scholarly journals Niche-like Ex Vivo High Throughput (NEXT) Drug Screening Platform in Acute Myeloid Leukemia

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 12-13
Author(s):  
Reinaldo Dal Bello Figueiras ◽  
Justine Pasanisi ◽  
Romane Joudinaud ◽  
Matthieu Duchmann ◽  
Gaetano Sodaro ◽  
...  

Context. Functional precision medicine is gaining momentum in AML, notably through ex vivo drug sensitivity screening (DSS) of primary patient (pt) cells (Pemovska Cancer Discov 2013, Tyner Nature 2018). The DSS landscape differs across genetic AML subgroups (Tyner Nature 2016), of which NPM1mut is the most frequent (Papaemmanuil NEJM 2016). DSS in AML has mostly been done in standard conditions, with overall viability as unique endpoint. Niche signals, which can be partly mimicked in vitro, convey drug resistance in vivo. Drugs can induce a variety of cell fates in AML. Induction of differentiation rather than killing of blasts, can result in false negative results in global viability assays. Persistence of leukemic stem cells (LSC) represents a major cause of treatment failure. GPR56 is a ubiquitous surface marker enriching for LSCs and stable upon short-term ex vivo culture (Pabst Blood 2016). Objectives. To develop an ex vivo niche-like multiparametric DSS platform for primary AML cells. To validate its clinical relevance in NPM1mut pts treated with conventional DNR-AraC chemotherapy. To discover new sensitizers to DNR-AraC chemotherapy in NPM1mut AML. Results. We designed an MFC panel to count viable blasts and measure their differentiation (CD11b/CD14/CD15) and stemness (GPR56) after exclusion of residual lymphocytes (Figure 1A). We validated GPR56 expression as stemness marker based on increased retention of GPR56+ cells in niche-like coculture combining hypoxia (O2 3%) and MSC compared to standard conditions (p<0.0001, Figure 1B) and limit dilution assays of residual GPR56+ cells at 72h of niche-like culture in 3 NPM1mut AMLs (Figure 1C). Using a limited panel of 14 drugs or combinations at fixed concentrations, our MFC readout after 72h of coculture with MSC+hypoxia revealed the distinct mode of action of different agents or combinations including the differentiation activity of ATO-ATRA, the LSC-sparring cytotoxicity of DNR-AraC and the anti-LSC- activity of VEN (Figure 1D). To further mimic in vivo conditions, we derived a MEMa-based plasma-like medium (PLM) based on targeted metabolomics (Figure 1E) and electro-chemoluminescent cytokine assays of 29 diagnostic AML bone marrow plasma samples compared to conditioned media of primary AML cells cultured in niche-like conditions (MSC, hypoxia). This instructed the design of our custom PLM with dialyzed FBS and defined low-dose (~1 ng/mL range) cytokines (CK) and amino-acid (AA) concentrations. We next investigated the contribution of MSCs, hypoxia, plasma-like AAs and CKs on blasts viability, differentiation, stemness and drug response in 3 NPM1mut AMLs exposed to fixed concentrations of 6 core AML therapies. This analysis uncovered significant interactions between these 4 niche components in dictating blast viability and stemness upon 72h ex vivo culture (Figure 1F) and revealed the distinct contribution of these niche components to drug sensitivity. RNA-seq of primary blasts cultured in niche-like, plasma-like conditions revealed marked enrichment of stemness pathways compared to ex vivo culture in standard conditions. Finally, we explored DNR-AraC (five-point serial dilution) alone or in combination with fixed, clinically relevant concentrations of 24 drugs in 49 primary AML samples (including 34 NPM1mut). Using AUCs of DNR-AraC on lymphocytes as internal control, we first validated our NEXT assay on NPM1 MRD levels in the 34 NPM1mut pts treated frontline with conventional DNR-AraC regimens (Figure 1G). Across all 49 pts, we uncovered 11 different optimal 'third-drugs', stressing the role of our NEXT assay to deploy precision medicine in daily practice. At the population level, we could nominate 3 top combinations, two of which are currently in clinical investigation (Venetoclax and Selinexor). The unpublished sensitizing effect of low dose (0.25µM) Ruxolitinib on DNR-AraC uncovered with our NEXT assay is currently being investigated in PDX models. Conclusion. We designed the NEXT assay, a multiparametric drug screening of AML viability, differentiation and stemness in niche-like culture combining hypoxia, stromal interactions and plasma-like medium. Components of the niche-like culture interact to govern leukemic viability and stemness. Our assay could predict MRD achievement in NPM1mut AML and identifies novel sensitizers to DNR-AraC in these pts. Disclosures Clappier: Amgen: Honoraria, Research Funding. Ades:Abbvie: Honoraria, Membership on an entity's Board of Directors or advisory committees; takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees; jazz: Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Research Funding; novartis: Research Funding; Celgene/BMS: Research Funding. Itzykson:Amgen: Membership on an entity's Board of Directors or advisory committees; Otsuka Pharma: Membership on an entity's Board of Directors or advisory committees; Jazz Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees; Stemline: Membership on an entity's Board of Directors or advisory committees; Oncoethix (now Merck): Research Funding; Janssen: Research Funding; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Abbvie: Honoraria; Daiichi Sankyo: Honoraria; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS (Celgene): Honoraria; Sanofi: Honoraria; Astellas: Honoraria.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 297-297 ◽  
Author(s):  
Colleen Delaney ◽  
Filippo Milano ◽  
Ian Nicoud ◽  
Shelly Heimfeld ◽  
Chatchada Karanes ◽  
...  

