scholarly journals Critical Role of Jak2 in the Maintenance and Function of Adult Hematopoietic Stem Cells

Stem Cells ◽  
2014 ◽  
Vol 32 (7) ◽  
pp. 1878-1889 ◽  
Author(s):  
Hajime Akada ◽  
Saeko Akada ◽  
Robert E. Hutchison ◽  
Kazuhito Sakamoto ◽  
Kay-Uwe Wagner ◽  
...  

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1180-1180
Author(s):  
Hajime Akada ◽  
Saeko Akada ◽  
Golam Mohi

Abstract Hematopoietic stem cells (HSCs) play an essential role in the long-term maintenance of hematopoiesis. Various intracellular signaling proteins, transcription factors and extracellular matrix proteins contribute to the maintenance and function of HSCs. Jak2, a member of the Janus family of non-receptor protein tyrosine kinases, is activated in response to a variety of cytokines. It has been shown that germ-line deletion of Jak2 results in embryonic lethality whereas post-natal or adult stage deletion of Jak2 results in anemia and thrombocytopenia in mice. However, the role of Jak2 in the maintenance and function of adult HSCs has remained elusive. Understanding the normal function of Jak2 in adult HSC/progenitors is of considerable significance since mutations in Jak2 have been associated with several myeloproliferative neoplasms (MPNs), and most patients treated with Jak2 inhibitors exhibit significant hematopoietic toxicities. To assess the role of Jak2 in adult HSCs, we have utilized a conditional Jak2 knock-out (Jak2 floxed) allele and an inducible MxCre line that can efficiently express Cre recombinase in adult HSC/progenitors after injections with polyinosine-polycytosine (pI-pC). We have found that deletion of Jak2 in adult mice results in pancytopenia, bone marrow aplasia and 100% lethality within 25 to 42 days after pI-pC induction. Analysis of the HSC/progenitor compartments revealed that Jak2-deficiency causes marked decrease in long-term HSCs, short-term HSCs, multipotent progenitors and early progenitors of all hematopoietic lineages, indicating a defect at the earliest stage of adult hematopoietic development. We have found that deletion of Jak2 leads to increased HSC cell cycle entry, suggesting that Jak2-deficiency results in loss of quiescence in HSCs. Jak2-deficiency also resulted in significant apoptosis in HSCs. Furthermore Jak2-deficient bone marrow cells were severely defective in reconstituting hematopoiesis in lethally-irradiated recipient animals. Competitive repopulations experiments also show that Jak2 is essential for HSC functional activity. We also have confirmed that the requirement for Jak2 in HSCs is cell-autonomous. To gain insight into the mechanism by which Jak2 controls HSC maintenance and function, we have performed phospho flow analysis on HSC-enriched LSK (lin-Sca-1+c-kit+) cells. TPO and SCF-evoked Akt and Erk activation was significantly reduced in Jak2-deficient LSK compared with control LSK. Stat5 phosphorylation in response to TPO was also completely inhibited in Jak2-deficient LSK cells. In addition, we observed significantly increased intracellular reactive oxygen species (ROS) levels and enhanced activation of p38 MAPK in Jak2-deficient LSK cells, consistent with the loss of quiescence observed in Jak2-deficient HSCs. Treatment with ROS scavenger N-acetyl cysteine partially rescued the defects in Jak2-deficient HSCs in reconstituting hematopoiesis in lethally irradiated recipient animals. Gene expression analysis revealed significant downregulation of HSC-specific gene sets in Jak2-deficient LSK cells. Taken together, our data strongly suggest that Jak2 plays a critical role in the maintenance of quiescence, survival and self-renewal of adult HSCs. Disclosures: No relevant conflicts of interest to declare.



