scholarly journals Molecular Insights into Clonal Hematopoiesis and Therapy-Related Myeloid Neoplasm in Patients with Multiple Myeloma and Cytopenia(s)

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 6-7
Author(s):  
Jinming Song ◽  
Hailing Zhang ◽  
Xiaohui Zhang ◽  
Mohammad Hussaini ◽  
Ning Dong ◽  
...  

Background: Multiple myeloma (MM) is a clonal plasma cell neoplasm typically associated with chronic therapy and resultant potential toxicities, including clonal cytopenias, myelodysplastic syndrome (MDS), or therapy-related myeloid neoplasms (tMN). Early identification of myelodysplasia is important for patient management and outcome. Next generation sequencing (NGS) is playing an ever increasing role in this field. Materials and Methods: The retrospective study was approved by Moffitt institutional review board (IRB). We searched our in-house NGS database with ~6000 patients and clinical databases to identify the patients with MM and sustained cytopenia with accompanying NGS data. The NGS results were analyzed for associations with myeloma and myelodysplasia. Results: Of the 196 identified patients identified (Table 1), there were 114 males (58%) and 82 females (42%) with a median age of 68 years. Eighty-four myeloma patients with cytopenia (43%) were found to have one or more somatic mutations and 112 patients (57%) showed no mutations. The most frequently mutated genes are as following: TP53 (12%), DNMT3A (8%), TET2 (6%), ASXL1 (5%), KRAS (5%), ETV6 (3%), RUNX1 (2%), CUX1 (2%), BCOR (2%), SF3B1 (2%), ZRSR2 (2%), EZH2 (2%), IDH2 (2%), SRSF2 (2%), and BRAF (1%). We divided the patients into four groups according their disease status at the time of NGS testing: 1) patients with myeloma but no myelodysplasia (MM_Only, 105 patients and 53.57%); 2) Patients with myelodysplasia but no overt residual myeloma (Myelodysplasia_Only, 14 patients, 7.14%); 3) Patients with both myeloma and myelodysplasia (MM+Myelodysplasia, 27 patients, 13.78%); 4) Patients with neither myeloma or myelodysplasia (Negative_for_Both, 50 patients, 25.51%). The "Myelodysplasia" in this study is defined as having either overt morphologic dysplasia (>10% of the lineage cells), or equivocal dysplasia but having myeloid-related (non-myeloma) cytogenetic abnormalities. NGS results were not included in the classification to assess the added diagnostic value of NGS. The Mutational profiles of the four disease groups are displayed in Figure 1 and compared in Table 1 and 2. The MM+Myelodysplasia group showed highest percentage of mutations (88.89% of patients tested), followed by Myelodysplasia_Only group (57.14%) and MM_Only group (35.24%), with Negative_for_Both group showing the lowest mutation rate (30.00%). The average number of somatic mutations/case also followed the same order: 1.63, 1.00, 0.48, and 0.36, respectively. Of the 196 patients, 58 patients (29.59%) had no morphologic dysplasia or myeloid-related cytogenetic abnormalities but showed one or more somatic mutations by NGS. These patients harbored clonal cytopenia of uncertain significance (CCUS) clones and would have been missed without NGS testing. Of these 58 patients, retrospective review actually identified 7 patients with morphologic dysplasia and were reclassified as MDS. Further mutational analysis revealed the following interesting findings. ASXL1, DNMT3A, KRAS, and SF3B1 mutations showed highest frequencies in MM+Myelodysplaisa group when compared with other 3 groups (Table 2), indicating a close association with myelodysplasia development in patients with persistent myeloma. In contract, among the 4 groups, RUNX1 mutations were most common in Myelodysplasia_only patients, suggesting a potential alternative pathway for myelodysplasia development in patient with myeloma in remission. It is possible that presence of myeloma clones create different evolution pressure on neoplastic myeloid clones. TP53 mutations were present in MM_Only group, but were much more frequent in patients with MM+Myelodysplasia and Myelodysplasia_only groups. The presence of TP53 mutations might therefore suggest increased risk for myelodysplasia. Finally, TET2 were similar between these groups and therefore not of significant diagnostic value. Conclusion: NGS testing is valuable in identifying CCUS, MDS, or tMN in myeloma patients, especially in those with no morphologic or cytogenetic abnormalities. Statistically significant differences are seen in the mutational profiles of the four groups of patients, suggestive of different roles in myelodysplasia development. Further studies are necessary to better distinguish the origin of these mutations as being derived from the myeloma versus the myeloid components of the disease. Disclosures Hussaini: Stemline: Consultancy; Amgen: Consultancy; Janssen: Consultancy; Adaptive: Consultancy; Boston Biomedical: Consultancy. Shain:Karyopharm: Research Funding, Speakers Bureau; AbbVie: Research Funding; Takeda: Honoraria, Speakers Bureau; Sanofi/Genzyme: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Amgen: Speakers Bureau; GlaxoSmithKline: Speakers Bureau; Adaptive: Consultancy, Honoraria; BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Janssen: Honoraria, Speakers Bureau; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Nishihori:Novartis: Other: Research support to institution; Karyopharm: Other: Research support to institution.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4396-4396
Author(s):  
Patrick Mellors ◽  
Moritz Binder ◽  
Rhett P. Ketterling ◽  
Patricia Griepp ◽  
Linda B Baughn ◽  
...  