Abstract Introduction There is a strong clinical need to overcome the increased early non relapse mortality (NRM) associated with delayed neutrophil recovery following cord blood transplant (CBT). Therefore we established a methodology using Notch ligand (Delta1) as a strategy for increasing the absolute number of marrow repopulating CB hematopoietic stem/progenitor cells (HSPC). We previously reported preliminary results of the first 10 patients in 2010 demonstrating the ability of Notch-expanded CB HSPC to provide rapid myeloid recovery post-CBT.1 Herein we present the updated results on 23 patients accrued to this trial aimed at assessment of efficacy as well as the feasibility of overnight shipment of the expanded cell product to three outside institutions. Methods Between July 2006 and March 2013, 23 patients with hematologic malignancies were enrolled in this prospective multi-center Phase I trial coordinated by the Fred Hutchinson Cancer Research Center in which one CB unit was ex vivo expanded prior to infusion. Conditioning consisted of Fludarabine (75mg/m2), Cyclophosphamide (120mg/kg) and TBI (13.2 Gy) over 8 days. On day 0, the unmanipulated CB unit was infused first followed 4 hours later by infusion of the freshly harvested expanded CB cells. Graft versus host disease (GVHD) prophylaxis consisted of cyclosporine and MMF beginning on day -3. All CB grafts were 4-6/6 HLA-matched (A/B antigen level, DRB1 allele level) to the recipient. Engraftment, NRM, relapse and GVHD were calculated using cumulative incidence rates to accommodate competing risks. Overall survival was analyzed using Kaplan-Meier estimates. Results Patient diagnosis was AML (n=16), ALL (n=5) and biphenotypic leukemia (n=2). Nine patients (39%) were ≥CR2 and 5 were MRD+ at the time of transplant. Median age was 28 years (range, 4-43) and weight 70 kg (range, 16-91) with a median follow-up of 614 days (range, 271-2443). 22 patients received the expanded graft with one product not meeting release criteria. The cell doses infused were significantly higher in the expanded CB graft: 2.7 (1.5-6.3) vs 6.9 (0.4-27.6) x107 TNC/kg, p<0.0008; 0.15 (0.02-0.57) vs 7.7 (0.62-49.5) x106 CD34/kg, p<0.0001. HLA-matching and ABO incompatibility of the expanded and unmanipulated products were similar. The incidence of neutrophil recovery was 95% (95% CI, 71-100) at a median of 13 days (range, 6-41 days) among the 22 patients receiving expanded CB cells which is significantly faster than that observed in 40 recipients of two unmanipulated units otherwise treated identically at a median time of 25 days (range, 14 to 45; p<0.0001). The incidence of platelet recovery (>20 x 10^9/L) was 77% (CI 95%: 53- 89) by day 100 at a median of 38 days (range, 19 – 134). There was one case of primary graft failure. Importantly, rate of neutrophil recovery correlated with CD34+ cell dose/kg with 8 out of 11 patients receiving greater than 8x106 CD34+cells/kg achieved an ANC ≥ 500/µl within 10 days. 21 patients were evaluable for in vivo persistence of the expanded cells. Ten (48%) demonstrated in vivo persistence beyond one month post infusion. The expanded cell graft was persistent at day 180 in 7 patients, and in those that survived to one year, dominance of the expanded cell graft persisted in one patient. The incidences of grade II-IV and III-IV acute GVHD was 77% (95% CI, 53-89) and 18% (95% CI, 5-36%), respectively; mild chronic GVHD was observed in 4 patients and severe chronic GVHD in one. Probability of OS was 62% (95% CI, 37-79%) at 4 years. Notably, the cumulative incidence of NRM at day 100 was 8% (95% CI, 14-24%) and at 4 years was 32% (95% CI, 8-40%). Nine patients died at a median time of 216 days (range, 31-1578 days) with respiratory failure/infection the most common cause (n=6). There were two relapses at day 156 and 365 post-transplant, with one death due to relapse. Secondary malignancy and primary graft failure were the other 2 causes of death. Conclusions Infusion of Notch-expanded CB progenitors is safe and effective, significantly reducing the time to neutrophil recovery and risks of NRM during the first 100 days. An advantage for infusion of higher numbers of CD34+ cells/kg further demonstrates the need to develop methods that reproducibly provide even greater expansion of repopulating cells than currently achieved to improve efficacy and potentially cost effectiveness. 1. Delaney C, et al, Nat Med. 2010 Feb;16(2):232-6. Disclosures: Delaney: Novartis: DSMB, DSMB Other; Biolife: Membership on an entity’s Board of Directors or advisory committees; medac: Research Funding. Wagner:Novartis: Research Funding; cord use: Membership on an entity’s Board of Directors or advisory committees.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1901-1901
Author(s):  
Despina Bazou ◽  
Muntasir M Majumder ◽  
Ciara Tierney ◽  
Sinead O'Rourke ◽  
Pekka Anttila ◽  
...  

Abstract Introduction: A hallmark of Multiple Myeloma (MM) is the sequel development of drug resistant phenotypes, which may be present initially or emerge during the course of treatment. These drug resistant phenotypes reflect the intra-tumor and inter-patient heterogeneity of this cancer. Most MM cells are sensitive to proteasome inhibitors (PIs), which have become the standard of care in the treatment of newly diagnosed and relapsed MM. However, resistance develops (intrinsic/acquired). Although several novel drugs have recently been approved or are in development for MM, there are few molecular indicators to guide treatment selection. To address this limitation we have combined mass spectrometry-based proteomics analysis together with ex vivo drug response profiles and clinical outcome to elucidate a best possible accurate phenotype of the resistant sub-clones, thus yielding a theranostic profile that will inform therapeutic and drug development strategies. Methods: We performed mass spectrometry-based proteomics analysis on plasma cells isolated from 38 adult MM patient bone marrow aspirates (CD138+). Samples were obtained at diagnosis or prior to commencing therapy. The participating subjects gave written informed consent in accordance with the Declaration of Helsinki that was approved by local ethics committees. For the proteomics analysis, peptides were purified using the filtered aided sample preparation (FASP) method. Subsequently, samples were prepared for label-free liquid chromatography mass spectrometry (LC-MS/MS) using a Thermo Scientific Q-Exactive MS mass spectrometer. Proteins were analysed using the MaxQuant and Perseus software for mass-spectrometry (MS)-based proteomics data analysis, UniProtKB-Swiss Prot database and KEGG Pathway database. In parallel, we undertook a comprehensive functional strategy to directly determine the drug dependency of myeloma plasma cells based on ex vivo drug sensitivity and resistance testing (DSRT)as previously described (1). Results: Our initial proteomic analysis was generated by examining MM patient plasma cells, grouped based on DSRT to 142 anticancer drugs including standard of care and investigational drugs. Each of the 142 drugs was tested over a 10,000-fold concentration range, allowing for the establishment of accurate dose-response curves for each drug in each patient. MM patients were stratified into four distinct subgroups as follows: highly sensitive (Group I), sensitive (Group II), resistant (Group III) or highly resistant (Group IV) to the panel of drugs tested. We then performed blinded analysis on the 4 groups of CD138+ plasma cells divided based on the ex vivo sensitivity profile, identifying a highly significant differential proteomic signature between the 4-chemosensitivity profiles, with Cell Adhesion Mediated-Drug Resistance (CAM-DR) related proteins (e.g. integrins αIIb and β3) significantly elevated in the highly resistant phenotype (Group IV). In addition our results showed that Group I patients displayed significant upregulation of cell proliferation proteins including: MCM2, FEN1, PCNA and RRM2. Furthermore, Group I patients have shorter Progression Free Survival (PFS) as well as Overall Survival (OS) compared to the other subgroups. Figure 1 shows the Heatmap summarizing the expression of proteins (log2 fold change) in the four distinct MM patient subgroups. Conclusions:Our findings suggest that combining a proteomics based study together with drug sensitivity and resistance testing allows for an iterative adjustment of therapies for patients with MM, one patient at a time, thus providing a theranostic approach. Our results suggest that the disease driving mechanisms in the patient subgroups are distinct, with highly resistant patients exhibiting cell adhesion mediated cytoprotection, while highly sensitive patients show an increased cell proliferation protein profile with shorter PFS and OS. Our study aims to guide treatment decisions for individual cancer patients coupled with monitoring of subsequent responses in patients to measure and understand the efficacy and mechanism of action of the drugs. Future work will include the establishment of flow cytometry-based screening assays to identify the different resistant phenotypes at diagnosis/relapse. References: (1) M. M. Majumder et al., Oncotarget 8(34), 56338 (2017) Disclosures Anttila: Amgen: Membership on an entity's Board of Directors or advisory committees; Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees. Silvennoinen:Amgen: Honoraria, Research Funding; Takeda: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; BMS: Honoraria, Research Funding. Heckman:Orion Pharma: Research Funding; Celgene: Research Funding; Novartis: Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3670-3670
Author(s):  
Laura Hurtado-Navarro ◽  
Ernesto J Cuenca ◽  
Eva Soler ◽  
Andres Jerez ◽  
Helios Martínez-Banaclocha ◽  
...  

