mice BM cells were completely unable to compete with WT BM cells. The percentages of U2AF1-deficient CD45.2+(donor-derived) LSK, myeloid, B and T cells were markedly reduced in the recipient animals compared with wild type U2AF1 BM donor at 16 weeks after transplantation, indicating that U2AF1-deficiency impairs the repopulation capacity of the HSCs. To gain insights into the mechanism by which U2AF1controls HSC maintenance and function,we performed RNA-sequencing on purified LSK cells from control and U2AF1-deleted mice. Analysis of RNA-sequencing data revealed significant down regulation of genes related to HSC maintenance, cell cycle and JAK-STAT pathway in U2AF1-deficient LSK cells compared with control LSK. RNA sequencing also identified significantly altered splicing events in several important genes in U2AF1-deficient LSK cells. The most commonly altered splicing events were exon skipping/inclusion. We also observed increased phospho-H2AX and DNA damage in U2AF1-deficient BM cells. Overall, our results suggest an essential role for U2AF1 in the maintenance and function of hematopoietic stem cells. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 9-9
Author(s):  
Avik Dutta ◽  
Yue Yang ◽  
Bao Le ◽  
Golam Mohi

Somatic mutations in U2AF1 have been identified in ~11% cases of MDS. U2AF1 is involved in the recognition of the 3' splice site required for the recruitment of the U2 snRNP during pre-mRNA splicing. Most U2AF1 mutations are found in two hotspots (S34 and Q157) within the first and second zinc finger domains. Transgenic and knock-in mice expressing U2AF1 S34F mutant exhibit impaired hematopoiesis. However, the role of wild-type U2AF1 in regulating hematopoietic stem cell (HSC) function and normal hematopoiesis has remained unknown. To determine the role of U2AF1 in normal hematopoiesis, we generated a new conditional U2af1 knockout (floxed) mouse. We crossed U2af1 floxed mouse with Mx1-Cre mouse and the expression of Cre recombinase was induced with polyinosine-polycytosine (pI-pC) injection at 5 to 6 weeks after birth. We observed that deletion of U2af1 significantly reduced white blood cell, neutrophil, red blood cell and platelet counts in their peripheral blood compared with control animals within 10-14 days after pI-pC injection. Histopathologic analysis of the BM sections from U2af1-deficient mice showed severe BM aplasia. Flow cytometric analyses revealed a marked decrease in myeloid, erythroid and megakaryocytic precursors in the BM of U2af1-deficient mice compared with control animals. We also observed a marked decrease in Lin-Sca-1+c-kit+(LSK) and long-term hematopoietic stem cells (LT-HSC), short-term HSC (ST-HSC), and multipotential progenitors (MPP) as well as common myeloid progenitors (CMP), granulocyte-macrophage progenitors (GMP), and megakaryocyte-erythroid progenitors (MEP) in the BM of U2af1-deleted mice. Hematopoietic progenitor colony assays showed a significant decrease in myeloid (CFU-GM), erythroid (BFU-E), and megakaryocytic (CFU-Mk) colonies in the BM of U2af1-deficient mice.Together, these data suggest that loss of U2af1 causes severe defects in hematopoiesis. We performed both non-competitive and competitive BM transplantation assays using U2af1-deficient BM to determine the role of U2af1 in HSC function. There was marked reduction of HSC, progenitors and all types of blood and BM cell precursors upon U2af1 deletion (by pI-pC administration) in the transplanted animals. Also, U2af1-deficient HSCs were unable to compete with WT HSCs and there was rapid loss of hematopoietic progenitors/precursors derived from the U2af1-deficient HSCs. Since U2af1 deletion resulted in rapid decrease of hematopoietic progenitors in the BM, we asked whether deletion of U2af1 insulted the genome and induced apoptosis to hematopoietic cells in the BM. We observed significantly increased apoptosis in the total BM as wells as in c-kit+, Gr1+, Ter119+and CD41+cells suggesting that hematopoietic progenitors and precursors of multiple cell lineages underwent apoptosis upon U2af1 deletion. We also performed gamma-H2AX assay using imaging flow cytometry to evaluate DNA damage in total BM, Gr1+(myeloid) and CD71+(erythroid) cells in control and U2af1-deleted mice. We observed markedly elevated gamma-H2AX in total BM, Gr1+and CD71+cells from U2af1-deficient mice compared with control mice.In addition, we observed increased Chk1 phosphorylation (ser345), a hallmark for activation of the ATR pathway, and increased histone H2A K119 ubiquitination (H2AK119Ub), a marker for DNA damage response, in the BM of U2af1-deficient mice. Thus, depletion of U2af1 causes insult to the genome and induces DNA damage and increased cell death. To gain insights into severe hematopoietic defects observed in U2af1-deficient mice, we performed transcriptome profiling of sorted LSK cells from U2af1 wild type (control) and U2af1-deleted mice. GSEA analysis of RNA sequencing data revealed significant downregulation of genes related to HSC maintenance in U2af1-deficient LSK. GSEA also revealed enrichment for cell cycle and DNA damage response-related genes, consistent with decreased proliferation and increased DNA damage and apoptosis observed in U2af1-deficient hematopoietic progenitors. We also determined the effects of U2af1 deletion on RNA splicing. Interestingly, we observed significant changes in gene expression as well as splicing alterations in several genes important for HSC survival and function. In conclusion, our results suggest a crucial role for U2af1 in the survival and function of HSC. Disclosures Mohi: Tolero Pharmaceuticals Inc.: Research Funding.