Blood ◽  
1994 ◽  
Vol 83 (12) ◽  
pp. 3758-3779 ◽  
Author(s):  
N Uchida ◽  
HL Aguila ◽  
WH Fleming ◽  
L Jerabek ◽  
IL Weissman

Abstract Hematopoietic stem cells (HSCs) are believed to play a critical role in the sustained repopulation of all blood cells after bone marrow transplantation (BMT). However, understanding the role of HSCs versus other hematopoietic cells in the quantitative reconstitution of various blood cell types has awaited methods to isolate HSCs. A candidate population of mouse HSCs, Thy-1.1lo Lin-Sca-1+ cells, was isolated several years ago and, recently, this population has been shown to be the only population of BM cells that contains HSCs in C57BL/Ka-Thy-1.1 mice. As few as 100 of these cells can radioprotect 95% to 100% of irradiated mice, resulting long-term multilineage reconstitution. In this study, we examined the reconstitution potential of irradiated mice transplanted with purified Thy-1.1lo Lin-Sca-1+ BM cells. Donor-derived peripheral blood (PB) white blood cells were detected as early as day 9 or 10 when 100 to 1,000 Thy-1.1lo Lin-Sca-1+ cells were used, with minor dose-dependent differences. The reappearance of platelets by day 14 and thereafter was also seen at all HSC doses (100 to 1,000 cells), with a slight dose-dependence. All studied HSC doses also allowed RBC levels to recover, although at the 100 cell dose a delay in hematocrit recovery was observed at day 14. When irradiated mice were transplanted with 500 Thy-1.1lo Lin-Sca-1+ cells compared with 1 x 10(6) BM cells (the equivalent amount of cells that contain 500 Thy-1.1lo Lin-Sca-1+ cells as well as progenitor and mature cells), very little difference in the kinetics of recovery of PB, white blood cells, platelets, and hematocrit was observed. Surprisingly, even when 200 Thy1.1lo Lin-Sca- 1+ cells were mixed with 4 x 10(5) Sca-1- BM cells in a competitive repopulation assay, most of the early (days 11 and 14) PB myeloid cells were derived from the HSC genotype, indicating the superiority of the Thy-1.1lo Lin-Sca-1+ cells over Sca-1- cells even in the early phases of myeloid reconstitution. Within the Thy-1.1lo Lin-Sca-1+ population, the Rhodamine 123 (Rh123)hi subset dominates in PB myeloid reconstitution at 10 to 14 days, only to be overtaken by the Rh123lo subset at 3 weeks and thereafter. These findings indicate that HSCs can account for the early phase of hematopoietic recovery, as well as sustained hematopoiesis, and raise questions about the role of non-HSC BM populations in the setting of BMT.



2007 ◽  
Vol 1 (6) ◽  
pp. 671-684 ◽  
Author(s):  
Hong Qian ◽  
Natalija Buza-Vidas ◽  
Craig D. Hyland ◽  
Christina T. Jensen ◽  
Jennifer Antonchuk ◽  
...  


Blood ◽  
2011 ◽  
Vol 118 (10) ◽  
pp. 2733-2742 ◽  
Author(s):  
Cristina Mazzon ◽  
Achille Anselmo ◽  
Javier Cibella ◽  
Cristiana Soldani ◽  
Annarita Destro ◽  
...  

Abstract Hematopoiesis is the process leading to the sustained production of blood cells by hematopoietic stem cells (HSCs). Growth, survival, and differentiation of HSCs occur in specialized microenvironments called “hematopoietic niches,” through molecular cues that are only partially understood. Here we show that agrin, a proteoglycan involved in the neuromuscular junction, is a critical niche-derived signal that controls survival and proliferation of HSCs. Agrin is expressed by multipotent nonhematopoietic mesenchymal stem cells (MSCs) and by differentiated osteoblasts lining the endosteal bone surface, whereas Lin−Sca1+c-Kit+ (LSK) cells express the α-dystroglycan receptor for agrin. In vitro, agrin-deficient MSCs were less efficient in supporting proliferation of mouse Lin−c-Kit+ cells, suggesting that agrin plays a role in the hematopoietic cell development. These results were indeed confirmed in vivo through the analysis of agrin knockout mice (Musk-L;Agrn−/−). Agrin-deficient mice displayed in vivo apoptosis of CD34+CD135− LSK cells and impaired hematopoiesis, both of which were reverted by an agrin-sufficient stroma. These data unveil a crucial role of agrin in the hematopoietic niches and in the cross-talk between stromal and hematopoietic stem cells.