Introduction: Abnormal metaphase cytogenetics are associated with inferior survival in newly diagnosed multiple myeloma (MM). These abnormalities are only detected in one third of cases due to the low proliferative rate of plasma cells. It is unknown if metaphase cytogenetics improve risk stratification when using contemporary prognostic models such as the revised international staging system (R-ISS), which incorporates interphase fluorescence in situ hybridization (FISH). Aims: The aims of this study were to 1) characterize the association between abnormalities on metaphase cytogenetics and overall survival (OS) in newly diagnosed MM treated with novel agents and 2) evaluate whether the addition of metaphase cytogenetics to R-ISS, age, and plasma cell labeling index (PCLI) improves model discrimination with respect to OS. Methods: We analyzed a retrospective cohort of 483 newly diagnosed MM patients treated with proteasome inhibitors (PI) and/or immunomodulators (IMID) who had metaphase cytogenetics performed prior to initiation of therapy. Abnormal metaphase cytogenetics were defined as MM specific abnormalities, while normal metaphase cytogenetics included constitutional cytogenetic variants, age-related Y chromosome loss, and normal metaphase karyotypes. Multivariable adjusted proportional hazards regression models were fit for the association between known prognostic factors and OS. Covariates associated with inferior OS on multivariable analysis included R-ISS stage, age ≥ 70, PCLI ≥ 2, and abnormal metaphase cytogenetics. We devised a risk scoring system weighted by their respective hazard ratios (R-ISS II +1, R-ISS III + 2, age ≥ 70 +2, PCLI ≥ 2 +1, metaphase cytogenetic abnormalities + 1). Low (LR), intermediate (IR), and high risk (HR) groups were established based on risk scores of 0-1, 2-3, and 4-5 in modeling without metaphase cytogenetics, and scores of 0-1, 2-3, and 4-6 in modeling incorporating metaphase cytogenetics, respectively. Survival estimates were calculated using the Kaplan-Meier method. Survival analysis was stratified by LR, IR, and HR groups in models 1) excluding metaphase cytogenetics 2) including metaphase cytogenetics and 3) including metaphase cytogenetics, with IR stratified by presence and absence of metaphase cytogenetic abnormalities. Survival estimates were compared between groups using the log-rank test. Harrell's C was used to compare the predictive power of risk modeling with and without metaphase cytogenetics. Results: Median age at diagnosis was 66 (31-95), 281 patients (58%) were men, median follow up was 5.5 years (0.04-14.4), and median OS was 6.4 years (95% CI 5.7-6.8). Ninety-seven patients (20%) were R-ISS stage I, 318 (66%) stage II, and 68 (14%) stage III. One-hundred and fourteen patients (24%) had high-risk abnormalities by FISH, and 115 (24%) had abnormal metaphase cytogenetics. Three-hundred and thirteen patients (65%) received an IMID, 119 (25%) a PI, 51 (10%) received IMID and PI, and 137 (28%) underwent upfront autologous hematopoietic stem cell transplantation (ASCT). On multivariable analysis, R-ISS (HR 1.59, 95% CI 1.29-1.97, p < 0.001), age ≥ 70 (HR 2.32, 95% CI 1.83-2.93, p < 0.001), PCLI ≥ 2, (HR 1.52, 95% CI 1.16-2.00, p=0.002) and abnormalities on metaphase cytogenetics (HR 1.35, 95% CI 1.05-1.75, p=0.019) were associated with inferior OS. IR and HR groups experienced significantly worse survival compared to LR groups in models excluding (Figure 1A) and including (Figure 1B) the effect of metaphase cytogenetics (p < 0.001 for all comparisons). However, the inclusion of metaphase cytogenetics did not improve discrimination. Likewise, subgroup analysis of IR patients by the presence or absence of metaphase cytogenetic abnormalities did not improve risk stratification (Figure 1C) (p < 0.001). The addition of metaphase cytogenetics to risk modeling with R-ISS stage, age ≥ 70, and PCLI ≥ 2 did not improve prognostic performance when evaluated by Harrell's C (c=0.636 without cytogenetics, c=0.642 with cytogenetics, absolute difference 0.005, 95% CI 0.002-0.012, p=0.142). Conclusions: Abnormalities on metaphase cytogenetics at diagnosis are associated with inferior OS in MM when accounting for the effects of R-ISS, age, and PCLI. However, the addition of metaphase cytogenetics to prognostic modeling incorporating these covariates did not significantly improve risk stratification. Disclosures Lacy: Celgene: Research Funding. Dispenzieri:Akcea: Consultancy; Intellia: Consultancy; Alnylam: Research Funding; Celgene: Research Funding; Janssen: Consultancy; Pfizer: Research Funding; Takeda: Research Funding. Kapoor:Celgene: Honoraria; Sanofi: Consultancy, Research Funding; Janssen: Research Funding; Cellectar: Consultancy; Takeda: Honoraria, Research Funding; Amgen: Research Funding; Glaxo Smith Kline: Research Funding. Leung:Prothena: Membership on an entity's Board of Directors or advisory committees; Takeda: Research Funding; Omeros: Research Funding; Aduro: Membership on an entity's Board of Directors or advisory committees. Kumar:Celgene: Consultancy, Research Funding; Janssen: Consultancy, Research Funding; Takeda: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1906-1906
Author(s):  
Christopher Wardell ◽  
Terri Lynn Alpe ◽  
Phil Farmer ◽  
Michael W Rutherford ◽  
Yan Wang ◽  
...  

Abstract Introduction: Invasive bone marrow sampling is used in multiple myeloma (MM) diagnosis to obtain biological material, which can then be used to generate prognostically important genetic features. Physically sampling the bone marrow can be uncomfortable for the patient. Also, spatial heterogeneity is a common feature in MM, with multiple focal lesions (FLs) occurring throughout the skeleton, meaning a single sample from the iliac crest may be insufficient to capture intrapatient heterogeneity. An alternative strategy is to extract data directly from diagnostic positron emission tomography-computed tomography (PET-CT) scans of patients. These radiomic features can be used as a proxy from which to infer molecular and clinical phenotypes. Compared to physical sampling, there are several advantages, including rapid analysis, minimalizing patient discomfort, reduced cost and widespread availability of the required scanning equipment in hospitals. Methods: A series of 439 newly diagnosed MM patients were selected, all of which had diagnostic PET-CT scans. A radiologist examined these data and identified focal lesions in the axial skeleton of 136/439 (31%) patients. Focal lesions were manually segmented from the PET portion of the original DICOM data using a density-based thresholding method in 3DSlicer version 4.9.0. Pyradiomics version 1.3 was used to resample the voxels in the PET data to 4x4x4 mm and extract radiomic features from each FL. A combination of 10 filters and 7 feature classes were used and a total of 1679 radiomic features were generated per lesion. Radiomic features were a mixture of first order characteristics such as maximum intensity, shape characteristics and gray level matrix features. Hierarchical clustering was applied to the radiomic features, using the Pearson correlation between features as the distance metric and Ward's method for clustering. Next generation sequencing (NGS) data was available for samples from 58/136 (43%) patients with FLs in whole genome (WGS), whole exome (WES) or targeted panel (TP) modalities. The NGS data was used to detect translocations, copy number aberrations and somatic mutations. Results: There were 789 FLs identified in 136 patients, with each patient containing an average of 5.8 FLs. The median FL volume was 4350 mm3, with a median maximum 3D diameter of 29 mm. Hierarchical clustering across all FLs and radiomic features separated the FLs into 5 discrete clusters associated with various clinical and molecular features. However, clustering appeared to be independent of other classification systems based on gene expression profiling (GEP), including the UAMS classification system and GEP70 risk score. Clustering was also independent of the International Staging System (ISS) status suggesting that it can add additional prognostic information. Clusters also appeared to be independent of somatic mutations in genes previously reported as significantly mutated in MM. Patients commonly had FLs occurring in multiple clusters, suggesting that this method takes into account the heterogeneity between lesions in the same patient. Larger FLs were grouped primarily into two clusters consistent with them having distinct features that can be recognized by this approach. Looking across the different clusters distinct differences in clinical outcome were seen between the groups, with significant differences in both PFS (p=0.007) and overall survival (p=0.005), with worse prognosis being led by a cluster of smaller lesions. Conclusions: Radiomics provides a novel method to extract potentially important data from PET-CT scans which can define individual clusters that have different clinical, molecular and prognostic features. This can provide a novel non-invasive method to assess FLs based on both their physical and radiomic characteristics. Larger study sizes will be needed to confirm the differences in outcomes seen between groups. Disclosures Boyle: Celgene: Honoraria, Other: travel grants; Janssen: Honoraria, Other: travel grants; La Fondation de Frace: Research Funding; Abbvie: Honoraria; Amgen: Honoraria, Other: travel grants; Gilead: Honoraria, Other: travel grants; Takeda: Consultancy, Honoraria. Morgan:Bristol-Myers Squibb: Consultancy, Honoraria; Janssen: Research Funding; Takeda: Consultancy, Honoraria; Celgene: Consultancy, Honoraria, Research Funding. Davies:TRM Oncology: Honoraria; MMRF: Honoraria; Abbvie: Consultancy; Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy, Honoraria; Amgen: Consultancy, Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; ASH: Honoraria.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1942-1942
Author(s):  
Andrzej J Jakubowiak ◽  
Thomas Martin ◽  
Seema B. Singhal ◽  
Michael Wang ◽  
Ravi Vij ◽  
...  

