scholarly journals The Secreted Tyrosine Kinase Vlk Is Essential for Normal Platelet Activation and Thrombus Formation

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 10-11
Author(s):  
Leila Revollo ◽  
Glenn Merrill-Skoloff ◽  
Karen De Ceunynck ◽  
James Dilks ◽  
Mattia Bordoli ◽  
...  

Tyrosine phosphorylation of proteins secreted into the extracellular space has been observed in cell cultures and in vivo, yet little is known about the role that phosphorylation of extracellular proteins serves in modulating cell function. An important reason for the gap in our knowledge of the functional significance of extracellular protein phosphorylation has been the delay in identifying extracellular kinases. Within the last decade, however, bioinformatic strategies to identify kinases with signal peptides, coupled with biochemical approaches to characterize kinases in the secretory pathway, have described several kinases that phosphorylate secretory pathway and extracellular substrates. Of the known kinases containing signal sequences, Fam20B and VLK have been identified in platelets. VLK has been identified as a broadly expressed secretory pathway tyrosine kinase secreted from platelets in an activation dependent manner. Its role in platelet function, however, has not been previously studied. To understand the contribution of tyrosine phosphorylation of secreted factors and extracellular domains of transmembrane proteins in platelet function and thrombus formation, we generated mice whose platelets lacked VLK. Mice with megakaryocyte/platelet-specific VLK deficiency (Vlk-cKO) exhibited normal platelet abundance, volume and morphology, and tail clip bleeding times, but showed dramatic changes in platelet function in vitro and in vivo. In vivo, platelet accumulation was reduced by 90% in Vlk-cKO mice compared to control (Vlkf/f) littermates (P = 0.02) following laser-induced injury of cremaster arterioles (Figure). Likewise, fibrin generation was reduced in mice lacking platelet VLK by 62% (P = 0.009). In vitro, evaluation of resting and thrombin-stimulated VLK-deficient platelets demonstrated a significant decrease of several tyrosine phosphobands compared to control. Platelet function testing of VLK-deficient platelets (Figure) showed decreased platelet aggregation in response to stimulation with 100 µM AYPGKF, a PAR4 agonist, (Vlkf/f: 70+5.1%; Vlk-cKO: 23+8.0%) or 4 µg/mL collagen (Vlkf/f: 53+2.5%; Vlk-cKO: 27.5+2.9%). Dense and α-granule release in response to AYPGKF were also significantly decreased in platelets in which VLK had been silenced. In contrast, Vlk-cKO platelets aggregated normally in response to either 10 µM, 40 µM, or 100 µM ADP, and the aggregation defect in response to low doses of AYPGKF was reversed by subthreshold concentrations (2.5 µM) of ADP. Furthermore, stimulation with high-dose 150 µM AYPGFK or 5 U/ml thrombin resulted in comparable platelet function and ATP secretion in control and Vlk-cKO platelets respectively, ruling out a storage pool defect. Taken together, these results suggest that a dense granule secretion defect contributes to the decrease in platelet aggregation observed in platelets in which VLK is absent. In human platelets, tyrosines phosphorylated in secreted and extracellular domains of transmembrane proteins implicated in the regulation of platelet function were identified by mass spectroscopy analysis. Extracellular proteins or proteins with phosphosites that mapped to extracellular domains included ectonucleoside triphosphate diphosphodydrolase 6 [ENTPD6], platelet basic protein, integrin αIIß, and multimerin-1. These studies demonstrate that the secretory pathway tyrosine kinase VLK is critical for stimulus dependent platelet aggregation and thrombus formation, and provide the first evidence that secreted kinases contribute to platelet function. Disclosures De Ceunynck: Sanofi: Current Employment. Dilks:PlateletBiogenesis: Current Employment. Peters:PlateletBiogenesis: Current Employment. Noetzli:Anylam: Current Employment. Rosen:Keros Therapeutics: Membership on an entity's Board of Directors or advisory committees. Italiano:PlateletBioGenesis: Consultancy, Current equity holder in private company, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding. Flaumenhaft:STRM.Bio: Membership on an entity's Board of Directors or advisory committees; PlateletDiagnostics: Consultancy, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding; QuercisPharma: Membership on an entity's Board of Directors or advisory committees.