Leukemia ◽  
2021 ◽  
Author(s):  
Mengke Li ◽  
Chen Qiu ◽  
Yujie Bian ◽  
Deyang Shi ◽  
Bichen Wang ◽  
...  

AbstractSETD5 mutations were identified as the genetic causes of neurodevelopmental disorders. While the whole-body knockout of Setd5 in mice leads to embryonic lethality, the role of SETD5 in adult stem cell remains unexplored. Here, a critical role of Setd5 in hematopoietic stem cells (HSCs) is identified. Specific deletion of Setd5 in hematopoietic system significantly increased the number of immunophenotypic HSCs by promoting HSC proliferation. Setd5-deficient HSCs exhibited impaired long-term self-renewal capacity and multiple-lineage differentiation potentials under transplantation pressure. Transcriptome analysis of Setd5-deficient HSCs revealed a disruption of quiescence state of long-term HSCs, a cause of the exhaustion of functional HSCs. Mechanistically, SETD5 was shown to regulate HSC quiescence by mediating the release of promoter-proximal paused RNA polymerase II (Pol II) on E2F targets in cooperation with HCF-1 and PAF1 complex. Taken together, these findings reveal an essential role of SETD5 in regulating Pol II pausing-mediated maintenance of adult stem cells.



Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1195-1195
Author(s):  
Avik Dutta ◽  
Yue Yang ◽  
Bao Le ◽  
Golam Mohi

Mutations in the RNA spliceosome genes have been frequently found in myelodysplastic syndromes (MDS). U2AF1 is involved in the recognition of the 3' splice site required for the recruitment of the U2 snRNP during pre-mRNA splicing. U2AF1 mutations have been identified in ~11% cases of MDS and are associated with poor prognosis. However, the role of wild type U2AF1 in normal hematopoiesis has remained unknown. To determine the role of U2AF1 in hematopoietic stem/progenitor cell (HSPC) function and normal hematopoiesis, we have generated a conditional U2AF1 knockout (floxed) mouse. We crossed the U2AF1 floxed mouse with Mx1Cre mouse and the expression of Cre recombinase was induced with pI-pC injection at 4 weeks after birth. All induced Mx1Cre;U2AF1fl/fl (U2AF1-deleted) mice became moribund or died between 11-12 days after pI-pC induction. U2AF1-deleted mice exhibited marked decrease in bone marrow (BM) cellularity and significantly reduced numbers of WBC, neutrophil, RBC and platelet counts in their peripheral blood compared with control animals. Flow cytometric analyses revealed a dramatic decrease in myeloid, erythroid and megakaryocytic precursor cells in U2AF1-deficient mice compared with control animals. Hematopoietic progenitor colony assays showed a marked decrease in myeloid (CFU-GM), erythroid (BFU-E), and megakaryocytic (CFU-Mk) colonies in the BM of U2AF1-deficient mice. Histopathologic analysis revealed severe BM aplasia in U2AF1-deficient mice. Together, these data suggest that deletion of U2AF1 results in profound defects in hematopoietic development. The fatal BM failure in U2AF1-deficient mice prompted us to examine the HSPC compartments in the BM of these animals. We observed a marked decrease in Lin-Sca-1+c-kit+(LSK) and long-term hematopoietic stem cells (LT-HSC), short-term HSC (ST-HSC), and multipotential progenitors (MPP) as well as early progenitors including common myeloid progenitors (CMP), granulocyte-macrophage progenitors (GMP), and megakaryocyte-erythroid progenitors (MEP) in the BM of U2AF1-deficient mice, indicating a defect at the earliest stage of adult hematopoietic development. To determine whether the loss of HSCs in U2AF1-deficient animals is cell autonomous, BM cells from uninduced control (U2AF1fl/fl; no cre) and Mx1Cre;U2AF1fl/fl mice were transplanted into lethally irradiated WT C57BL/6 mice. Six weeks after transplantation, recipients were injected with pI-pC to induce the deletion of U2AF1. All the recipients of U2AF1-deficient BM became moribund within 14 days after pI-pC induction. Deletion of U2AF1 in the recipient animals resulted in pancytopenia and marked decrease in HSC/progenitors, myeloid, erythroid and megakaryocytic cells similar to that observed in the primary U2AF1-deficient mice, suggesting that the hematopoietic defects in U2AF1-deficient HSCs is cell intrinsic. We performed competitive repopulation assays to further evaluate the function of U2AF1-deficient HSCs. BM cells from uninduced control (U2AF1fl/fl; no cre) and Mx1Cre;U2AF1fl/fl mice (CD45.2+) were mixed with CD45.1+competitor BM cells at a ratio of 1:1 and then transplanted into lethally irradiated congenic recipient animals (CD45.1+). Chimerism analysis in the transplanted animals revealed that U2AF1-deficient mice BM cells were completely unable to compete with WT BM cells. The percentages of U2AF1-deficient CD45.2+(donor-derived) LSK, myeloid, B and T cells were markedly reduced in the recipient animals compared with wild type U2AF1 BM donor at 16 weeks after transplantation, indicating that U2AF1-deficiency impairs the repopulation capacity of the HSCs. To gain insights into the mechanism by which U2AF1controls HSC maintenance and function,we performed RNA-sequencing on purified LSK cells from control and U2AF1-deleted mice. Analysis of RNA-sequencing data revealed significant down regulation of genes related to HSC maintenance, cell cycle and JAK-STAT pathway in U2AF1-deficient LSK cells compared with control LSK. RNA sequencing also identified significantly altered splicing events in several important genes in U2AF1-deficient LSK cells. The most commonly altered splicing events were exon skipping/inclusion. We also observed increased phospho-H2AX and DNA damage in U2AF1-deficient BM cells. Overall, our results suggest an essential role for U2AF1 in the maintenance and function of hematopoietic stem cells. Disclosures No relevant conflicts of interest to declare.