Abstract Abstract 1942 Background: The impact of cytogenetic abnormalities on the response to therapies and survival in patients (pts) with multiple myeloma (MM) has been well established in the literature. Bortezomib (BTZ), either alone or in combination with other agents, has been shown to overcome the adverse impact of several common unfavorable cytogenetic features. In addition, responses with lenalidomide (LEN)/dexamethasone and pomalidomide have also been reported in patients with unfavorable cytogenetic profiles. Carfilzomib (CFZ) is a novel and highly selective epoxyketone proteasome inhibitor which produces durable single-agent activity in pts with R/R MM. The objective of this analysis was to evaluate the influence of cytogenetics in a large Ph 2b study (PX-171-003-A1), with single-agent CFZ in pts with R/R MM. Methods: Of the 266 pts enrolled in the 003-A1 study, 229 pts (86%) were response evaluable and had available metaphase cytogenetics and/or fluorescence in situ hybridization (FISH) analyses for hypodiploidy, chromosome 13 deletions, del 17p13, t(4:14), and t(14;16) chromosomal abnormalities. Metaphase cytogenetic analyses were available for 200 pts (75%) and FISH results were available for 205 pts (77%). All pts received CFZ at 20 mg/m2 IV on days 1, 2, 8, 9, 15, and 16 in a 28-day cycle (C) in C1 followed by 27 mg/m2 in each C thereafter for up to 12 C. Pts who completed 12 C of therapy were eligible to continue CFZ on an extension study. For the analysis, overall response rate was defined as ≥PR by International Myeloma Working Group (IMWG) criteria. Clinical benefit response (CBR; ORR + MR as defined by EBMT criteria) was also assessed. All responses were assessed and confirmed by an Independent Response Review Committee (IRC). Results: The median age in this subpopulation was 64 yrs. Pts must have had disease that was relapsed after ≥2 regimens including BTZ and either thalidomide (THAL) or LEN, and must have been refractory to their most recent regimen. In this heavily pre-treated pt population, pts had received median of 13 prior anti-myeloma drugs and a median of 5 prior regimens. 99.6% of pts had previously received treatment with BTZ, 74% received prior thalidomide, 94% prior lenalidomide, and 74% prior stem cell transplantation. The ORR (≥PR) for the pts with available metaphase cytogenetics and/or FISH analyses was 25% and the CBR (≥MR) was 38%. 71 of 229 pts (31%) had at least one cytogenetic abnormality. Of these, 27/71 (38%) pts had abnormalities detected via metaphase cytogenetics, 24 (34%) pts were detected by FISH and 20 (28%) pts had abnormalities by both methods. The presence of deletion 13 or hypodiploidy by cytogenetics or del17p13, t(4;14), or t(14;16) by FISH did not significantly impact the ORR. Specifically, 30% of pts with ≥1 abnormality responded compared to 23% with none. The CBR was also unaffected at 34% vs. 39% for pts with ≥1 and no abnormalities, respectively. For all pts in this analysis, the median duration of response (DOR) was 8 months (95% CI 6–10). For pts with ≥1 abnormality, the DOR was 7 months (95% CI 4–10) and did not differ significantly from the DOR of 8 months (95% CI 6–not reached) in pts with no abnormalities. A complete breakdown of response categories and time-to-progression (TTP) will also be presented. Conclusions: CFZ demonstrated durable and comparable activity in pts with R/R MM in both the absence or presence of one or more cytogenetic abnormalities including hypodiploidy, chromosome 13 deletions, del 17p13, t(4:14), or t(14;16). Notably, these results are consistent with data obtained in another Ph2 study with CFZ in pts with relapsed MM following 1–3 prior therapies and who had abnormal cytogenetics (PX-171-004). The results of the present study suggest that durable responses to CFZ can be achieved in heavily pretreated patients and responses are not impacted by poor prognostic cytogenetic features. Disclosures: Jakubowiak: Millennium Pharmaceuticals, Inc.: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Honoraria; Centocor Ortho Biotech: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Exelixis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees. Martin:Celgene: Honoraria; Onyx: Consultancy. Singhal:Celgene: Speakers Bureau; Takeda/Millenium: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Onyx : Research Funding. Wang:Celgene: Research Funding; Onyx: Research Funding; Millenium: Research Funding; Novartis: Research Funding. Vij:Onyx: Honoraria. Jagannath:Millenium, OrthoBiotec, Celgene, Merck, Onyx: Honoraria; Imedex, Medicom World Wide, Optum Health Education, PER Group: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Lonial:Millennium: Consultancy, Research Funding; Celgene: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; BMS: Consultancy, Research Funding; Onyx: Consultancy, Research Funding. Kukreti:Celgene: Honoraria; Roche: Honoraria; Ortho Biotech: Honoraria. Bray:Onyx Pharmaceuticals: Employment. Vallone:Onyx Pharmaceuticals: Employment. Kauffman:Onyx Pharmaceuticals: Employment. Siegel:Millenium: Consultancy, Honoraria; Celgene: Consultancy, Honoraria.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3056-3056 ◽  
Author(s):  
Bachisio Ziccheddu ◽  
Giulia Biancon ◽  
Chiara De Philippis ◽  
Filippo Bagnoli ◽  
Francesco Maura ◽  
...  