Abstract It has been recently shown that RAS mutations, which occur in 11-38% of Chronic Myelomonocytic Leukemia (CMML), do not only act via RAS/MEK/ERK signaling, but contribute to the disease through NLRP3 inflammasome activation (Hamarsheh, Nat Comm 2020). Despite a therapeutic approach based on NLRP3/IL1β axis blockade, as bring to a stem cell transplantation (SCT) has been proposed, data on the efficacy of IL1β inhibitors in hematopoietic neoplasms is limited. A 55 year old man with previous autoinflammatory episodes (constrictive pericarditis) was diagnosed on September 2020 of CMML-1 KRAS G12D (Inter-2). Due to worsening (orchiepidedymitis, pneumonitis, cellulitis), and the impossibility of performing an SCT at that time, on December 02 2020 he started anakinra (a IL1β receptor antagonist) with good response. Due to new episodes of autoinflammation, anakinra was discontinued (12 April 2021) with severe clinical worsening (heart failure) and no response to diuretic/corticosteroid. After anakinra was restarted (04 May 2021), a progressive improvement was seen, allowing a successful pericardiectomy before an SCT. We obtained blood samples from this patient (at different times) and plasma and whole blood samples from 11 and 5 other CMML KRAS mut patients, respectively. We also included CMML patients without KRAS mutations (KRAS wt) (n=8), with sepsis (n=5) and healthy individuals (n=9). Plasma levels of 15 inflammatory cytokines associated with NLRP3 inflammasome and NFkB pathways were measured using a customized MILLIPLEX ® kit. The inflammasome marker activation assays were conducted as previously published (Martínez García JJ, Nature Comm 2019). Compared to healthy controls, KRAS wt CMML patients did not show differences in any cytokine tested, except IL6, while KRAS mut patients showed significantly higher levels of IL1α, IL1ra, IL18, IL12p40 (associated with NLRP3 inflammasome), IL6, IL8 (associated with NFkB pathway) and M-CSF (Fig. 1A B). Compared to KRAS wt CMML patients, those with KRAS mut showed higher levels of cytokines associated with both the NLRP3 and NFkB pathways, reaching statistical significance for those related with NLRP3 inflammasome. We also observed changes in inflammasome related cytokines before and after anakinra (Table 1). This cytokine profile in the plasma made us analyze the oligomerization of ASC as a marker of inflammasome activation in monocytes of KRAS mut CMML. We found that in all cases of KRAS mut CMML patients around 30 to 80% of monocytes presented oligomers of ASC measured by the time of flight assay, while in healthy donors and KRAS wt CMML patients, ASC oligomerization occurred upon NLRP3 inflammasome activation with lipopolysaccharide (LPS) + ATP or Pyrin inflammasome activation with LPS and Clostridium difficile B toxin (TcdB) (Fig. 2A). Ex vivo activation of PBMCs from KRAS mut CMML patients showed that despite the high percentage of cells with ASC oligomers, very low levels of IL1b released from these cells, even when NLRP3 was activated with LPS+ATP (Fig. 2B), suggesting that this inflammasome is activated in vivo and could not be further activated ex vivo. As control, Pyrin inflammasome activation in PBMCs from KRAS mut CMML was able to induce IL1b release similarly to healthy controls (Fig. 2B). We then found that anakinra treatment of the KRAS mut CMML patient followed in this study, resulted in a decrease of the percentage of monocytes with basal active inflammasomes (Fig. 2C). A little ex vivo activation of the NLRP3 inflammasome was obtained when cells were treated with LPS+ATP, while Pyrin inflammasome was activated at normal levels after LPS+TcdB treatment (Fig. 2D). The inflammasome basal activation increased in the monocytes of the KRAS mut CMML patient after anakinra withdraw and during clinical deterioration and restarting anakinra (second arrow) decreased the basal percentage of monocytes with ASC oligomers (Fig. 2C). Since ASC oligomers are associated to pyroptosis via caspase 1 activation and gasdermin D processing, we then analyzed pyroptotic markers in the plasma of the patient during the time. ASC was increased when monocytes presented elevated percentage of ASC oligomers (Fig. 2E), suggesting that ASC detection could be a promising biomarker. Overall, we show that, in vivo, the NLRP3 inflammasome activation of KRAS mut CMML patients may revert with IL1β blockers. ASC could identify those candidates to receive this therapy. PI18/00316 Figure 1 Figure 1. Disclosures Jerez: Novartis: Consultancy; BMS: Consultancy; GILEAD: Research Funding. Bellosillo: Thermofisher Scientific: Consultancy, Speakers Bureau; Roche: Research Funding, Speakers Bureau; Qiagen: Consultancy, Speakers Bureau. Hernández-Rivas: Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene/BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees. Ferrer Marin: Cty: Research Funding; Incyte: Consultancy, Research Funding; Novartis: Speakers Bureau.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2673-2673
Author(s):  
Jessica Liegel ◽  
Dina Stroopinsky ◽  
Haider Ghiasuddin ◽  
Adam Morin ◽  
Marzia Capelletti ◽  
...  