2021 ◽  
Author(s):  
Leila Revollo ◽  
Glenn Merrill-Skoloff ◽  
Karen De Ceunynck ◽  
James R. Dilks ◽  
Mattia Bordoli ◽  
...  

AbstractTyrosine phosphorylation of extracellular proteins is observed in cell cultures and in vivo, but little is known about the functional roles of tyrosine phosphorylation of extracellular proteins. Vertebrate Lonesome Kinase (VLK) is a broadly expressed secretory pathway tyrosine kinase present in platelet ɑ-granules. It is released from platelets upon activation and phosphorylates substrates extracellularly. Its role in platelet function, however, has not been previously studied. In human platelets, we identified phosphorylated tyrosines mapped to luminal or extracellular domains of transmembrane and secreted proteins implicated in the regulation of platelet activation. To determine the role of VLK in extracellular tyrosine phosphorylation and platelet function, we generated mice with a megakaryocyte/platelet-specific deficiency of VLK. Platelets from these mice are normal in abundance and morphology, but have dramatic changes in function both in vitro and in vivo. Resting and thrombin-stimulated VLK-deficient platelets demonstrate a significant decrease of several tyrosine phosphobands. Functional testing of VLK-deficient platelets shows decreased PAR4- and collagen-mediated platelet aggregation, but normal responses to ADP. Dense granule and α-granule release are reduced in these platelets. Furthermore, VLK-deficient platelets exhibit decreased PAR4-mediated Akt (S473) and Erk1/2(T202/Y204) phosphorylation, indicating altered proximal signaling. In vivo, mice lacking VLK in megakaryocytes/platelets demonstrate strongly reduced platelet accumulation and fibrin formation following laser-injury of cremaster arterioles compared to controls. These studies demonstrate that the secretory pathway tyrosine kinase VLK is critical for stimulus-dependent platelet activation and thrombus formation, providing the first evidence that a secreted protein kinase is required for normal platelet function.



Blood ◽  
2021 ◽  
Author(s):  
Leila Denise Revollo ◽  
Glenn Merrill-Skoloff ◽  
Karen De Ceunynck ◽  
James R Dilks ◽  
Shihui Guo ◽  
...  

Tyrosine phosphorylation of extracellular proteins is observed in cell cultures and in vivo, but little is known about the functional roles of tyrosine phosphorylation of extracellular proteins. Vertebrate Lonesome Kinase (VLK) is a broadly expressed secretory pathway tyrosine kinase present in platelet ɑ-granules. It is released from platelets upon activation and phosphorylates substrates extracellularly. Its role in platelet function, however, has not been previously studied. In human platelets, we identified phosphorylated tyrosines mapped to luminal or extracellular domains of transmembrane and secreted proteins implicated in the regulation of platelet activation. To determine the role of VLK in extracellular tyrosine phosphorylation and platelet function, we generated mice with a megakaryocyte/platelet-specific deficiency of VLK. Platelets from these mice are normal in abundance and morphology, but have significant changes in function both in vitro and in vivo. Resting and thrombin-stimulated VLK-deficient platelets demonstrate a significant decrease of several tyrosine phosphobands. Functional testing of VLK-deficient platelets shows decreased PAR4- and collagen-mediated platelet aggregation, but normal responses to ADP. Dense granule and a-granule release are reduced in these platelets. Furthermore, VLK-deficient platelets exhibit decreased PAR4-mediated Akt (S473) and Erk1/2 (T202/Y204) phosphorylation, indicating altered proximal signaling. In vivo, mice lacking VLK in megakaryocytes/platelets demonstrate strongly reduced platelet accumulation and fibrin formation following laser-injury of cremaster arterioles compared to controls, but normal bleeding times. These studies demonstrate that the secretory pathway tyrosine kinase VLK is critical for stimulus-dependent platelet activation and thrombus formation, providing the first evidence that a secreted protein kinase is required for normal platelet function.



Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3926-3926 ◽  
Author(s):  
Subia Tasneem ◽  
Adili Reheman ◽  
Heyu Ni ◽  
Catherine P.M. Hayward

Abstract Studies of mice with genetic deficiencies have provided important insights on the functions of many proteins in thrombosis and hemostasis. Recently, a strain of mice (C57BL/6JOlaHsd, an inbred strain of C57BL/6J) has been identified to have a spontaneous, tandem deletion of the multimerin 1 and α-synuclein genes, which are also adjacent genes on human chromosome 4q22. Multimerin 1 is an adhesive protein found in platelets and endothelial cells while α-synuclein is a protein found in the brain and in blood that is implicated in neurodegenerative diseases and exocytosis. In vitro, multimerin 1 supports platelet adhesion while α-synuclein inhibits α-granule release. We postulated that the loss of multimerin 1 and α-synuclein would alter platelet function and that recombinant human multimerin 1 might correct some of these abnormalities. We compared platelet adhesion, aggregation and thrombus formation in vitro and in vivo in C57BL/6JOlaHsd and C57BL/6 mice. Thrombus formation was studied by using the ferric-chloride injured mesenteric arteriole thrombosis model under intravital microscopy. We found that platelet adhesion, aggregation and thrombus formation in C57BL/6JOlaHsd were significantly impaired in comparison to control, C57BL/6 mice. The number of single platelets, deposited 3–5 minutes after injury, was significantly decreased in C57BL/6JOlaHsd mice (P <0.05, platelets/min: C57BL/6 = 157 ± 15, n=16; C57BL/6JOlaHsd = 77 ± 13, n=17). Moreover, thrombus formation in these mice was significantly delayed. Thrombi in C57BL/6JOlaHsd were unstable and easily dissolved, which resulted in significant delays (P<0.001) in vessel occlusion (mean occlusion times: C57BL/6 = 15.6 ± 1.2 min, n=16; C57BL/6JOlaHsd = 31.9 ± 2.1 min, n=17). We further tested platelet function in these mice by ADP and thrombin induced platelet aggregation using platelet rich plasma and gel-filtered platelets, respectively. Although no significant differences were seen with ADP aggregation, thrombin-induced platelet aggregation was significantly impaired in C57BL/6JOlaHsd mice. Platelet adhesion to type I collagen (evaluated using microcapillary chambers, perfused at 1500 s−1 with whole blood) was also impaired in C57BL/6JOlaHsd mice. However, platelets from C57BL/6JOlaHsd mice showed a normal pattern of agonist-induced release of α-granule P-selectin. Multimerin 1 corrected the in vitro aggregation and adhesion defects of C57BL/6JOlaHsd platelets. Furthermore, the transfusion of multimerin 1 into C57BL/6JOlaHsd mice corrected the impaired platelet deposition and thrombus formation in vivo. No significant difference was found in tail bleeding time between the two groups of mice. As α-synuclein knockout mice have a shortened time to thrombus formation (Circulation2007;116:II_76), the effects of multimerin 1 on impaired platelet function in C57BL/6JOlaHsd mice provide supportive evidence that multimerin 1 contributes to platelet adhesion and thrombus formation at the site of vessel injury. The findings suggest multimerin 1 knockout mice will be useful to explore platelet function. The first two authors and participating laboratories contributed equally to this study.



Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2168-2168
Author(s):  
Lu Wang ◽  
Yi Wu ◽  
Junsong Zhou ◽  
Syed S. Ahmad ◽  
Bulent Mutus ◽  
...  

Abstract Abstract 2168 Several members of the protein disulfide isomerase family of enzymes are important in platelet function and in thrombosis. Platelet protein disulfide isomerase (PDI) has been shown to have an important role in platelet function but is reported to not be required for thrombus formation in vivo. A novel platelet PDI called ERp57 mediates platelet aggregation but its role in thrombus formation is unknown. To determine the specific role of platelet-derived ERp57 in hemostasis and thrombosis we generated a megakaryocyte/platelet specific knockout. Despite normal platelet counts and platelet glycoprotein expression, mice with ERp57-deficient platelets had prolonged tail-bleeding times and thrombus occlusion times, and defective activation of the αIIbβ3 integrin and platelet aggregation. The aggregation defect was corrected by addition of exogenous ERp57 implicating surface ERp57 in platelet aggregation. Platelet surface ERp57 protein and activity increased substantially with platelet activation. We conclude that platelet-derived ERp57 is required for hemostasis and thrombosis and platelet function. Disclosures: No relevant conflicts of interest to declare.



Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3442-3442 ◽  
Author(s):  
Reheman Adili ◽  
Theodore R Holman ◽  
Michael Holinstat

Abstract Background: Adequate platelet reactivity is required for platelet adhesion and aggregation at the site of vascular injury to maintain hemostasis. However, excessive platelet reactivity can also lead to the formation of occlusive thrombi, the predominate underlying cause of myocardial infarction and stroke. While current anti-platelet treatments limit platelet function, they often result in an increased risk of bleeding. 12-lipoxygenase (12-LOX), an oxygenase highly expressed in the platelet, has been demonstrated by our lab and others to regulate PAR4 and GPVI-mediated platelet reactivity suggesting a role of 12-LOX in regulation of vivo thrombosis. However, the ability to pharmacologically target 12-LOX in vivo has not been established to date. Aims: To determine how 12-LOX regulates thrombus formation in vivo and whether platelet 12-LOX is an effective target for anti-platelet therapeutics, wild-type (WT) or 12-LOX deficient (12-LOX-/-) mice were treated with or without the 12-LOX inhibitor, ML355, and were assessed for inhibitory effects on platelet activation in vitro, ex-vivo and in vivo. Methods: The effect of the novel 12-LOX inhibitor ML355 on human platelet function was assessed in vitro by platelet aggregometry, ex vivo by perfusion chamber. In vivo thrombus formation and vessel occlusion in small and large vessels were studied in 12-LOX-/-, WT mice and mice treated with ML355 using intravital microscopy using the FeCl3 injury models. Results: Using in vitro platelet aggregation assays, ML355 dose dependently inhibited thrombin, PAR1-AP, and PAR4-AP-induced aggregation in washed human platelets. Interestingly, the negative regulatory effects of ML355 inhibition of 12-LOX can be overcome by high concentration of thrombin. Additionally, ML355 was able to attenuate ADP-induced platelet aggregation both in platelet-rich-plasma and whole blood. In ex vivo flow chamber assays, platelet adhesion and thrombus formation on collagen-coated surfaces at high shear was attenuated in both mouse and human whole blood after incubation with ML355. Further, platelet aggregation and thrombus growth in 12-LOX-/- mice was impaired in FeCl3-induced mesenteric or carotid artery thrombosis models. Thrombi in 12-LOX-/- mice were unstable and frequently form emboli, which resulted in impaired vessel occlusion or reopening. Additionally, thrombus formation and vessel occlusion was impaired in ML355 treated WT mice. Conclusions: The highly selective 12-LOX inhibitor ML355 inhibits platelets aggregation induced by various platelet agonists and ML355 inhibition of platelet function is not agonist specific. Platelet function at high shear in ex vivo conditions in both mice and human was attenuated in the presence of ML355. Thrombus growth, stability, and vessel occlusion was impaired in mice deficient for 12-LOX. Finally, the highly selective 12-LOX inhibitor ML355 attenuates thrombus formation and prevents vessel occlusion in vivo. Our data strongly indicates 12- LOX is an important determinant of platelet reactivity and inhibition of platelet 12-LOX may represent a new target for anti-platelet therapeutics. Disclosures No relevant conflicts of interest to declare.



Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4922-4922
Author(s):  
Kristina M. Haley ◽  
Susan Lattimore ◽  
Cara McDavitt ◽  
Ayesha Khader ◽  
Colin Boehnlein ◽  
...  