Blood ◽  
2011 ◽  
Vol 117 (19) ◽  
pp. 5057-5066 ◽  
Author(s):  
Francesca Aguilo ◽  
Serine Avagyan ◽  
Amy Labar ◽  
Ana Sevilla ◽  
Dung-Fang Lee ◽  
...  

Abstract Fetal liver and adult bone marrow hematopoietic stem cells (HSCs) renew or differentiate into committed progenitors to generate all blood cells. PRDM16 is involved in human leukemic translocations and is expressed highly in some karyotypically normal acute myeloblastic leukemias. As many genes involved in leukemogenic fusions play a role in normal hematopoiesis, we analyzed the role of Prdm16 in the biology of HSCs using Prdm16-deficient mice. We show here that, within the hematopoietic system, Prdm16 is expressed very selectively in the earliest stem and progenitor compartments, and, consistent with this expression pattern, is critical for the establishment and maintenance of the HSC pool during development and after transplantation. Prdm16 deletion enhances apoptosis and cycling of HSCs. Expression analysis revealed that Prdm16 regulates a remarkable number of genes that, based on knockout models, both enhance and suppress HSC function, and affect quiescence, cell cycling, renewal, differentiation, and apoptosis to various extents. These data suggest that Prdm16 may be a critical node in a network that contains negative and positive feedback loops and integrates HSC renewal, quiescence, apoptosis, and differentiation.


Blood ◽  
2011 ◽  
Vol 118 (10) ◽  
pp. 2733-2742 ◽  
Author(s):  
Cristina Mazzon ◽  
Achille Anselmo ◽  
Javier Cibella ◽  
Cristiana Soldani ◽  
Annarita Destro ◽  
...  

Abstract Hematopoiesis is the process leading to the sustained production of blood cells by hematopoietic stem cells (HSCs). Growth, survival, and differentiation of HSCs occur in specialized microenvironments called “hematopoietic niches,” through molecular cues that are only partially understood. Here we show that agrin, a proteoglycan involved in the neuromuscular junction, is a critical niche-derived signal that controls survival and proliferation of HSCs. Agrin is expressed by multipotent nonhematopoietic mesenchymal stem cells (MSCs) and by differentiated osteoblasts lining the endosteal bone surface, whereas Lin−Sca1+c-Kit+ (LSK) cells express the α-dystroglycan receptor for agrin. In vitro, agrin-deficient MSCs were less efficient in supporting proliferation of mouse Lin−c-Kit+ cells, suggesting that agrin plays a role in the hematopoietic cell development. These results were indeed confirmed in vivo through the analysis of agrin knockout mice (Musk-L;Agrn−/−). Agrin-deficient mice displayed in vivo apoptosis of CD34+CD135− LSK cells and impaired hematopoiesis, both of which were reverted by an agrin-sufficient stroma. These data unveil a crucial role of agrin in the hematopoietic niches and in the cross-talk between stromal and hematopoietic stem cells.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1079-1079
Author(s):  
Biniam Adane ◽  
Haobin Ye ◽  
Shanshan Pei ◽  
Nabilah Khan ◽  
Mohammad Minhajuddin ◽  
...  