Introduction: Our group has developed a novel vaccine using patient-derived acute myeloid leukemia (AML) cells and autologous dendritic cells (DCs), capable of presenting a broad array of leukemia antigens. In a phase I/II clinical trial DC/AML vaccination led to an expansion of leukemia-specific T cells. We hypothesized that the fusion vaccine offered a unique platform for ex vivo expansion of functionally potent leukemia specific T cells with broad specificity targeting shared and tumor specific neoantigens. We postulated that incorporating 4-1BB (CD137) mediated co-stimulation would further enhance activation of antigen specific T cells and the development of a crucial memory response as well as promote survival and persistence. Here we describe therapeutic exploration of the use of 4-1BB to augment vaccine-educated T cells for adoptive cellular therapy in an immunocompetent murine model. Methods: DC/AML fusion vaccine was generated using DCs obtained from C57BL/6J mice and syngeneic C1498 AML cells as previously described. T cells were obtained from splenocytes after magnetic bead isolation and cultured with irradiated DC/AML fusion vaccine in the presence of IL-15 and IL-7. Following co-culture, 4-1BB positive T cells were ligated using agonistic 4-1BB antibody (3H3 clone, BioXCell) and further selected with RatIgG2a magnetic beads (Easy Sep). Subsequently T cells were expanded with anti-CD3/CD28 activation beads (Dynabeads). In vivo, mice underwent retro-orbital inoculation with C1498 and vaccination with irradiated fusion cells the following day. Agonistic mouse anti-4-1BB antibody was injected intraperitoneally on day 4 and day 7. In addition, C1498 cells were transduced with Mcherry/luciferase and a reproducible model of disease progression was established. Results: DC/fusion stimulated T cells showed increased immune activation as measured by multichannel flow cytometric analysis. Compared to unstimulated T cells, there was 5-fold increase in CD4+CD25+CD69+, and a 10-fold and 7-fold increase in 4-1BB and intracellular IFNƔ expression on CD8+ cells respectively. Following agonistic 4-1BB ligation and bead isolation, the proliferation rate was increased in the 4-1BB positive fraction as compared to both 4-1BB negative cells and unstimulated T cells. In addition, the 4-1BB positive fraction demonstrated increased cytotoxicity, as measured by a CTL assay detecting granzyme B with 1:10 tumor to effector cells. A shift from naïve to memory T cell phenotype was also observed. Following DC/fusion stimulation, CD44+CD62L- cells comprised 67% of CD8+ cells versus 20% without stimulation, the latter reflecting the effect of cytokines alone. Following 4-1BB ligation and anti-CD3/CD28 bead expansion, this phenotype was retained with the CD4+ and CD8+ effector memory and central memory compartments comprising the majority of T cells. Such findings are significant as presence of memory T cell populations are a critical component for successful adoptive cell transfer. The effect of agonistic 4-1BB antibody following vaccination was evaluated in vivo in an aggressive immunocompetent murine AML model. The combination of DC/AML fusion vaccine with 4-1BB antibody was associated with increased long-term survival (>120 days) of 40% versus 20% of mice treated with vaccine alone while all controls required euthanasia by 40 days. Conclusion: In the current study we have demonstrated the ability of DC/AML fusion vaccine to stimulate T cells ex-vivo as demonstrated by both early-activation (CD25,CD69), upregulation of antigen-specific markers (CD137) and cytokine secretion. Further enhancement of the cellular product using agonistic 4-1BB ligation and isolation simultaneously enriches for antigen-activated cells, as demonstrated by more potent cytotoxicity, as well as promoting memory phenotype and survival. Use of 4-1BB ligation for antigen-specific selection while providing an agonistic co-stimulatory signal is a potentially novel approach for development of non-engineered T cells. Ongoing experiments evaluating the efficacy of 4-1BB selected vaccine educated T cells using bioluminescence monitoring will be reported as well as in vitro use of patient-derived T cells. Disclosures Kufe: Canbas: Consultancy, Honoraria; Victa BioTherapeutics: Consultancy, Equity Ownership, Honoraria, Membership on an entity's Board of Directors or advisory committees; Genus Oncology: Equity Ownership; Hillstream BioPharma: Equity Ownership; Reata Pharmaceuticals: Consultancy, Equity Ownership, Honoraria; Nanogen Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Rosenblatt:Dava Oncology: Other: Education; Partner Tx: Other: Advisory Board; Parexel: Consultancy; Celgene: Research Funding; BMS: Research Funding; Amgen: Other: Advisory Board; Merck: Other: Advisory Board; BMS: Other: Advisory Board ; Imaging Endpoint: Consultancy. Avigan:Takeda: Consultancy; Parexel: Consultancy; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Pharmacyclics: Research Funding; Juno: Membership on an entity's Board of Directors or advisory committees; Partners Tx: Membership on an entity's Board of Directors or advisory committees; Partner Tx: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2856-2856 ◽  
Author(s):  
Tiziana Vaisitti ◽  
Katti Jessen ◽  
Thanh-Trang Vo ◽  
Mira Ko ◽  
Francesca Arruga ◽  
...  