Abstract Introduction: Nearly 40% of adolescent women experience heavy menstrual bleeding (HMB), and identifiable bleeding disorders are diagnosed in only 20-60% of these patients. We suspect that qualitative platelet disorders contribute to HMB, but are under-diagnosed. A pilot study was conducted to evaluate platelet function in adolescent women with HMB employing four novel, small-volume, whole blood platelet function assays. In addition, primary and secondary hemostasis, bleeding phenotype, and quality of life were assessed. Methods: Patients referred to the Young Women's Hematology Clinic at Oregon Health & Science University for evaluation of HMB were offered participation in the study. Participants underwent standard review of their medical and family history and physical exam. Standard lab evaluation included CBC, PT, PTT, fibrinogen, thrombin time, Von Willebrand Panel, PFA-100, and iron studies with platelet aggregation or phenotyping performed if clinically indicated. Using less than 0.5 mL of whole blood, platelet function was assessed with four novel platelet function assays: assessment of platelet activation, secretion, and aggregation was assessed by flow cytometry analysis, while platelet adhesion and aggregation was assessed under shear in a capillary tube. Quality of life (QOL) was assessed using the PedsQL tool. Bleeding phenotype was assessed with the ISTH Bleeding Assessment Tool (ISTH BAT). Menorrhagia was assessed with the Pictorial Bleeding Assessment Chart (PBAC), the Philipp Tool and the clinical history. Results: Nine participants have enrolled on study to date, with 2 completing the 3-month visit. The median age of the cohort was 16 years (14-18 years). Eight out of nine categorized their period as heavy, 6 also had epistaxis, and 7 reported excessive bruising. The median ISTH BAT score was 4 (3-7). Of the 7 patients who had a Philipp Score obtained, 5 were positive. Median PBAC score was 161 (64-196). Median ferritin was 13 ng/mL (4-65 ng/mL). Median QOL psychosocial score was 70 (68.36-88.25), comparable to that of pediatric patients with cancer. Of the 9 participants, 6 had platelet aggregation and phenotyping. Four participants did not receive a bleeding disorder diagnosis, 1 was diagnosed with Type 1 VWD, 1 was diagnosed with bleeding disorder, NOS, and 1 was diagnosed with Ehlers Danlos Syndrome. Two participants were diagnosed with a qualitative platelet disorder (QPD): one based on platelet aggregation and one based on thromboelastography. The four novel platelet function assays confirmed platelet function abnormalities in the participants diagnosed with QPD's (Figure 1&2). Impaired platelet response to agonist stimulation was also observed in participants with non-platelet disorder bleeding disorder diagnoses and in participants without a bleeding disorder diagnosis. Conclusions: In this pilot study, the etiology of HMB in adolescent women was evaluated with four novel platelet assays in addition to standard assays of hemostasis. A bleeding disorder diagnosis was not made with standard evaluations in 4 out of 9 participants. The novel assays detected platelet abnormalities not observed using currently available clinical labs, and confirmed the presence of abnormal platelet function in participants with abnormal platelet function testing. These assays require significantly less blood volume than currently available assays and expand investigation of platelet function to platelet adhesion and platelet interactions in whole and flowing blood. Further work is needed to determine the sensitivity and specificity of the novel assays in detecting platelet dysfunction. Continued investigation into the impact of HMB on the adolescent female population is needed. Disclosures Haley: CSL Behring: Honoraria; Baxalta: Membership on an entity's Board of Directors or advisory committees. Recht:Biogen: Membership on an entity's Board of Directors or advisory committees; CSL Behring: Membership on an entity's Board of Directors or advisory committees; Biogen: Research Funding; Genentech: Research Funding; Novo Nordisk: Research Funding; Baxalta: Research Funding; Novo Nordisk: Membership on an entity's Board of Directors or advisory committees; Pfizer: Membership on an entity's Board of Directors or advisory committees.



2008 ◽  
Vol 99 (03) ◽  
pp. 552-557 ◽  
Author(s):  
Corie Shrimpton ◽  
Koichi Honke ◽  
Rolando Rumbaut ◽  
Jose Lopez ◽  
Perumal Thiagarajan ◽  
...  