Abstract NADPH dependent oxidase 2 (NOX2) is the founding member of a family of multimeric, oxido-reductase enzymes that catalyze the production of superoxides by transferring a single electron from the cofactor NADPH to molecular oxygen. It is primarily utilized in neutrophils and macrophages to generate copious amount of reactive oxygen species (ROS) to facilitate the neutralization of engulfed particulates during phagocytosis. In sharp contrast to this specialized function however, recent evidence implies a non-phagocytic role for NADPH oxidases in which physiologic levels of ROS generated by these enzymes modulate key signaling proteins and transcription factors to exert profound biological effects. Based on this information we decided to investigate the potential role of NOX2 in normal and leukemic stem cells. Using transgenic NOX2 knock out mice, genetically defined murine models of myeloid leukemia and primary human acute myeloid leukemia (AML) specimens, we show that NOX2 is critical for the proper function of normal and malignant hematopoietic stem cells. In silico analysis using published transcriptional profiles of hematopoietic populations revealed that multiple subunits of the NOX2 complex are expressed at low levels in hematopoietic stem cells (HSCs) and at relatively higher levels in multipotent progenitors (MPPs). Next, we characterized the different hematopoietic compartments from age and sex matched wild type (WT) and transgenic NOX2 knock out (KO) mice. Our studies revealed that in the bone marrow of KO mice, a subset of multipotent progenitor populations (MPP2 & MPP3), which often have biased myelo-erythroid output are markedly expanded relative to their wild type counterparts. Consistently, we found increased levels of granulocytes and monocytes in the peripheral circulation of NOX2 KO mice. To test whether NOX2 has a functional, biological role in the self-renewal of HSCs, we performed competitive transplantation assays using equal numbers of whole BM cells from WT and KO mice to co-repopulate lethally irradiated hosts. Analysis of engrafted mice showed that the contribution from NOX2 KO HSCs was severely compromised in all lineages and developmental stages of hematopoiesis examined. Collectively, these results suggest a critical biological role for NOX2 in maintaining the quiescence and long term self-renewal of HSCs. Similar to normal hematopoiesis, we found out that NOX2 is also widely expressed by functionally defined leukemic stem cells in a murine model of myeloid leukemia generated by expressing the oncogenic translocations BCR-ABL and NUP98-HOXA9. To evaluate the role of NOX2 in leukemogenesis, we established the BCR-ABL/NUP98-HOXA9 model using primitive cells derived from either WT or KO. Intriguingly, NOX2 KO leukemic cells generated a much less aggressive disease upon transplantation into primary and subsequently into secondary recipients. Furthermore, leukemic cells in which NOX2 is suppressed displayed aberrant mitotic activity and altered developmental potential marked by loss of quiescence, enhanced entry into cycle and terminal differentiation. To gain mechanistic insight into the observed phenotype, we isolated leukemic stem cells and performed whole genome expression analysis. The data showed that deficiency of NOX2 leads to downregulation of the cell cycle inhibitor CDKN2C (p18) and robust activation of the granulocyte fate determining transcription factor CEBPε. Thus we conclude that loss of NOX2 impacts leukemogenesis through rewiring of the cell cycle machinery and developmental programs in leukemic stem cells. Finally, we found that in CD34+ primary human AML cells, NOX2 and the other subunits of the complex are abundantly expressed. Furthermore, pharmacologic inhibition of NOX2 with VAS2870, a selective NADPH oxidase inhibitor, reduced the level of ROS and limited the in vitro proliferation and survival of leukemic cells. Next we genetically suppressed the expression of NOX2 in primary human AML cells using sh-RNAs and transplanted these cells into immune compromised mice. Consistent with the murine leukemia, NOX2 knocked down AML cells failed to engraft and expand in vivo. Taken together, our results firmly establish a hitherto unrecognized, prominent regulatory role for NOX2 in the biology of normal and malignant hematopoietic stem cells and imply a potential therapeutic opportunity that can get exploited to treat AML. Disclosures Pollyea: Celgene: Other: advisory board, Research Funding; Ariad: Other: advisory board; Pfizer: Other: advisory board, Research Funding; Glycomimetics: Other: DSMB member; Alexion: Other: advisory board.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2221-2221
Author(s):  
Cyrus Khandanpour ◽  
Ulrich Duehrsen ◽  
Tarik Möröy