ROR1 is a transmembrane receptor with tightly controlled expression during development. It is present on multiple tumor types but not on normal adult tissues. Hematological malignancies are often ROR1-positive, including chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL), and diffuse large B cell lymphoma (DLBCL). Given its unique pattern of expression, ROR1 represents a tumor-specific therapeutic target. The anti-ROR1 antibody, UC-961, is ahumanized IgG1 monoclonal antibody (mAb) that binds with high affinity to a specific extracellular epitope of human ROR1 receptor and can block Wnt5a-induced ROR1 signaling. Nonclinical studies document that UC-961 does not react with normal adult human tissues and selectively binds to tumor cells. Because of the antibody high specificity, rapid internalization, and trafficking to lysosomes, UC-961 appears ideally suited to serve as the targeting moiety for an anti-ROR1 ADC. Accordingly, we have developed VLS-101, a UC-961-linker-monomethyl auristatin E (MMAE) ADC that preserves the high-affinity binding and specificity of UC-961 and allows for ROR1-targeted intracellular release of MMAE. RS is an aggressive lymphoma, typically of DLBCL type, arising as transformation of CLL. Despite, progressive improvements in the therapy of CLL, very few effective treatment options exist for patients with RS. Using our recently established RS patient-derived xenografts (RS-PDXs), we explored the expression and signaling properties of ROR1 in RS and investigated the ex-vivo and in vivo effects of VLS-101. When assessed by flow cytometry (FACS), immunohistochemistry (IHC), and reverse-transcriptase-polymerase chain reaction (RT-PCR), 3 of 4 RS-PDXs showed ROR1 positivity (2 highly positive: 99% and 80% of cells; 1 medium/low positive: 25% of cells by FACS). The extent of ROR1 expression correlated among the 3 assays methods and was consistent with ROR1 expression data reported for non-RS DLBCL samples. When engaged by its ligand Wnt-5a, ROR1 activated downstream targets, Rac1 and RhoA, and induced phosphorylation of the p65 subunit of NF-kB and Jnk in RS cells. When cells purified from RS-PDX tumor masses were exposed to VLS-101 ex-vivo, the drug induced time- and dose-dependent apoptosis, as shown by increases in annexin V/propidium iodide and by Caspase-3 and PARP cleavage. VLS-101 efficacy was then assessed in vivo in both subcutaneous and systemic RS-PDX models. When palpable masses had formed in subcutaneous models, mice were randomly assigned to vehicle or VLS-101, bi-weekly treated for 3 consecutive weeks, and then compared for tumor growth and survival. In the 3 ROR1-expressing RS-PDX models, VLS-101 caused highly significant disease regressions. Complete regressions were observed even in RS-PDXs without universal ROR1 expression, suggesting a MMAE bystander effect. After treatment discontinuation, VLS-101-treated animals showed no tumor regrowth for several months and had significantly extended survival. Data were confirmed in systemic ROR1-expressing RS models in which tumor cells were intravenously injected and allowed to engraft for ~14 days before starting treatment. VLS-101 was administered with the same schedule adopted for the subcutaneous model. VLS-101 eliminated RS cells in bone marrow, peripheral blood, and spleen, increasing survival in VLS-101-treated animals relative to controls (approximately 20-50 days, depending on the RS-PDX model). Of note, no in vivo VLS-101 efficacy was observed in the ROR1-negative RS-PDX, confirming the specificity of VLS-101 targeting. VLS-101 showed no adverse effects on animal well-being or body weight. Collectively, these results indicate that ROR1 is expressed on RS cells where it can transduce pro-survival signals and can be diagnostically evaluated for selective targeting. Nonclinical data document that the MMAE-containing ADC, VLS-101, can cause RS-PDX apoptosis in vitro and can safely and selectively induce complete tumor regressions in in vivo models of RS derived from patient tumors with heavy prior clinical treatment and variable levels of ROR1 expression. Building on these types of results, a Phase 1 clinical trial of VLS-101 (NCT03833180) is ongoing in patients with lymphoid cancers. Disclosures Vaisitti: VelosBio Inc.: Research Funding; Verastem Inc: Research Funding. Jessen:VelosBio Inc.: Employment. Vo:VelosBio Inc: Employment. Ko:VelosBio Inc: Employment. Allan:Sunesis Pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees; Pharmacyclics LLC, an AbbVie company: Consultancy; Acerta Pharma: Consultancy; Genentech: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; AbbVie, Inc: Consultancy, Membership on an entity's Board of Directors or advisory committees; Verastem Oncology, Inc.: Consultancy, Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy, Honoraria; Bayer: Consultancy. Furman:Acerta Pharma: Consultancy; Pharmacyclics: Consultancy; Beigene: Consultancy; AstraZeneca: Consultancy; Genentech: Consultancy; Incyte: Consultancy; Oncotracker: Consultancy; Verastem: Consultancy; Abbvie: Consultancy; Sunesis: Consultancy; TG Therapeutics: Consultancy; Janssen: Consultancy. Miller:VelosBio Inc.: Employment. Lanutti:VelosBio Inc.: Employment. Deaglio:iTeos Therapeutics: Research Funding; Verastem Inc: Research Funding; VelosBio Inc.: Research Funding. OffLabel Disclosure: The drug used in this project is an anti-ROR1-toxin-conjugated antibody


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 887-887
Author(s):  
Aldo M Roccaro ◽  
Antonio Sacco ◽  
Phong Quang ◽  
AbdelKareem Azab ◽  
Patricia Maiso ◽  
...  

Abstract Abstract 887 Background. Stomal-cell-derived factor 1 (SDF-1) is known to be involved in bone marrow (BM) engrafment for malignant tumor cells, including CXCR4 expressing multiple myeloma (MM) cells. We hypothesized that de-adhesion of MM cells from the surrounding BM milieu through SDF-1 inhibition will enhance MM sensitivity to therapeutic agents. We therefore tested NOX-A12, a high affinity l-oligonucleotide (Spiegelmer) binder to SDF-1in MM, looking at its ability to modulate MM cell tumor growth and MM cell homing to the BM in vivo and in vitro. Methods. Bone marrow (BM) co-localization of MM tumor cells with SDF-1 expressing BM niches has been tested in vivo by using immunoimaging and in vivo confocal microscopy. MM.1S/GFP+ cells and AlexaFluor633-conjugated anti-SDF-1 monoclonal antibody were used. Detection of mobilized MM-GFP+ cells ex vivo has been performed by flow cytometry. In vivo homing and in vivo tumor growth of MM cells (MM.1S-GFP+/luc+) were assessed by using in vivo confocal microscopy and in vivo bioluminescence detection, in SCID mice treated with 1) vehicle; 2) NOX-A12; 3) bortezomib; 4) NOX-A12 followed by bortezomib. DNA synthesis and adhesion of MM cells in the context of NOX-A12 (50–200nM) treated primary MM BM stromal cells (BMSCs), in presence or absence of bortezomib (2.5–5nM), were tested by thymidine uptake and adhesion in vitro assay, respectively. Synergism was calculated by using CalcuSyn software (combination index: C.I. according to Chou-Talalay method). Results. We first showed that SDF-1 co-localizes in the same bone marrow niches of growth of MM tumor cells in vivo. NOX-A12 induced a dose-dependent de-adhesion of MM cells from the BM stromal cells in vitro. These findings were corroborated and validated in vivo: NOX-A12 induced MM cell mobilization from the BM to the peripheral blood (PB) as shown ex vivo, by reduced percentage of MM cells in the BM and increased number of MM cells within the PB of mice treated with NOX-A12 vs. control (BM: 57% vs. 45%; PB: 2.7% vs. 15%). We next showed that NOX-A12-dependent de-adhesion of MM cells from BMSCs lead to enhanced MM cell sensitivity to bortezomib, as shown in vitro, where a synergistic effect between NOX-A12 (50–100 nM) and bortezomib (2.5–5 nM) was observed (C.I.: all between 0.57 and 0.76). These findings were validated in vivo: tumor burden detected by BLI was similar between NOX-A12- and control mice whereas bortezomib-treated mice showed significant reduction in tumor progression compared to the control (P<.05); importantly significant reduction of tumor burden in those mice treated with sequential administration of NOX-A12 followed by bortezomib was observed as compared to bortezomib alone treated mice (P <.05). Similarly, NOX-A12 + bortezomib combination induced significant inhibition of MM cell homing in vivo, as shown by in vivo confocal microscopy, as compared to bortezomib used as single agent. Conclusion. Our data demonstrate that the SDF-1 inhibiting Spiegelmer NOX-A12 disrupts the interaction of MM cells with the BM milieu both in vitro and in vivo, thus resulting in enhanced sensitivity to bortezomib. Disclosures: Roccaro: Roche:. Kruschinski:Noxxon Pharma AG: Employment. Ghobrial:Novartis: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Consultancy, Membership on an entity's Board of Directors or advisory committees; Millennium: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Research Funding; Noxxon: Advisory Board, Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 32-32
Author(s):  
Riikka Karjalainen ◽  
Mihaela Popa ◽  
Minxia Liu ◽  
Mika Kontro ◽  
Mireia Mayoral Safont ◽  
...  