SummarySulfatide (galactocylceramide-3'-sulfate), a cell surface glycosphingolipid interacts with several cell adhesion molecules including fibrinogen, von Willebrand factor (VWF), P-selectin, thrombospondin (TSP) and laminin, which are involved in haemostasis.We have used a sulfatide-specific single-chain fragment variable (scFv) antibody probe PA38 and sulfatide-deficient mice to investigate the role of membrane sulfatide in platelet function. PA38 bound to platelets and binding increased following platelet activation. Sulfatide was localized as a large cluster towards the center of the platelet surface when examined in a confocal microscope. PA38 (20 μg/ml) inhibited the adhesion of activated platelets to fibrinogen,VWF, P-selectin,TSP1 and laminin by 30%, 30%,75%,20% and 35%,respectively,compared to a control scFv (p<0.05). Furthermore, PA38 inhibited collagen, ADP, thrombin and ristocetin-induced platelet aggregation in PRP by 25%, 30%, 18% and 20%, respectively, compared to the control scFv (p<0.05). In a PFA-100 platelet function assay, PA38 prolonged the occlusion time by 25% (p<0.05).Under flow PA38 decreased the thrombus formation on collagen by 31%, (p<0.01). Sulfatidedeficient mice displayed an extended lag-phase in collagen-induced platelet aggregation compared to wild type (p<0.05), though in-vivo haemostasis did not differ significantly.Thus, this study provides new evidence for a role for membrane sulfatide in platelet function.



Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2363-2363 ◽  
Author(s):  
Lucas Ting ◽  
Shirin Feghhi ◽  
Ari Karchin ◽  
Wes Tooley ◽  
Nathan J White ◽  
...  

Abstract Introduction In primary hemostasis, platelets adhere, activate, and aggregate at the wall of an injured vessel to form a hemostatic plug for the cessation of bleeding. After activation, platelets generate myosin-driven contractile forces to compact the size of the plug in order to reduce the space between platelets and prevent their disaggregation. Hemodynamic shear can be a major effector of platelet function in hemostasis, but its effect on the ability of platelets to produce contractile forces is an open question. Studying the dynamics of platelet aggregation and platelet force generation under hemodynamic shear can provide important insights into hemostasis and thrombosis. Method We have developed a microfluidic device that uses microscale blocks to induce platelet aggregation and microscale posts to measure platelet forces in a hemostatic plug. Whole human blood in heparin or citrate is pumped through a microfabricated chip containing microchannels with arrays of blocks and posts arranged along the bottom of a microchannel (Fig. 1). The surface of the blocks and posts are pre-coated with von Willebrand factor and type I collagen to allow for platelet adhesion. As blood is passes over a block, its rectangular shape induces a high shear rate that causes platelets to aggregate on its surface. A flexible micropost is situated behind each block. As platelets aggregate between the block and post, their contractile forces causes the post to bend toward the block. The deflection of the post is recorded under fluorescence microscopy and analyzed using quantitative image analysis of the videos. Since a microscale post bends like a cantilever beam, its deflection can be used to quantify the forces of platelets. Results Blebbistatin, a myosin inhibitor, was used to confirm that deflection of the posts by the platelets in heparinized blood was due to myosin activity. When blood was incubated with 2-MeSAMP, a P2Y12 antagonist, platelets were able to aggregate, but their ability to generate contractile forces was substantially reduced. This finding indicates that ADP activation is needed for platelet contractility under shear. The rate of hemodynamic shear was found to influence platelet function, for the rate of platelet aggregation and force generation were found to increase for blood sheared from 2000 to 12,000 s-1. Moreover, platelet aggregation and contractile forces were reduced when glycoprotein Ib-V-IX complex and integrin αIIbβ3 were inhibited with antibody AK2 and antibody fragment c7E3 Fab, respectively. When citrated blood was incubated with tissue plasminogen activator, platelets aggregate and produced contractile forces that increased steadily within the first ten minutes, but then the forces began to subside. Conclusions Our device can be used to study the role of hemodynamic shear in platelet function and gives insights into the role of platelet forces during hemostasis. Its microscale dimensions also allow us the study the biomechanics involved in the formation of a hemostatic plug during its early stages of growth and stability. Disclosures: White: Vidacare Corp: Honoraria; Stasys Medical Corp: Consultancy, Equity Ownership, Membership on an entity’s Board of Directors or advisory committees, Patents & Royalties; NIH: Research Funding; Coulter Foundation: Research Funding; Washington State Life Sciences Discovery Fund: Research Funding. Sniadecki:Stasys Medical Corporation: Equity Ownership, Founder Other, Membership on an entity’s Board of Directors or advisory committees.



Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1908-1908
Author(s):  
Kourosh Lotfi ◽  
Suryyani Deb ◽  
Clara Sjöström ◽  
Anjana Tharmakulanathan ◽  
Niklas Boknäs ◽  
...  