Abstract Exogenous toxic substances often cause the initiation and development of leukemia and lymphoma by acting as mutagens. N-ethyl-N-nitrosourea (ENU) is a paradigmatic example for such a substance, which introduces point mutations in the genome through DNA damage and repair pathways. ENU is widely used to experimentally induce T-cell lymphomas in mice. We have used ENU to investigate whether the hematopoietic transcription factor Gfi1 is required for lymphomagenesis. The Gfi1 gene was originally discovered as a proviral target gene and a series of experiments with transgenic mice had suggested a role of Gfi1 as a dominant oncogene with the ability to cooperate with Myc and Pim genes in the generation of T-cell lymphoma. In addition, Gfi1 deficient mice showed a defect in T-cell maturation but also aberration in myeloid differentiation and an accumulation of myelomonocytic cells. ENU was administered i.p. once a week for three weeks with a total dose of 300mg/kg to wild type (wt) and Gfi1 null mice. Wild type mice (12/12) predominantly developed T-cell tumors and rarely acute myeloid leukemia, as expected. However, only 2/8 Gfi1 −/− mice succumbed to lymphoid neoplasia; they rather showed a severe dysplasia of the bone marrow that was more pronounced than in wt controls. These changes in Gfi1 null mice were accompanied by a dramatic decrease of the LSK (Lin-, Sca1- and c-Kit+) bone marrow fraction that contains hematopoietic stem cells and by a higher percentage (18%) of bone marrow cells, not expressing any lineage markers (CD4, CD 8, Ter 119, Mac1, Gr1, B220, CD3). In particular, we found that the LSK subpopulation of Gfi1 deficient mice showed a noticeable increase in cells undergoing apoptosis suggesting a role of Gfi1 in hematopoietic stem cell survival. In addition, Gfi1−/− bone marrow cells and thymic T-cells were more sensitive to DNA damage such as radiation and exposure to ENU than their wt counterparts pointing to a role of Gfi1 in DNA damage response. Our results indicate that Gfi1 is required for development of T-cell tumors and that a loss of Gfi1 may sensitize hematopoietic cells and possibly hematopoietic stem cells for programmed cell death. Further studies have to show whether interfering with Gfi1 expression or function might represent a tool in the therapy of leukemia.


Stem Cells ◽  
2014 ◽  
Vol 32 (7) ◽  
pp. 1878-1889 ◽  
Author(s):  
Hajime Akada ◽  
Saeko Akada ◽  
Robert E. Hutchison ◽  
Kazuhito Sakamoto ◽  
Kay-Uwe Wagner ◽  
...  

Haematologica ◽  
2021 ◽  
Author(s):  
Vikas Madan ◽  
Zeya Cao ◽  
Weoi Woon Teoh ◽  
Pushkar Dakle ◽  
Lin Han ◽  
...  