In Multiple myeloma (MM) no treatment has a curative potential and even complete response to novel agents such as proteasome inhibitors (PIs) and immunomodulatory agents (IMiDs) are followed by relapse over time. Next generation sequencing (NGS) has showed how MM at diagnosis is defined by several somatic mutations, but only few drivers, even fewer "druggable" mutations, and many found at a subclonal level. At relapse, targeted studies have shown occasional mutations in drug target genes but the genomic and transcriptomic determinants of chemoresistance in MM remains elusive. We selected 42 MM patients refractory to both lenalidomide and PIs. Whole exome sequencing was performed in 40 of them, and RNAseq in 27. Clinical annotation was available for all patients. Standard analysis pipelines where applied to analyze mutations, copy number alterations (CNAs), mutational signatures, gene expression and expressed mutations. Patients received a median of 3 lines of treatment, with median overall survival of 14.6 months from sampling. We found a median of 77.5 mutations per patient, which is more than what reported at diagnosis (Bolli et al, Nature Communications 2014;5:2997). 100% of samples showed evidence of subclonality, and 37% of them exhibited a higher number of subclonal than clonal variants. Therefore, even at this advanced stage the MM genome is evolving and is composed of different subclones that may display different chemosensitivity. The mutational landscape was also different. TP53 mutations were the second most common after KRAS (20% and 17.5%, respectively). Interestingly TP53 mutations all clustered in patients receiving bortezomib as the last line of treatment. Only 2 patients showed a CRBN mutation, both subclonal. Combining mutations and CNA analysis, the TP53 pathway was the most frequently inactivated (45% of patients). Altogether, mutations or deletions of genes in the CRBN E3 ubiquitin ligase complex were found in 32.5% of patients, while proteasomal subunit genes were infrequently hit. Refractory cases were also uniquely characterized by a novel signature linked to exposure to alkylating agents, whose activity was more pronounced after high-dose melphalan suggesting a mutagenic effect of the drug on residual cells at the time of transplant. Whether this has any pathogenetic role on the disease course remains to be elucidated. RNAseq analysis did not show any influence of treatment or mutational data on the clustering of samples, which was mainly influenced by karyotypic events. The main cluster was composed by non-hyperdiploid patients with both amp(1q) and del(13): these showed CCND2 and MCL1 upregulation, the latter representing a marker of venetoclax resistance and novel target of experimental treatments. Only 26.3% of mutations were expressed, and this correlated with the clonality level of the mutation. However, most mutations in driver genes were expressed, with the notable exception of those causing nonsense mediated decay. Overall, classical high-risk features or CRBN pathway mutations were found in 65% of the cohort. However, only amp(1q) predicted survival in our cohort. The lack of prognostic value of high-risk lesions is likely explained by a higher prevalence of such features in double-refractory stages. Our data suggest that gene mutation is not a preferred mode of evolution of drug resistance in MM. Chemoresistance of the bulk tumor population is likely attained though differential, yet converging evolution of different subclones that are overall highly variable from patient to patient and within the same patient. Disclosures Kastritis: Prothena: Honoraria; Genesis: Honoraria; Amgen: Honoraria, Research Funding; Janssen: Honoraria, Research Funding; Takeda: Honoraria; Pfizer: Honoraria. Dimopoulos:Sanofi Oncology: Research Funding. Cavo:bms: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: travel accommodations, Speakers Bureau; sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; novartis: Honoraria; takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: travel accommodations, Speakers Bureau; AbbVie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Corradini:Janssen: Honoraria, Other: Travel Costs; Takeda: Honoraria, Other: Travel Costs; Jazz Pharmaceutics: Honoraria; Gilead: Honoraria, Other: Travel Costs; Daiichi Sankyo: Honoraria; Celgene: Honoraria, Other: Travel Costs; Amgen: Honoraria; AbbVie: Consultancy, Honoraria, Other: Travel Costs; KiowaKirin: Honoraria; Kite: Honoraria; BMS: Other: Travel Costs; Sanofi: Honoraria; Servier: Honoraria; Roche: Honoraria; Novartis: Honoraria, Other: Travel Costs. Bolli:Celgene: Honoraria; Novartis: Honoraria; Gilead: Other: travel expenses.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5588-5588
Author(s):  
Venkata Yellapantula ◽  
Malin Hultcrantz ◽  
Even H Rustad ◽  
Heather J. Landau ◽  
Christine Iacobuzio-Donahue ◽  
...  

Abstract Introduction At diagnosis, Multiple Myeloma (MM) is traditionally classified into two clinical and prognostic subgroups groups on the basis of initiating cytogenetic abnormalities: IGH translocations and hyperdiploidy. Currently, these events are clinically ascertained by Fluorescent In-Situ Hybridization (FISH). In recent years, comprehensive genome profiling studies have shown that MM pathogenesis is defined by a spectrum of acquired somatic lesions, many of which are biologically and clinically relevant. To this effect, targeted gene sequencing approaches are becoming routine in the upfront diagnostic settings. Here we present myTYPE, a MM-specific targeted next generation sequencing panel to identify germline and somatic substitutions, indels, Copy Number Aberrations (CNA) and IGH translocations. Methods A multiplex bait panel was designed to capture the exons of 120 genes implicated in MM pathogenesis, entire IGH locus as well as genome wide representation of single nucleotide polymorphisms (SNPs) (1 in 3Mb) to enable detection of arm level copy number events and recurrent focal events. These 120 genes were selected on the basis of 1) frequently mutated and driver genes in MM 2) genes in important signaling pathways, e.g the NFKB pathway 3) treatment targets and candidate genes for drug resistance, e.g. cereblon.To validate the efficacy of the assay, 16 constitutional bone marrow samples and 18 tumor samples were sequenced using myTYPE. For validation, 6/18 tumor/normal pairs sequenced using myTYPE were subject to WGS and remaining 12/18 tumor samples were subject to FISH. After sequencing, we obtained an overall median target coverage of 815x. Results After alignment, substitutions and indels were called using Caveman, Pindel and Strelka. CNAs were identified using Facets and IGH translocations were identified using Delly along with a modified version of BRASS. Below is a description of the genomic abnormalities captured by the myTYPE assay. SNVs and Indels For the 6 tumor/normal pairs sequenced using myTYPE and WGS, we obtained a total of 21 (median = 3) non-synonymous mutations using myTYPE. When limiting the WGS calls to myTYPE targets, we recovered 20/21 non-synonymous mutations identified by myTYPE. These involved SNVs and indels in key MM related drivers including NRAS, KRAS, FAM46C and TP53 among others. For the mutations identified by both myTYPE and WGS, there was a high correlation between the variant VAFs, R2= 0.99 and as expected is better in capturing subclonal mutations. IGH rearrangements and Copy Number Aberrations (CNA) Next we compared myTYPE and WGS results for recurrent CNAs in MM. We specifically looked at deletions of 1p, 13p, 16q, 17p and gains of 1q, 11q and found a 100% concordance of these aberrations identified by both assays. The remaining 12 samples sequenced using myTYPE also had orthogonal FISH. myTYPE identified a total of 7 IGH rearrangements, 4 of which are also reported by FISH. Three additional t(11;14) translocations were uniquely identified by myTYPE in cases that remained clinically uncharacterized. FISH was also used to probe deletions in 17q, 13q, 1p and 1q gain. All aberrations identified by FISH were also identified in myType. Additionally, 13q- in four samples and 1p- in one sample were uniquely identified by myTYPE. Conclusion In summary, we present a targeted assay capable of identifying somatic mutations, CNAs and IGH translocations of prognostic and diagnostic relevance in MM. When compared to conventional assays currently used in clinical practice, myTYPE identified at least one disease defining alterations in all samples screened. Evaluation of sensitivity and specificity will require larger clinical cohorts. Importantly, myTYPE enables comprehensive profiling, large sample multiplexing and short turn around times which renders it as an optimal assay for utilisation in the upfront clinical setting. Disclosures Korde: Amgen: Research Funding. Mailankody:Juno: Research Funding; Janssen: Research Funding; Takeda: Research Funding; Physician Education Resource: Honoraria. Landgren:Pfizer: Consultancy; Amgen: Consultancy, Research Funding; Celgene: Consultancy, Research Funding; Janssen: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Merck: Membership on an entity's Board of Directors or advisory committees; Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Karyopharm: Consultancy.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 533-533
Author(s):  
Yuji Mishima ◽  
Jens Lohr ◽  
Yu-Tzu Tai ◽  
Ludmila Flores ◽  
Yosra Aljawai ◽  
...  