Blood ◽  
1994 ◽  
Vol 83 (12) ◽  
pp. 3758-3779 ◽  
Author(s):  
N Uchida ◽  
HL Aguila ◽  
WH Fleming ◽  
L Jerabek ◽  
IL Weissman

Hematopoietic stem cells (HSCs) are believed to play a critical role in the sustained repopulation of all blood cells after bone marrow transplantation (BMT). However, understanding the role of HSCs versus other hematopoietic cells in the quantitative reconstitution of various blood cell types has awaited methods to isolate HSCs. A candidate population of mouse HSCs, Thy-1.1lo Lin-Sca-1+ cells, was isolated several years ago and, recently, this population has been shown to be the only population of BM cells that contains HSCs in C57BL/Ka-Thy-1.1 mice. As few as 100 of these cells can radioprotect 95% to 100% of irradiated mice, resulting long-term multilineage reconstitution. In this study, we examined the reconstitution potential of irradiated mice transplanted with purified Thy-1.1lo Lin-Sca-1+ BM cells. Donor-derived peripheral blood (PB) white blood cells were detected as early as day 9 or 10 when 100 to 1,000 Thy-1.1lo Lin-Sca-1+ cells were used, with minor dose-dependent differences. The reappearance of platelets by day 14 and thereafter was also seen at all HSC doses (100 to 1,000 cells), with a slight dose-dependence. All studied HSC doses also allowed RBC levels to recover, although at the 100 cell dose a delay in hematocrit recovery was observed at day 14. When irradiated mice were transplanted with 500 Thy-1.1lo Lin-Sca-1+ cells compared with 1 x 10(6) BM cells (the equivalent amount of cells that contain 500 Thy-1.1lo Lin-Sca-1+ cells as well as progenitor and mature cells), very little difference in the kinetics of recovery of PB, white blood cells, platelets, and hematocrit was observed. Surprisingly, even when 200 Thy1.1lo Lin-Sca- 1+ cells were mixed with 4 x 10(5) Sca-1- BM cells in a competitive repopulation assay, most of the early (days 11 and 14) PB myeloid cells were derived from the HSC genotype, indicating the superiority of the Thy-1.1lo Lin-Sca-1+ cells over Sca-1- cells even in the early phases of myeloid reconstitution. Within the Thy-1.1lo Lin-Sca-1+ population, the Rhodamine 123 (Rh123)hi subset dominates in PB myeloid reconstitution at 10 to 14 days, only to be overtaken by the Rh123lo subset at 3 weeks and thereafter. These findings indicate that HSCs can account for the early phase of hematopoietic recovery, as well as sustained hematopoiesis, and raise questions about the role of non-HSC BM populations in the setting of BMT.



Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1593-1593
Author(s):  
Lanelle V. Nakamura ◽  
Malini Mukherjee ◽  
Margaret A. Goodell ◽  
Debananda Pati

Abstract Abstract 1593 Introduction: Cohesin is an evolutionarily conserved protein complex that forms during the replication of sister chromatids. It is a multi-protein complex that consists of four proteins, Smc1, Smc3, Rad21, and Scc3. Resolution of sister chromatid cohesion at the onset of anaphase depends on Separase, an endopeptidase that separates sister chromatids by cleaving cohesion Rad21. A recent study suggests a new role of Cohesin proteins in gene expression and development with implications in hematopoiesis. Our data indicates that cohesin-resolving protease Separase may play a critical role in hematopoiesis. HYPOTHESIS: We hypothesize that Separase plays a role in hematopoiesis by increasing the quantity of hematopoietic stem cells (HSC). METHODS: Our experimental approach was to isolate murine long-term HSC from WT mice and mice with one mutated copy of Separase (i.e. Separase heterozygotes). In addition, in vivo competitive long term repopulation assays were used assess the function of HSC in Separase heterozyotes. RESULTS: Separase heterozygote have increased HSC numbers (p<0.05) as compared to WT mice. In addition, an improved engraftment in a competitive repopulation assay (p < 0.001) was seen in the Separase heterozyotes. Analysis of the engrafted cells demonstrated no difference between the wild type and Separase heterozygote animals, indicating the increased engraftment may be due to unique features in the primitive hematopoietic stem cells. CONCLUSION: Investigation of the mechanism for improved HSC engraftment in Separase heterozygote mice will significantly contribute to our understanding of marrow engraftment and function. Elucidating the mechanisms of hematopoietic dysregulation will provide insights into the development of life-threatening disorders such as leukemia and, in the setting of bone marrow transplant, engraftment failure. Disclosures: No relevant conflicts of interest to declare.



Cells ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 630 ◽  
Author(s):  
Munther Alomari ◽  
Dana Almohazey ◽  
Sarah Ameen Almofty ◽  
Firdos Alam Khan ◽  
Mohammad Al hamad ◽  
...  

Hematopoietic stem cells (HSCs) are multipotent, self-renewing cells that can differentiate into myeloid or lymphoid cells. The mobilization and differentiation processes are affected by the external environment, such as extracellular matrix and soluble molecules in the niche, where the lipid rafts (LRs) of the HSCs act as the receptors and control platforms for these effectors. LRs are membrane microdomains that are enriched in cholesterol, sphingolipid, and proteins. They are involved in diverse cellular processes including morphogenesis, cytokinesis, signaling, endocytic events, and response to the environment. They are also involved in different types of diseases, such as cancer, Alzheimer’s, and prion disease. LR clustering and disruption contribute directly to the differentiation, homing, hibernation, or mobilization of HSCs. Thus, characterization of LR integrity may provide a promising approach to controlling the fate of stem cells for clinical applications. In this review, we show the critical role of LR modification (clustering, disruption, protein incorporation, and signal responding) in deciding the fate of HSCs, under the effect of soluble cytokines such as stem cell factor (SCF), transforming growth factor- β (TGF-β), hematopoietic-specific phospholipase Cβ2 (PLC-β2), and granulocyte colony-stimulating factor (G-CSF).



Sign in / Sign up

Export Citation Format

Share Document