Recurrent loss-of-function mutations of spliceosome gene, ZRSR2, occur in myelodysplastic syndromes (MDS). Mutation/loss of ZRSR2 in human myeloid cells primarily causes impaired splicing of the U12-type introns. To investigate further the role of this splice factor in splicing and hematopoietic development, we generated mice lacking ZRSR2. Unexpectedly, Zrsr2-deficient mice developed normal hematopoiesis with no abnormalities in myeloid differentiation evident in either young or ≥1-year old knockout mice. Repopulation ability of Zrsr2-deficient hematopoietic stem cells was also unaffected in both competitive and non-competitive reconstitution assays. Myeloid progenitors lacking ZRSR2 exhibited mis-splicing of U12-type introns, however, this phenotype was moderate compared to the ZRSR2- deficient human cells. Our investigations revealed that a closely related homolog, Zrsr1, expressed in the murine hematopoietic cells, but not human, contributes to splicing of U12-type introns. Depletion of Zrsr1 in Zrsr2 KO myeloid cells exacerbated retention of the U12-type introns, thus highlighting a collective role of ZRSR1 and ZRSR2 in murine U12-spliceosome. We also demonstrate that aberrant retention of U12-type introns of MAPK9 and MAPK14 leads to their reduced protein expression. Overall, our findings highlight that both ZRSR1 and ZRSR2 are functional components of the murine U12-spliceosome, and depletion of both proteins is required to model accurately ZRSR2-mutant MDS in mice.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1180-1180
Author(s):  
Hajime Akada ◽  
Saeko Akada ◽  
Golam Mohi

Abstract Hematopoietic stem cells (HSCs) play an essential role in the long-term maintenance of hematopoiesis. Various intracellular signaling proteins, transcription factors and extracellular matrix proteins contribute to the maintenance and function of HSCs. Jak2, a member of the Janus family of non-receptor protein tyrosine kinases, is activated in response to a variety of cytokines. It has been shown that germ-line deletion of Jak2 results in embryonic lethality whereas post-natal or adult stage deletion of Jak2 results in anemia and thrombocytopenia in mice. However, the role of Jak2 in the maintenance and function of adult HSCs has remained elusive. Understanding the normal function of Jak2 in adult HSC/progenitors is of considerable significance since mutations in Jak2 have been associated with several myeloproliferative neoplasms (MPNs), and most patients treated with Jak2 inhibitors exhibit significant hematopoietic toxicities. To assess the role of Jak2 in adult HSCs, we have utilized a conditional Jak2 knock-out (Jak2 floxed) allele and an inducible MxCre line that can efficiently express Cre recombinase in adult HSC/progenitors after injections with polyinosine-polycytosine (pI-pC). We have found that deletion of Jak2 in adult mice results in pancytopenia, bone marrow aplasia and 100% lethality within 25 to 42 days after pI-pC induction. Analysis of the HSC/progenitor compartments revealed that Jak2-deficiency causes marked decrease in long-term HSCs, short-term HSCs, multipotent progenitors and early progenitors of all hematopoietic lineages, indicating a defect at the earliest stage of adult hematopoietic development. We have found that deletion of Jak2 leads to increased HSC cell cycle entry, suggesting that Jak2-deficiency results in loss of quiescence in HSCs. Jak2-deficiency also resulted in significant apoptosis in HSCs. Furthermore Jak2-deficient bone marrow cells were severely defective in reconstituting hematopoiesis in lethally-irradiated recipient animals. Competitive repopulations experiments also show that Jak2 is essential for HSC functional activity. We also have confirmed that the requirement for Jak2 in HSCs is cell-autonomous. To gain insight into the mechanism by which Jak2 controls HSC maintenance and function, we have performed phospho flow analysis on HSC-enriched LSK (lin-Sca-1+c-kit+) cells. TPO and SCF-evoked Akt and Erk activation was significantly reduced in Jak2-deficient LSK compared with control LSK. Stat5 phosphorylation in response to TPO was also completely inhibited in Jak2-deficient LSK cells. In addition, we observed significantly increased intracellular reactive oxygen species (ROS) levels and enhanced activation of p38 MAPK in Jak2-deficient LSK cells, consistent with the loss of quiescence observed in Jak2-deficient HSCs. Treatment with ROS scavenger N-acetyl cysteine partially rescued the defects in Jak2-deficient HSCs in reconstituting hematopoiesis in lethally irradiated recipient animals. Gene expression analysis revealed significant downregulation of HSC-specific gene sets in Jak2-deficient LSK cells. Taken together, our data strongly suggest that Jak2 plays a critical role in the maintenance of quiescence, survival and self-renewal of adult HSCs. Disclosures: No relevant conflicts of interest to declare.