Abstract Background Clonal evolution involves simultaneous evolution of multiple co-existant subclones. Recent studies have suggested that clonal heterogeneity is critical during the progression of Multiple Myeloma (MM). Circulating tumor cells (CTCs) have been identified in many patients with solid tumors and hematological malignancies. Recent studies have suggested that CTCs can be identified in patients with Multiple Myeloma. The aims of this study were to identify the phenotypic characteristics of CTCs in patients with Mutliple Myeloma at different stages of the disease, to determine whether somatic mutations present in the bone marrow clones are also identified in CTCs or whether specific subclones are more prone to enter the systemic circulation. These subclones may have a higher likelihood of inducing dissemination into extramedullary sites and potential for drug resistance. Methods We analyzed the peripheral blood samples of 466 patients diagnosed with Multiple Myeloma at different stages of progression. Two plasma cell leukemia patients were included in the study. Freshly collected peripheral blood was processed to obtain white blood cell fractions. The cells were stained with eight antibodies including CD19, CD38, CD138, CD45, CD56, CD28, CD44, and CD183 and CTCs were purified by gating on CD19-/CD38+/CD138+ cells. Among them, ten of the CTC samples were selected to analyze somatic mutation using whole exome sequencing. Briefly, 1µg of genomic DNA was extracted form sorted cells followed by shearing, end repair, and ligation to barcoded adaptors. The DNA was size-selected, subjected to exonic hybrid capture and sequenced on Illumina HiSeq flow cells with an average depth of coverage of 100x. Results Of the 466 samples analyzed, the number of CTCs identified ranged from 0.01% to 61% of total WBC count. CTCs were detected in 61.4% of all samples analyzed. CTCs were detected in 64.5% of relapsed MM, 63.4% of newly diagnosed MM, 24.0% of smoldering MM, and 25.0% of MGUS patients. Significant differences of the surface markers including CD45, CD28, CD56, and CD44 were not observed in the different stages of MM disease progression. For further characterization of CTCs, we performed whole exome sequencing of CTCs in 10 MM samples, of which 5 had sequencing of their matched tumor cells collected from BM as well as matched normal germline cells to examine whether circulating tumor cells possess any distinctive somatic mutations. The sequence analysis revealed that both CTCS and marrow restricted tumor cells have substantial numbers of protein-coding mutations. CTCs and bone marrow cells shared 5-38% similar mutations, while interestingly the rest of the mutations were exclusively present in either the CTCs or bone marrow samples. We identified a total of 347 somatic mutations, which included 199 CTC specific mutations. Several known driver mutations were observed, i.e. BRaf V600E mutation present in the CTC samples but not in the matching bone marrow samples in one patient. Twelve of these CTC mutations were shared at least in two patients including ZNF721, NBPH10, F5, and PRDM15. Conclusion These data suggest subclonal out growth of CTCs from one of the parent clones with acquisition of additional mutation over time outside of the bone marrow microenvironment. Further validation of the unique mutations in CTCs may provide mechanistic insight into myeloma cell dissemination, and so potentially inform treatment strategies. Disclosures: Tai: Onyx: Consultancy. Anderson:celgene: Consultancy; onyx: Consultancy; gilead: Consultancy; sanofi aventis: Consultancy; oncopep: Equity Ownership; acetylon: Equity Ownership. Munshi:Celgene Corporation: Consultancy, Membership on an entity’s Board of Directors or advisory committees; Millennium: The Takeda Oncology Company: Consultancy, Membership on an entity’s Board of Directors or advisory committees; Novartis Pharmaceuticals Corporation: Consultancy, Membership on an entity’s Board of Directors or advisory committees; Onyx Pharmaceuticals Inc: Membership on an entity’s Board of Directors or advisory committees. Ghobrial:Noxxon: Research Funding; BMS: Advisory board, Advisory board Other, Research Funding; Onyx: Advisoryboard Other; Sanofi: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1681-1681
Author(s):  
Noushin Farnoud ◽  
Christopher Famulare ◽  
Elli Papaemmanuil ◽  
Erin McGovern ◽  
Juan Medina ◽  
...  