Abstract Several promising new, targeted agents are being developed for the treatment of AML. The BH3 mimetic venetoclax (ABT-199) is a specific inhibitor of BCL2, with results from a phase 2 study showing transient activity of venetoclax in relapsed/refractory AML (Konopleva et al, 2014). The bone marrow (BM) microenvironment is known to protect AML cells from drug therapy and we showed earlier that conditioned medium (CM) from BM stromal cells applied to AML patient cells conferred resistance to venetoclax, which could be reversed by the addition of the JAK1/2 inhibitor ruxolitinib (Karjalainen et al, 2015). Here, we investigated the mechanisms mediating the BM stromal cell induced resistance to venetoclax and its reversal by ruxolitinib. To identify the soluble factor(s) contributing to stroma-induced protection of BCL2 inhibition, we analyzed the cytokine content of 1) CM from the human BM stromal cell line HS-5, 2) CM from BM mesenchymal stromal cells (MSCs) isolated from AML patients, 3) supernatants from BM aspirates collected from AML patients, and 4) supernatants from BM aspirates collected from healthy donors. Although expression levels varied, the cytokines detected were similar among the different samples. In HS-5 CM, IL-6, IL-8 and MIP-3α were among the most abundant cytokines. In addition, gene expression analysis showed the receptors for these cytokines were expressed in AML patient samples. IL-6, IL-8 and MIP-3α were added individually to mononuclear cells collected from AML patients, which were then treated with venetoclax. However, none of the cytokines alone could mimic the reduced sensitivity to venetoclax conferred by the HS-5 CM suggesting that stromal cell induced cytoprotection is likely multi-factorial. Next we tested the effect of AML-derived BM MSCs on the ex vivo response of AML patient samples (n=8) to ruxolitinib or venetoclax alone or in combination in a co-culture setting. Apoptosis assays showed negligible effects of ruxolitinib at a concentration of 300 nM, while venetoclax at a dose of 100 nM induced reduction in the percentage of CD34+ AML cells. Co-treatment with venetoclax and ruxolitinib demonstrated synergistic effects in 6 out of 8 samples and significantly reduced the number of CD34+ AML cells. Mechanistic studies showed that ruxolitinib treatment inhibited the BM stromal medium-induced expression of BCL-XL mRNA on AML cells and the drugs in combination down-regulated BCL2, MCL1 and BCL-XL protein expression, which was in correlation with sensitivity to the drugs. To further evaluate the ability of the venetoclax and ruxolitinib combination to eradicate leukemic cells in vivo we used an orthotopic xenograft model of AML. NSG mice were injected with genetically engineered MOLM-13luc cells and after engraftment treated with venetoclax (25 mg/kg, i.p.), ruxolitinib (50 mg/kg BID, p.o) or both and imaged once per week for 4 weeks. At the end of the treatment period bioluminescent imaging showed significantly reduced leukemia burden in the ruxolitinib and venetoclax co-treated mice compared to controls demonstrating superior anti-tumor efficacy than either agent alone (Figure 1). In summary, our data demonstrate that the combined blockade of JAK/STAT and BCL2 pathways with ruxolitinib and ventoclax is synergistic in ex vivo co-culture models and in vivo in an AML mouse model. The addition of ruxolitinib was able to overcome intrinsic resistance to venetoclax by reducing expression of MCL1, a known escape mechanism of BCL2 inhibition. These results support further clinical investigation of this combination, particularly for relapsed/refractory AML. Disclosures Porkka: Novartis: Honoraria, Research Funding; Pfizer: Honoraria, Research Funding; Bristol-Myers Squibb: Honoraria, Research Funding. Wennerberg:Pfizer: Research Funding. Gjertsen:BerGenBio AS: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Boehringer Ingelheim: Membership on an entity's Board of Directors or advisory committees; Kinn Therapeutics AS: Equity Ownership. Heckman:Celgene: Research Funding; Pfizer: Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3472-3472
Author(s):  
Isabel Weinhäuser ◽  
Diego A Pereira-Martins ◽  
Jacobien R Hilberink ◽  
Luciana Yamamoto Almeida ◽  
Douglas RA Silveira ◽  
...  