2000 ◽  
Vol 191 (2) ◽  
pp. 253-264 ◽  
Author(s):  
Jos Domen ◽  
Samuel H. Cheshier ◽  
Irving L. Weissman

Hematopoietic stem cells (HSC) give rise to cells of all hematopoietic lineages, many of which are short lived. HSC face developmental choices: self-renewal (remain an HSC with long-term multilineage repopulating potential) or differentiation (become an HSC with short-term multilineage repopulating potential and, eventually, a mature cell). There is a large overcapacity of differentiating hematopoietic cells and apoptosis plays a role in regulating their numbers. It is not clear whether apoptosis plays a direct role in regulating HSC numbers. To address this, we have employed a transgenic mouse model that overexpresses BCL-2 in all hematopoietic cells, including HSC: H2K-BCL-2. Cells from H2K-BCL-2 mice have been shown to be protected against a wide variety of apoptosis-inducing challenges. This block in apoptosis affects their HSC compartment. H2K-BCL-2–transgenic mice have increased numbers of HSC in bone marrow (2.4× wild type), but fewer of these cells are in the S/G2/M phases of the cell cycle (0.6× wild type). Their HSC have an increased plating efficiency in vitro, engraft at least as well as wild-type HSC in vivo, and have an advantage following competitive reconstitution with wild-type HSC.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3375-3375
Author(s):  
Ryan Reca ◽  
Marcin Wysoczynski ◽  
Kucia Magda ◽  
Anna Janowska-Wieczorek ◽  
Janina Ratajczak ◽  
...  

Abstract We postulate that mobilization of hematopoietic stem cells (HSC) is part of a immune-response and to support this notion i) complement (C) cascade cleavage fragments modulate trafficking of HSC (Blood2003;101,3784; Blood2004;103,2071) and ii) patients suffering from severe combined immunodeficiency (SCID) are poor mobilizers (Blood1996;88, 1104). To shed more light on mechanisms involved in C-mediated trafficking of HSC we studied mobilization in several strains of immune-deficient mice mobilized by employing various mobilization protocols. We noticed that mobilization of HSC is always preceded by C activation - occuring by the classical (G-CSF, CY) or alternative (polysaccharides, chemokines) activation pathways. Accordingly, the classical pathway of C activation after G-CSF or CY administration is a result of proteolytic modification of the BM environment leading to the exposure of a neo-antigen in BM tissue, and binding of natural IgM antibodies to this neo-epitope triggers activation of the C cascade. In support of this, IgM-deficient mice (SCID, RAG2null and Jh) are poor mobilizers and G-CSF-induced mobilization in these mice was restored after supplementation with purified C-activating inmmunoglobulins. On the other hand the mobilization in these mice (SCID, RAG2null and Jh) was normal in response to polysaccharides or chemokines that activate complement by the alternative IgM-independent pathway. To further support an important role of C in HSC mobilization, we studied HSC mobilization in mice deficient for various C components (C3−/− and C5−/− mice). We noticed that C3−/− mice are easy mobilizers. In contrast mobilization was very poor in C5−/− mice. This suggests that C3 and C5 cleavage fragments differently control the mobilization of HSC. We will present evidence that C3 cleavage fragments directly interact with HSC and prevent their uncontrolled egress from BM during mobilization by increasing their SDF-1-dependent marrow retention. In contrast C5 cleavage fragments activate neutrophils and BM-endothelium and thus are crucial for the egress of HSC. Thus the mobilization of HSC is i) dependent on C activation by the classical or alternative pathway, ii) modified differently by C3 cleavage fragments which enhance retention and C5 cleavage fragments which promote egress of HSC. Thus modulation of C activation in BM may help to develop new more efficient strategies for both HSC mobilization and their homing/engraftment.


Sign in / Sign up

Export Citation Format

Share Document