Background The Myeloproliferative Neoplasms, including Essential Thrombocythemia (ET), Polycythemia Vera (PV), and Myelofibrosis (MF) are stem cell disorders which carry the risk of progression to accelerated phase or blast-phase (MPN-AP/BP). Among the risk factors for transformation to MPN-AP/BP are TP53 mutations. TP53 mutations are a risk factor for progression to MPN-AP/BP in chronic-phase myeloproliferative neoplasms (MPN) and indeed 30% of patients with MPN-LT bear TP53 mutations. A recent study indicated that TP53 mutations may persist at low levels for years without an immediate risk of progression in some chronic-phase MPN patients [Kubesova et al. Leukemia 2017]. These observations raise the question as to whether the types of TP53 mutations, their frequency, or co-occurring variants differ between MPN subtypes. TP53 mutations are characterized by frameshift, missense, nonsense or silent mutations. Mutations in TP53 have traditionally been considered functionally equivalent in many prognostic studies, but an increased understanding of the effects of distinct mutations on TP53 activity has led to the recognition of the distinct functional significance of these different mutations. The understanding of the landscape of TP53 mutations in MPN and the association between different TP53 mutations and mutational burdens among MPN subtypes may allow more accurate prognostic evaluation and personalized treatment for patients. We therefore sought to assess the landscape of TP53 mutations in MPN subtypes. Methods We performed Next-Generation Sequencing (NGS) on a cohort of 651 samples derived from 439 MPN patients with ET, PV, MF and MPN-AP/BP. The data were from 3 targeted panels with 576, 585 and 156 genes (with 91, 241 and 319 samples; median coverage 500x). Samples were obtained from Memorial Sloan Kettering Cancer Center and the Myeloproliferative Neoplasms Research Consortium. Putative oncogenic mutations were called using a combination of 4 variant callers and by comparison to established cancer databases. The final variants were manually reviewed to guarantee high quality of downstream analysis. Results We identified somatic mutations in 428/439 patients (157 MPN-AP/BP, 140 MF, 67 ET and 64 PV). Of these, 55 patients (~13%) had at least one TP53 mutation with variant allele frequency (VAF) >= 2% (median TP53 VAF= 28%). In total, 68 TP53 somatic mutations were identified. Majority of these patients had a single TP53 mutation (46/55) and some had multiple mutations (7 had two and 2 had four mutations). Mutations were enriched in MPN-AP/BP with 45/68 (66%) occurring in this group followed by 10/68 (15%) in ET, 9/68 (13%) in MF and 4/68 (6%) in PV (panel A). Missense mutations were the most common type of TP53 variants and constituted ~80-90% of all mutations in ET, MF and MPN-AP/BP. Most stop-gains and frameshifts were observed in MF or MPN-AP/BP group. Furthermore, 92% of TP53 mutations are localized on DNA-binding domain (exons 5 to 8; panel B). The latter observation is consistent with results from other human cancers and highlights the role of these mutations in reducing TP53 DNA binding affinity. About 8% of mutations occur in the tetramerization domain of TP53, which is also critical for DNA binding, as well as protein-protein interactions and post-translational modification. We did not identify a significant association between a specific TP53 mutation type and any particular MPN subtype. However, we identified a significant association between TP53 VAF and MPN subtype (panel C); TP53 VAF was significantly higher in MPN-AP/BP compared to ET (p =0.0001) and MF (p =0.016). Conclusion TP53 mutations have important prognostic significance in patients with MPN. However, subgroups of patients with TP53 mutant chronic-phase disease have been observed to have relatively stable clinical course. Our data demonstrate that the spectrum of TP53 mutations, in terms of type and location within the gene, does not appear to differ between ET, PV, MF, or MPN-AP/BP. However, we observe significant difference with regard to the VAF of TP53 mutations, with an association of higher VAF and MPN-AP/BP state. This data argues that the VAF may be an important consideration in assessing the prognostic impact of a TP53 mutation identified in an MPN patient. Data regarding copy number variations in this cohort, co-occurring mutations, and the impact of TP53 mutations on treatment outcomes will be presented. Figure Disclosures Papaemmanuil: Celgene: Research Funding. Rampal:Agios, Apexx, Blueprint Medicines, Celgene, Constellation, and Jazz: Consultancy; Constellation, Incyte, and Stemline Therapeutics: Research Funding. Levine:Prelude Therapeutics: Research Funding; Novartis: Consultancy; Gilead: Consultancy; Loxo: Membership on an entity's Board of Directors or advisory committees; Roche: Consultancy, Research Funding; Qiagen: Membership on an entity's Board of Directors or advisory committees; Lilly: Honoraria; Amgen: Honoraria; Celgene: Consultancy, Research Funding; Isoplexis: Membership on an entity's Board of Directors or advisory committees; C4 Therapeutics: Membership on an entity's Board of Directors or advisory committees; Imago Biosciences: Membership on an entity's Board of Directors or advisory committees. Mascarenhas:Novartis: Research Funding; Roche: Consultancy, Research Funding; Incyte: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Merck: Research Funding; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; CTI Biopharma: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Research Funding; Promedior: Research Funding; Merus: Research Funding; Pharmaessentia: Consultancy, Membership on an entity's Board of Directors or advisory committees. Hoffman:Merus: Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 797-797
Author(s):  
Talha Badar ◽  
Mark R. Litzow ◽  
Rory M. Shallis ◽  
Jan Philipp Bewersdorf ◽  
Antoine Saliba ◽  
...  

Abstract Background: TP53 mutations occur in 10-20% of patients with AML, constitute high-risk disease as per ELN criteria, and confer poorer prognosis. Venetoclax combination therapies and CPX-351 were recently approved for AML treatment and lead to improved outcomes in subsets of high-risk AML, however the most effective approach for treatment of TP53-mutated (m) AML remains unclear. In this study we explored the clinical outcome of TP53m AML patients treated over the last 8 years as novel therapies have been introduced to our therapeutic armamentarium. Methods: We conducted a multicenter observational study in collaboration with 4 U.S. academic centers and analyzed clinical characteristics and outcome of 174 TP53m AML patients diagnosed between March 2013 and February 2021. Mutation analysis was performed on bone marrow specimens using 42, 49, 199, or 400 gene targeted next generation sequencing (NGS) panels. Patients with an initial diagnosis of AML were divided into 4 groups (GP) based on the progressive use of novel therapies in clinical trials and their approvals as AML induction therapy during different time periods: 2013-2017 (GP1, n= 37), 2018-2019 (GP2, n= 53), 2019-2020 (GP3, n= 48) and 2020-2021 (GP4, n= 36) to analyze difference in outcome. Results: Baseline characteristics were not significantly different across different GP, as shown in Table 1. Median age of patients was 68 (range [R], 18-83), 65 (R, 29-88), 69 (R, 37-90) and 70 (R, 51-97) years in GP1-4, respectively (p=0.40). The percentage of patients with de novo AML/secondary AML/therapy-related AML in GP1-4 was 40/40/20, 36/29/24, 37.5/37.5/25 and 28/52/20, respectively (p=0.82). The proportion of patients with complex cytogenetics (CG) was 92%, 89%, 96% and 94% in GP1-4, respectively (p=0.54). The median TP53m variant allele frequency (VAF) was 48% (range [R], 5-94), 42% (R, 5-91), 45% (R, 10-94) and 60% (R, 8-82) in GP1-4, respectively (p=0.38). Four (11%), 13 (24.5%), 10 (21%) and 9 (25%) patients had multiple TP53 mutations in GP1-4, respectively (p=0.33). The proportion of patients who received 3+7 (30%, 16%, 6% & 8%; p=0.01), HMA only (11%, 18%, 2% & 8%; p=0.06), venetoclax-based (2.5%, 12%, 48%, & 61%; p &lt;0.01) and CPX-351 induction (16%, 40%, 28% & 5%; p&lt;0.001) were varied in GP1-4, respectively. The rate of CR/CRi was 22%, 26%, 28% and 18% in GP1-4, respectively (p=0.63). Treatment related mortality during induction was observed in 3%, 7%, 10% and 17% of patients in GP1-4, respectively (p=0.18). Overall, 28 (16%) patients received allogeneic hematopoietic stem cell transplantation (alloHCT) after induction/consolidation: 22%, 15%, 17% and 11% in GP1-4, respectively (p=0.67). In subset analysis, there was no difference in the rate of CR/CRi with venetoclax-based regimens vs. others (39% vs 61%, p=0.18) or with CPX-351 vs. others (25% vs 75%, p=0.84). The median progression-free survival was 7.7, 7.0, 5.1 and 6.6 months in GP1-4, respectively (p=0.60, Fig 1A). The median overall survival (OS) was 9.4, 6.1, 4.0 and 8.0 months in GP1-4, respectively (p=0.29, Fig 1B). In univariate analysis for OS, achievement of CR/CRi (p&lt;0.001) and alloHCT in CR1 (p&lt;0.001) associated with favorable outcome, whereas complex CG (p=0.01) and primary refractory disease (p&lt;0.001) associated with poor outcome. Multiple TP53 mutations (p=0.73), concurrent ASXL1m (p=0.86), extra-medullary disease (p=0.92), ≥ 3 non-TP53m mutations (p=0.72), TP53m VAF ≥ 40% vs. &lt; 40% (p=0.25), induction with CPX-351 vs. others (p=0.59) or venetoclax-based regimen vs. others (p=0.14) did not show significance for favorable or poor OS in univariate analysis. In multivariable analysis, alloHCT in CR1 (hazard ratio [HR]=0.28, 95% CI: 0.15-0.53; p=0.001) retained an association with favorable OS and complex CG (HR 4.23, 95%CI: 1.79-10.0; p=0.001) retained an association with dismal OS. Conclusion: We present the largest experience with TP53m AML patients analyzed by NGS. Although outcomes were almost universally dismal, alloHCT appears to improve the long-term survival in a subset of these patients. Effective therapies are warranted to successfully bridge patients to alloHCT and to prolong survival for transplant ineligible patients. Figure 1 Figure 1. Disclosures Badar: Pfizer Hematology-Oncology: Membership on an entity's Board of Directors or advisory committees. Litzow: Omeros: Other: Advisory Board; Pluristem: Research Funding; Actinium: Research Funding; Amgen: Research Funding; Jazz: Other: Advisory Board; AbbVie: Research Funding; Astellas: Research Funding; Biosight: Other: Data monitoring committee. Shallis: Curis: Divested equity in a private or publicly-traded company in the past 24 months. Goldberg: Celularity: Research Funding; Astellas: Consultancy, Membership on an entity's Board of Directors or advisory committees; Aprea: Research Funding; Arog: Research Funding; DAVA Oncology: Honoraria; Genentech: Consultancy, Membership on an entity's Board of Directors or advisory committees; Pfizer: Research Funding; Prelude Therapeutics: Research Funding; Aptose: Consultancy, Research Funding; AbbVie: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding. Atallah: BMS: Honoraria, Speakers Bureau; Takeda: Consultancy, Research Funding; Amgen: Consultancy; Abbvie: Consultancy, Speakers Bureau; Novartis: Consultancy, Honoraria, Research Funding; Pfizer: Consultancy, Research Funding. Foran: revolution medicine: Honoraria; gamida: Honoraria; bms: Honoraria; pfizer: Honoraria; novartis: Honoraria; takeda: Research Funding; kura: Research Funding; h3bioscience: Research Funding; OncLive: Honoraria; servier: Honoraria; aptose: Research Funding; actinium: Research Funding; abbvie: Research Funding; trillium: Research Funding; sanofi aventis: Honoraria; certara: Honoraria; syros: Honoraria; taiho: Honoraria; boehringer ingelheim: Research Funding; aprea: Research Funding; sellas: Research Funding; stemline: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2075-2075
Author(s):  
Sagar S. Patel ◽  
Betty K. Hamilton ◽  
Lisa Rybicki ◽  
Dawn Thomas ◽  
Arden Emrick ◽  
...  