Abstract Introduction During the last two decades, Bcr-Abl tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of chronic myelogenous leukemia (CML), and are now considered standard treatment for this disease. However, TKIs can induce serious hemostatic side effects including cardiovascular disease and bleeding disorders. Blood platelet aggregation and formation of pro-coagulant platelets are important to allow a well-balanced hemostatic response. Therefore, a detailed understanding of what effect different TKIs exert on platelets and hemostasis could help to understand if there are differences of importance to minimize the risk of bleeding complications in treated patients. Aim To investigate how TKIs used in CML (imatinib, dasatinib, nilotinib, bosutinib, and ponatinib) affect platelet activation and hemostasis. Materials and Methods We have developed a multi-parameter six color flow cytometry protocol to study different aspects of platelet function upon activation, e.g. formation of aggregatory (PAC-1-positive) and pro-coagulant (phosphatidylserine-exposing) platelets, exocytosis of alpha- and lysosomal granules and mitochondrial membrane potential.This protocol was performed in presence or absence of TKIs in blood from normal donors and in treated patients. Whole blood aggregometry (Multiplate®), thrombin generation in platelet-rich plasma and in vitro thrombus formation by free oscillation rheometry (ReoRox G2) was further evaluated in some situations. Results At clinically relevant concentrations, dasatinib significantly decreased the formation of procoagulant platelets. Ponatinib induced a slight decrease in formation of procoagulant platelets, whereas bosutinib and nilotinib showed opposite tendencies (n=7). Dasatinib also decreased platelet aggregation (n=4-6) and in vitro thrombus formation (n=3). Thrombin generation was not significantly affected by therapeutic levels of TKIs, whereas higher doses of dasatinib, bosutinib, ponatinib and imatinib significantly changed one or several of the thrombin generation parameters (n=7-8). Interestingly, large differences in response to the drugs were observed among the healthy donors, especially for dasatinib and bosutinib. Major inter-individual variations were also observed in dasatinib-treated patients. Conclusions Different TKIs show varying potency to affect platelet-based hemostasis. In addition, we found large inter-individual variations in how some drugs affected platelet function. Therefore, we suggest that development of a clinically useful protocol for platelet function testing could help to identify patients more susceptible to adverse drug reactions. Such a protocol could potentially help clinicians to gain insight into the risk of side effects, which could help to choose the most suitable drug for each individual patient. Disclosures No relevant conflicts of interest to declare.



2016 ◽  
Vol 116 (12) ◽  
pp. 1100-1110 ◽  
Author(s):  
Isabella Massimi ◽  
Lavinia Lotti ◽  
Flavia Temperilli ◽  
Massimo Mancone ◽  
Gennaro Sardella ◽  
...  

SummaryPlatelet multidrug resistance protein4 (MRP4)-overexpression has a role in reducing aspirin action. Aspirin in vivo treatment enhances platelet MRP4 expression and MRP4 mediated transport inhibition reduces platelet function and delays thrombus formation. The aim of our work was to verify whether MRP4 expression is enhanced in platelets obtained from patients under chronic aspirin treatment and whether it correlates with residual platelet reactivity. We evaluated changes on mRNA and protein-MRP4 expression and platelet aggregation in four populations: healthy volunteers (HV), aspirin-free control population (CTR), patients who started the treatment less than one month ago (ASA<1 month patients) and aspirinated patients who started the treatment more than two months ago (ASA>2 months patients). In platelets obtained from ASA>2 months patients, it was found a statistically significant MRP4 enhancement of both mRNA and protein expression compared to HV, CTR and ASA<1 month patients. Platelets obtained from ASA>2 months patients that present high levels of platelet MRP4, have higher serum TxB2 levels and collagen-induced platelet aggregation compared to patient with low levels of MRP4 in platelets. In addition collagen induced platelet aggregation is higher in in vitro aspirinated platelets obtained from patients with high levels of MRP4 patients compared to those obtained from patients with low MRP4 levels. We can assert that, in patients under chronic aspirin treatment, platelets that present high MRP4 levels have an increase of residual platelet reactivity, which is due in part to incomplete COX-1 inhibition, and in part to COX-1–independent mechanism.



Sign in / Sign up

Export Citation Format

Share Document