Abstract With immune therapies on the rise, an in-depth understanding of the immunological changes in leukemic bone marrow (BM) niches becomes indispensable. Being an crucial part of the tumor microenvironment (TME) in solid tumours, tumour-associated macrophages are often associated with poor prognosis (Bruni et al. 2020). Yet, in acute myeloid leukaemia (AML) the role of macrophages has not been thoroughly studied. The expression of the M2-markers CD163 and CD206 in the AML BM cell population predicted poor clinical outcome. We identified that this expression emerges from a more mature (CD45 midSSC highHLA-DR +CD14 +CD16 +/-) myeloid cell population (hereafter called AML-associated macrophages - AAM) and not from the leukemic blasts. By employing flow cytometry analysis (FACS) we noted a decrease in the expression of the M1-marker (CD80) and an increase of the M2-markers CD163/CD206on AAM (n=70) compared to healthy donors (HD, n=10). Unsupervised clustering based on the CD163/CD206 levels detected on AAM generated 4 distinct clusters, whereby patients within the CD163 low/CD206 low cluster displayed better overall survival than the other clusters. In vitro, the co-culture of HD-derived M1 macrophages and AML primary/cell lines reduced AML growth via apoptosis induction and cell cycle arrest, while M2-macrophages promoted AML survival and phagocytosis/drug-resistance when treated with FLT3/BCL2 inhibitors. Primary AML cells were also able to repolarize M1- into M2-macrophages, suggesting that leukemic cells actively remodel their microenvironment. Next, we evaluated the impact of M2-macrophages on leukemogenesis in a patient derived xenograft (PDX) model, using the notoriously difficult to engraft primary Acute Promyelocytic Leukaemia (APL) cells (n=7 patient samples). Intra-BM injection of M2-macrophages and retro-orbital transplant of primary APL cells induced full-blown APL in NSGS mice. More strikingly, ex vivo culture of APL cells on M2-macrophages (48h) was sufficient to "train" these cells to engraft and induce fatal APL. Maintenance of self-renewal was shown in a secondary transplant and an enhanced frequency of leukemic stem cells was assessed by in vivo LTC-IC assays. To identify the biological changes acquired by leukemic blasts, we performed RNA sequencing comparing AML/APL samples at diagnosis to cells that were "trained" (48 h) on M2-macrophages or on MS5 mesenchymal BM stromal cells. Gene ontology and gene set enrichment analysis on the genes up-regulated upon M2 co-culture were significantly enriched for cell migration, cell cycle progression and oxidative phosphorylation (OXPHOS) signatures. In line with our RNAseq data, we noted improved in vivo homing of primary APL cells to the BM within 18 h post-transplant upon ex vivo M2 co-culture compared to diagnosis (n=7 APL blasts). Concurrently, we detected increased levels of surface protein expression Integrin-α4 (CD49d) and -α5 (CD49e) on APL/AML blast cells after M2 exposure. The CD49d expression remained high in primary and secondary transplants. Using seahorse measurements, we confirmed the increased respiration capacity (basal and maximum) of primary AML/APL cells (n=7) after exposure to M2 macrophages compared to MS5.FACS analysis revealed that M2-macrophages were able to transfer more mitochondria than MS5 cells to primary AML cells, which could underlie the observed increase in OXPHOS mitochondrial metabolism. Treatment with Etomoxir (50 µM), prevented the gain in functional respiration when AML blast were co-cultured on M2-macrophages, while no changes were observed for MS5 co-cultures, suggesting increased fatty acid oxidation to drive the OXPHO-like state. Finally, we noted that training on M2 macrophages significantly increased colony formation and endowed the cells with long term proliferation in liquid cultures for over 30 days. Overall, we reveal that the frequency of M2-macrophages is up-regulated in a subgroup of AML patients representing a group with poor prognosis. M2 macrophages can support leukemic growth and therapy-resistance, and support fatal APL in PDX models. Even an in vitro exposure to M2 macrophages suffices to alter adhesion, homing and metabolic characteristics of leukemic blasts to allow efficient engraftment and fatal leukemogenesis. Our study uncovers how the TME can contribute to leukemic transformation which provides alternative avenues for therapeutic interventions. Disclosures Silveira: BMS/Celgene: Research Funding; Servier/Agios: Research Funding; Abbvie: Speakers Bureau; Astellas: Speakers Bureau. Quek: BMS/Celgene: Research Funding; Servier/Agios: Research Funding. Mota: Janssen: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Astellas: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Technopharma: Speakers Bureau; Bristol Myer Squibb: Speakers Bureau; Bayer: Speakers Bureau; Pfizer: Speakers Bureau; AstraZeneca: Speakers Bureau; Astellas: Speakers Bureau; Ipsen: Speakers Bureau; Amgen: Speakers Bureau.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1541-1541
Author(s):  
Jeffrey W. Tyner ◽  
Brian J. Druker ◽  
Cristina E. Tognon ◽  
Stephen E Kurtz ◽  
Leylah M. Drusbosky ◽  
...  

Abstract Background: New prognostic factors have been recently identified in AML patient population that include frequent mutations of receptor tyrosine kinases (RTK) including KIT, PDGFR, FLT3, that are associated with higher risk of relapse. Thus, targeting RTKs could improve the therapeutic outcome in AML patients. Aim: To create a digital drug model for dasatinib and validate the predicted response in AML patient samples with ex vivo drug sensitivity testing. Methods: The Beat AML project (supported by the Leukemia & Lymphoma Society) collects clinical data and bone marrow specimens from AML patients. Bone marrow samples are analyzed by conventional cytogenetics, whole-exome sequencing, RNA-seq, and an ex vivo drug sensitivity assay. For 50 randomly chosen patients, every available genomic abnormality was inputted into a computational biology program (Cell Works Group Inc.) that uses PubMed and other online resources to generate patient-specific protein network maps of activated and inactivated pathways. Digital drug simulations with dasatinib were conducted by quantitatively measuring drug effect on a composite AML disease inhibition score (DIS) (i.e., cell proliferation, viability, and apoptosis). Drug response was determined based on a DIS threshold reduction of > 65%. Computational predictions of drug response were compared to dasatinib IC50 values from the Beat AML ex vivo testing. Results: 23/50 (46%) AML patients had somatic mutations in an RTK gene (KIT, PDGFR, FLT3 (ITD (n=15) & TKD (n=4)), while 27/50 (54%) were wild type (WT) for the RTK genes. Dasatinib showed ex vivo cytotoxicity in 9/50 (18%) AML patients and was predicted by CBM to remit AML in 9/50 AML patients with 4 true responders and 5 false positive. Ex vivo dasatinib responses were correctly matched to the CBM prediction in 40/50 (80%) of patients (Table1), with 10 mismatches due to lack of sufficient genomic information resulting in profile creation issues and absence of sensitive loops in the profile. Only 4/23 (17%) RTK-mutant patients and 5/27(19%) RTK-WT patients were sensitive to dasatinib ex vivo, indicating that presence of somatic RTK gene mutations may not be essential for leukemia regression in response to dasatinib. Co-occurrence of mutations in NRAS, KRAS and NF1 seemed to associate with resistance as seen in 10 of the 14 profiles harboring these mutations. Conclusion: Computational biology modeling can be used to simulate dasatinib drug response in AML with high accuracy to ex vivo chemosensitivity. DNA mutations in RTK genes may not be required for dasatinib response in AML. Co-occurrence of NRAS, KRAS and NF1gene mutations may be important co-factors in modulating response to dasatinib. Disclosures Tyner: Leap Oncology: Equity Ownership; Syros: Research Funding; Seattle Genetics: Research Funding; Janssen: Research Funding; Incyte: Research Funding; Gilead: Research Funding; Genentech: Research Funding; AstraZeneca: Research Funding; Aptose: Research Funding; Takeda: Research Funding; Agios: Research Funding. Druker:Third Coast Therapeutics: Membership on an entity's Board of Directors or advisory committees; Novartis Pharmaceuticals: Research Funding; Millipore: Patents & Royalties; Vivid Biosciences: Membership on an entity's Board of Directors or advisory committees; Oregon Health & Science University: Patents & Royalties; McGraw Hill: Patents & Royalties; Celgene: Consultancy; MolecularMD: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; GRAIL: Consultancy, Membership on an entity's Board of Directors or advisory committees; Bristol-Meyers Squibb: Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees; Aptose Therapeutics: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Henry Stewart Talks: Patents & Royalties; Patient True Talk: Consultancy; Blueprint Medicines: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; ARIAD: Research Funding; Fred Hutchinson Cancer Research Center: Research Funding; Beta Cat: Membership on an entity's Board of Directors or advisory committees; Cepheid: Consultancy, Membership on an entity's Board of Directors or advisory committees; Leukemia & Lymphoma Society: Membership on an entity's Board of Directors or advisory committees, Research Funding; ALLCRON: Consultancy, Membership on an entity's Board of Directors or advisory committees; Aileron Therapeutics: Consultancy; Gilead Sciences: Consultancy, Membership on an entity's Board of Directors or advisory committees; Monojul: Consultancy. Sahu:Cellworks Research India Private Limited: Employment. Vidva:Cellworks Research India Private Limited: Employment. Kapoor:Cellworks Research India Private Limited: Employment. Azam:Cellworks Research India Private Limited: Employment. Kumar:Cellworks Research India Private Limited: Employment. Chickdipatti:Cellworks Research India Private Limited: Employment. Raveendaran:Cellworks Research India Private Limited: Employment. Gopi:Cellworks Research India Private Limited: Employment. Abbasi:Cell Works Group Inc.: Employment. Vali:Cell Works Group Inc.: Employment. Cogle:Celgene: Other: Steering Committee Member of Connect MDS/AML Registry.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2862-2862
Author(s):  
Andrea Iannello ◽  
Francesca Arruga ◽  
Nicoletta Vitale ◽  
Elisa Marchi ◽  
Richard R. Furman ◽  
...  