Abstract Background MHC class I chain-related gene A (MICA) is a polymorphic ligand of the natural killer (NKG2D) receptor on immune effector cells. The activating NKG2D receptor controls immune responses by regulating NK cells, NKT cells and γδ-T cells. Dimorphisms at sequence position 129 of the MICA gene confers varying levels of binding affinity to NKG2D receptor. MICA previously has been associated with post-allogeneic hematopoietic cell transplantation (alloHCT) outcomes including graft-versus-host-disease (GvHD), infection, and relapse. However, it is unclear how MICA interacts with cytogenetic and somatic mutations in regards to these outcomes in acute myeloid leukemia (AML). Methods We conducted a single center, retrospective analysis of adult AML patients in first or second complete remission (CR1, CR2), who underwent T-cell replete matched related or unrelated donor alloHCT. Analysis was limited to those who had MICA data available for donors and recipients. In addition to cytogenetic risk group stratification by European LeukemiaNet criteria (Döhner H, et al, Blood 2016), a subset of patients had a 36-gene somatic mutation panel assessed prior to alloHCT by next-generation sequencing. Dimorphisms at the MICA-129 position have previously been categorized as weaker (valine/valine: V/V), heterozygous (methionine/valine: M/V), or stronger (methionine/methionine: M/M) receptor binding affinity. Fine and Gray or Cox regression was used to identify the association of MICA and outcomes with results as hazard ratios (HR) and 95% confidence intervals (CI). Results From 2000 - 2017, 131 AML patients were identified meeting inclusion criteria. Median age at transplant was 54 years (18-74), with 98% Caucasian. Disease status at transplant included 78% CR1 and 22% CR2. Cytogenetic risk stratification showed 13% of patients as favorable, 56% as intermediate, and 31% as adverse-risk. The five most common somatic mutations were FLT3 (15%), NPM1 (14%), DNMT3A (11%), TET2 (7%), and NRAS (6%). 60% of patients had a related donor. A myeloablative transplant was performed in 84% of patients and 53% had a bone marrow graft source. The most common conditioning regimen used was busulfan/cyclophosphamide (52%). 12% of patients were MICA mismatched with their donor. The distribution of donor MICA-129 polymorphisms were 41% V/V, 53% M/V, and 6% M/M. In univariable analysis, donor-recipient MICA mismatch tended to be associated with a lower risk of infection (HR 0.49, CI 0.23-1.02, P=0.06) and grade 2-4 acute GvHD (HR 0.25, CI 0.06-1.04, P=0.06) but was not associated with other post-transplant outcomes. In multivariable analysis, donor MICA-129 V/V was associated with a higher risk of non-relapse mortality (NRM) (HR 2.02, CI 1.01-4.05, P=0.047) (Figure 1) along with increasing patient age at transplant (HR 1.46, CI 1.10-1.93, p=0.008) and the presence of a TET2 mutation (HR 6.00, CI 1.77-20.3, P=0.004). There were no differences between the V/V and the M/V+M/M cohorts regarding somatic mutational status, cytogenetics and other pre-transplant characteristics and post-transplant outcomes. With a median follow-up of 65 months for both cohorts, 45% vs. 49% of patients remain alive, respectively. The most common causes of death between the V/V and the M/V+M/M cohorts was relapse (38% vs. 62%) and infection (31% vs. 8%), respectively. Conclusion While previous studies have demonstrated associations of somatic mutations and cytogenetics with survival outcomes after alloHCT for AML, we observed mutations in TET2 and the V/V donor MICA-129 polymorphism to be independently prognostic for NRM. Mechanistic studies may be considered to assess for possible interactions of TET2 mutations with NK cell alloreactivity. The weaker binding affinity to the NKG2D receptor by the V/V phenotype may diminish immune responses against pathogens that subsequently contribute to higher NRM. These observations may have implications for enhancing patient risk stratification prior to transplant and optimizing donor selection. Future investigation with larger cohorts interrogating pre-transplant AML somatic mutations with MICA polymorphisms on post-transplant outcomes may further elucidate which subsets of patients may benefit most from transplant. Disclosures Nazha: MEI: Consultancy. Mukherjee:Pfizer: Honoraria; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Projects in Knowledge: Honoraria; BioPharm Communications: Consultancy; Bristol Myers Squib: Honoraria, Speakers Bureau; Takeda Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees; LEK Consulting: Consultancy, Honoraria; Aplastic Anemia & MDS International Foundation in Joint Partnership with Cleveland Clinic Taussig Cancer Institute: Honoraria. Advani:Amgen: Research Funding; Pfizer: Honoraria, Research Funding; Glycomimetics: Consultancy; Novartis: Consultancy. Carraway:Novartis: Speakers Bureau; Balaxa: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Jazz: Speakers Bureau; FibroGen: Consultancy; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Amgen: Membership on an entity's Board of Directors or advisory committees; Agios: Consultancy, Speakers Bureau. Gerds:Apexx Oncology: Consultancy; Celgene: Consultancy; Incyte: Consultancy; CTI Biopharma: Consultancy. Sekeres:Celgene: Membership on an entity's Board of Directors or advisory committees; Opsona: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Opsona: Membership on an entity's Board of Directors or advisory committees. Maciejewski:Apellis Pharmaceuticals: Consultancy; Ra Pharmaceuticals, Inc: Consultancy; Alexion Pharmaceuticals, Inc.: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Ra Pharmaceuticals, Inc: Consultancy; Alexion Pharmaceuticals, Inc.: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Apellis Pharmaceuticals: Consultancy. Majhail:Incyte: Honoraria; Anthem, Inc.: Consultancy; Atara: Honoraria.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1835-1835 ◽  
Author(s):  
Katrina M Piedra ◽  
Hani Hassoun ◽  
Larry W. Buie ◽  
Sean M. Devlin ◽  
Jessica Flynn ◽  
...  

Introduction Immunomodulatory agents (IMiD's) are associated with an increased risk of venous thromboembolism (VTE), particularly when combined with high dose steroids. Studies evaluating the use of lenalidomide-bortezomib-dexamethasone (RVD) and carfilzomib-lenalidomide-dexamethasone (KRD) in the frontline setting for multiple myeloma (MM) have reported a 6% and 24% incidence of thrombosis, respectively, despite primary thrombotic prophylaxis with aspirin (ASA) (Richardson, et al. Blood. 2010; Korde, et al. JAMA Oncol 2015). Recent data, including the Hokusai VTE Cancer Trial, have suggested that safety and efficacy of direct oral anticoagulants (DOACs) are preserved in the setting of treatment of solid malignancy-associated thrombosis (Raskob, et al. N Engl J Med. 2018; Mantha, et al. J Thromb Thrombolysis. 2017). Despite this data, there is limited experience and use of DOACs in prevention of thromboses in the setting of hematologic malignancies, specifically MM. After careful review of literature, since early 2018, we changed our clinical practice and routinely placed newly diagnosed MM (NDMM) patients receiving KRD at Memorial Sloan Kettering Cancer Center (MSKCC) on concomitant rivaroxaban 10 mg once daily, regardless of VTE risk stratification. In the following abstract, we present VTE rates and safety data for newly diagnosed MM patients receiving RVD with ASA vs. KRD with ASA vs. KRD with rivaroxaban prophylaxis. Methods This was an IRB-approved, single-center, retrospective chart review study. All untreated patients with newly diagnosed MM, receiving at least one cycle of RVD or KRD between January 2015 and October 2018 were included. The period of observation included the time between the first day of therapy until 90 days after completion of induction therapy. Patients were identified by querying the pharmacy database for carfilzomib or bortezomib administration and outpatient medication review of thromboprophylaxis with rivaroxaban or ASA. VTE diagnoses were confirmed by ICD-10 codes and appropriate imaging studies (computed tomography and ultrasound). Descriptive statistics were performed. Results During the observation period, 241 patients were identified to have received RVD or KRD in the frontline (99 RVD with ASA; 97 KRD with ASA; 45 KRD with rivaroxaban). Baseline characteristics were well distributed among the three arms, with a median age of 60 (30-94) in the RVD ASA arm, 62 (33-77) in the KRD ASA arm, and 60 (24-79) in the KRD rivaroxaban arm. Patients had International Staging System (ISS) stage 3 disease in 13% (N=13), 9.3% (N=9), and 11% (N=5) of the RVD ASA, KRD ASA, and KRD rivaroxaban arms, respectively. Median weekly doses of dexamethasone were higher in both KRD arms, 40 mg (20-40) vs. 20 mg (10-40) in the RVD ASA arm. The average initial doses of lenalidomide were 22 mg in the RVD ASA arm compared to 25 mg in both the KRD ASA and KRD rivaroxaban arms. After querying the pharmacy database, no patients were identified to have a history or concomitant use of erythropoietin stimulating agent (ESA) use. Treatment-related VTE's occurred in 4 patients (4.0%) in the RVD ASA arm, 16 patients (16.5%) in the KRD ASA arm, and in 1 patient (2.2%) in the KRD rivaroxaban arm. Average time to VTE was 6.15 months (Range 5.42, 9.73) after treatment initiation in the RVD ASA group, while it was 2.61 months (Range 0.43, 5.06) in the KRD ASA group and 1.35 months in the KRD rivaroxaban group. Minor, grade 1 bleeding events per the Common Terminology Criteria for Adverse Events (CTCAE) were identified in 1 (1.1%) patient in the RVD ASA arm, 5 (5.2%) patients in the KRD ASA arm, and 1 (2.2%) patient in the KRD rivaroxaban arm. Conclusion More efficacious MM combination therapies have been found to increase the risk of VTE when using ASA prophylaxis, indicating better thromboprophylaxis is needed. We found patients receiving ASA prophylaxis with KRD were more likely to experience a VTE and these events occurred earlier compared to patients receiving ASA prophylaxis with RVD. Importantly, the rate of VTE was reduced to the same level as ASA prophylaxis with RVD when low-dose rivaroxaban 10 mg daily was used with KRD, and without necessarily increasing bleeding risk. Our retrospective data support the development of prospective clinical trials further investigating DOAC use in thromboprophylaxis for NDMM patients receiving carfilzomib-based treatments. Figure Disclosures Hassoun: Novartis: Consultancy; Janssen: Research Funding; Celgene: Research Funding. Lesokhin:BMS: Consultancy, Honoraria, Research Funding; Takeda: Consultancy, Honoraria; Janssen: Research Funding; GenMab: Consultancy, Honoraria; Serametrix Inc.: Patents & Royalties; Genentech: Research Funding; Juno: Consultancy, Honoraria. Mailankody:Juno: Research Funding; Celgene: Research Funding; Janssen: Research Funding; Takeda Oncology: Research Funding; CME activity by Physician Education Resource: Honoraria. Smith:Celgene: Consultancy, Patents & Royalties, Research Funding; Fate Therapeutics and Precision Biosciences: Consultancy. Landgren:Theradex: Other: IDMC; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Abbvie: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Merck: Other: IDMC; Sanofi: Membership on an entity's Board of Directors or advisory committees; Adaptive: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. OffLabel Disclosure: Off-label use of rivaroxaban for outpatient prophylaxis of venous thromboembolism (VTE) will be explicitly disclosed to the audience.


Sign in / Sign up

Export Citation Format

Share Document