Richtersyndrome (RS) is defined as the transformation of chronic lymphocytic leukemia (CLL) into an aggressive lymphoma, typically a diffuse large B cell lymphoma (DLBCL) with poor prognosis and without effective therapies. Chemotherapy, as well as novel inhibitory agents, show only partial and temporary responses, highlighting the need for alternative therapies that can overcome drug resistance. Duvelisib (DUV) is an oral phosphatidylinositol 3-kinase (PI3K)-δ and γ dual inhibitor showing efficacy in patients with refractory CLL. Venetoclax (VEN) is a Bcl-2 selective inhibitor, able to induce apoptosis in CLL cells. The lack of RS cell lines and murine models has limited understanding of the molecular mechanisms contributing to the pathogenesis of this disease, impacting also on the development of effective therapies. In our lab, 4 different RS patient-derived xenografts (PDXs) were established, representing useful tools to study the biology of the disease and to test novel therapeutic strategies. This work was undertaken to investigate expression and activity of the PI3K pathway and Bcl-2, and to test the ex-vivo and in vivo efficacy of DUV and VEN, alone or in combination, in our RS-PDX models. The 4 RS-PDX models are characterized by heterogeneous PI3K expression. RS1316 and IP867 expressed high levels of both p110δ and p110γ catalytic subunits. In contrast, RS9737 expressed low levels of both the PI3K catalytic subunits, while RS1050 expressed the p110δ subunit alone, but lacked p110γ and Bcl-2. We started by assessing the ex-vivo efficacy of DUV and VEN on RS-PDX-derived cells. Cells from the 4 RS-PDX models were obtained from disrupted tumor masses and immediately treated with DUV (5µM), VEN (25nM) or their combination. The DUV/VEN combination induced the highest levels of apoptosis in RS1316, RS9737 and IP867/17 cells at 24 and 48 h after treatment. Western blot confirmed the downregulation of Bcl-2 and Mcl-1, along with Caspase-3 and PARP-1 cleavage. In contrast, no effect was observed on RS1050 cells, which lack p110γ and Bcl-2, making this model intrinsically resistant to DUV and VEN treatment. Next, the effects of PI3K-δ/γ and Bcl-2 inhibition were examined in vivo on the RS1316-PDX model, selected as the best ex-vivo responder. NOD/SCID/gamma chain-/-(NSG) mice were subcutaneously injected with RS1316 cells. When tumor masses were palpable, animals were treated daily for 7 days including 2 holidays treatment with DUV (100 mg/kg p.o.), VEN (50 mg/kg p.o.) or their combination. In mice that received the combination, tumors were of smallest volume (4 out of 6 tumors were completely absent) and had the least viable cells, as highlighted by increment of cleaved Caspase-3 immunohistochemistry signal. In a second set of experiments, tumor masses were left to grow after 10 consecutive treatments and monitored daily. Used as single agents, DUV and VEN significantly reduced tumor growth, prolonging survival for 5 days compared to controls (mean survival 42 days in the control condition vs 47 in the single treatments). The combination of the two drugs was even more efficacious, leading to a complete remission in all the mice during treatment (Fig. 1). Tumor masses eventually grew back after cessation of treatment, but the combination significantly prolonged survival compared to vehicle or single-treatment groups (mean survival 56 days, p<0.05). Interestingly, RS1316 cells isolated from treated animals after regrowth continued to respond to ex-vivo treatmentwith the same compounds, suggesting that longer treatment may be needed to achieve more durable responses. In conclusion, DUV and VEN treatment combination, simultaneously inhibiting PI3K-δ/γ and Bcl-2, induced RS tumor regression, offering a promising treatment combination, at least for RS patients expressing high levels of PI3K gamma and delta subunits and Bcl-2. These results pave the way for clinical testing of duvelisib and venetoclax combination for patients with RS. Figure 1 Disclosures Furman: AstraZeneca: Consultancy; Oncotracker: Consultancy; Verastem: Consultancy; Abbvie: Consultancy; Acerta Pharma: Consultancy; Janssen: Consultancy; Incyte: Consultancy; Genentech: Consultancy; Sunesis: Consultancy; Beigene: Consultancy; Pharmacyclics: Consultancy; TG Therapeutics: Consultancy. Allan:Acerta Pharma: Consultancy; Genentech: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Verastem Oncology, Inc.: Consultancy, Membership on an entity's Board of Directors or advisory committees; Bayer: Consultancy; AbbVie, Inc: Consultancy, Membership on an entity's Board of Directors or advisory committees; Pharmacyclics LLC, an AbbVie company: Consultancy; Janssen: Consultancy, Honoraria; Sunesis Pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees. Coma:Verastem Inc: Employment. Pachter:Verastem Inc: Employment. Deaglio:VelosBio Inc.: Research Funding; iTeos Therapeutics: Research Funding; Verastem Inc: Research Funding. Vaisitti:Verastem Inc: Research Funding; VelosBio Inc.: Research Funding. OffLabel Disclosure: Duvelisib: PI3K gamma and delta inhibitor Venetoclax: bcl2 inhibitor


Sign in / Sign up

Export Citation Format

Share Document