scholarly journals The Samd14-Capping Protein Complex Controls Cell Signaling in the Erythropoietic Stress Response

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 1-1
Author(s):  
Kyle J Hewitt

In anemia, restoring homeostatic levels of erythrocytes requires an erythropoietic regenerative response to accelerate red blood cell (RBC) production. Elucidating mechanisms that drive the process of erythropoiesis in the context of regeneration or "stress erythropoiesis" can reveal new strategies for targeting ineffective erythropoiesis. An important component of stress erythropoiesis involves stress-dependent activation of genes/proteins through transcriptional enhancers. We discovered an enhancer in intron 1 of the Sterile Alpha Motif (SAM) Domain 14 (Samd14) gene elevates Samd14 expression, facilitates SCF/c-Kit signaling, and is needed for survival in a hemolytic anemia model. However, it is dispensable for erythropoietic development. Our prior work demonstrated that the SAM domain of Samd14 promotes c-Kit-mediated cellular signaling to regulate progenitor function, and this SAM domain has functional attributes unique from those of structurally related SAM domains. Using immunoprecipitation-mass spectrometry, we determined that Samd14 interacts with the Capzβ protein. Capzβ is a component of the actin capping protein (CP) complex, which interact as α- and β heterodimers during actin filament assembly/disassembly. CP exerts diverse functions in cell motility, vesicular transport, cell signaling and cytokinesis. Using a series of Samd14 deletion constructs, we tested whether the Samd14-Capzβ interaction is important for Samd14 promotion of c-Kit signaling in stress erythroid progenitors. Our findings determined that the region of Samd14 required for binding to Capzβ (amino acids 38-54) were required to restore c-Kit signaling. Our ongoing studies are examining whether Samd14-Capzβ is similarly required for colony formation and cell survival of stress erythroid progenitors, and whether additional SAM domain-containing proteins have a similar role in regulating stress erythropoiesis. Understanding the fundamental drivers of regenerative erythropoiesis can lead to new therapeutic strategies and prognostic/diagnostic markers. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 288-288
Author(s):  
Suhita Ray ◽  
Linda Chee ◽  
Nicholas T. Woods ◽  
Kyle J Hewitt

Abstract Stress erythropoiesis describes the process of accelerating red blood cell (RBC) production in anemia. Among a number of important mediators of stress erythropoiesis, paracrine signals - involving cooperation between SCF/c-Kit signaling and other signaling inputs - are required for the activation/function of stress erythroid progenitors. Whereas many critical factors required to drive erythropoiesis in normal physiological conditions have been described, whether distinct mechanisms control developmental, steady-state, and stress erythropoiesis in anemia is poorly understood. Our prior work revealed that the Sterile Alpha Motif (SAM) Domain 14 (Samd14) gene is transcriptionally upregulated in a model of acute hemolytic anemia induced by the RBC-lysing chemical phenylhydrazine. Samd14 is regulated by GATA binding transcription factors via an intronic enhancer (Samd14-Enh). In a mouse knockout of Samd14-Enh (Samd14-Enh -/-), we established that the Samd14-Enh is dispensable for steady-state erythropoiesis but is required for recovery from severe hemolytic anemia. Samd14 promotes c-Kit signaling in vivo and ex vivo, and the SAM domain of Samd14 facilitates c-Kit-mediated cellular signaling and stress progenitor activity. In addition, the Samd14 SAM domain is functionally distinct from closely related SAM domains, which demonstrates a unique role for this SAM domain in stress signaling and cell survival. In our working model, Samd14-Enh is part of an ensemble of anemia-responsive enhancers which promote stress erythroid progenitor activity. However, the mechanism underlying Samd14's role in stress erythropoiesis is unknown. To identify potential Samd14-interacting proteins that mediate its function, we performed immunoprecipitation-mass spectrometry on the Samd14 protein. We found that Samd14 interacted with α- and β heterodimers of the F-actin capping protein (CP) complex independent of the SAM domain. CP binds to actin during filament assembly/disassembly and plays a role in cell morphology, migration, and signaling. Deleting a 17 amino acid sequence near the N-terminus of Samd14 disrupted the Samd14-CP interaction. However, mutating the canonical RxR of the CP interaction (CPI) motif, which is required for CP-binding in other proteins, does not abrogate the Samd14-CP interaction. Moreover, replacing this sequence with the canonical CPI domain of CKIP-1 completely disrupts the interaction, indicating that other sequence features are required to maintain the Samd14-CP complex. Ex vivo knockdown of the β-subunit of CP (CPβ), which disrupts the integrity of the CP complex, decreased the percentage of early erythroid precursors (p<0.0001) and decreased (3-fold) progenitor activity as measured by colony formation assays (similar to knockdown of Samd14). Taken together, these data indicate that Samd14 interacts with CP via a unique CP binding (CPB) domain, and that the CP complex coordinates erythroid differentiation in stress erythroid progenitors. To test the function of the Samd14-CP complex, we designed an ex vivo genetic complementation assay to express Samd14 lacking the CPB-domain (Samd14∆CPB) in stress erythroid progenitors isolated from anemic Samd14-Enh -/- mice. Phospho-AKT (Ser473) and phospho-ERK (Thr202/Tyr204) levels in Samd14∆CPB were, respectively, 2.2 fold (p=0.007) and ~7 fold (n=3) lower than wild type Samd14 expressing cells, 5 min post SCF stimulation. Relative to Samd14, Samd14∆CPB expression reduced burst forming unit-erythroid (BFU-E) (2.0 fold) and colony forming unit-erythroid (CFU-E) (1.5 fold). These results revealed that the Samd14-CP interaction is a determinant of BFU-E and CFU-E progenitor cell levels and function. Remarkably, as the requirement of the CPB domain in BFU-E and CFU-E progenitors is distinct from the Samd14-SAM domain (which promotes BFU-E but not CFU-E), the function of Samd14 in these two cell types may differ. Ongoing studies will examine whether the function of Samd14 extends beyond SCF/c-Kit signaling and establish cell type-dependent functions of Samd14 and Samd14-interacting proteins. Given the critical importance of c-Kit signaling in hematopoiesis, the role of Samd14 in mediating pathway activation, and our discovery implicating the capping protein complex in erythropoiesis, it is worth considering the pathological implications of this mechanism in acute/chronic anemia and leukemia. Disclosures No relevant conflicts of interest to declare.


2022 ◽  
Author(s):  
Suhita Ray ◽  
Linda Chee ◽  
Yichao Zhou ◽  
Meg A Schaefer ◽  
Michael J Naldrett ◽  
...  

Acute anemia induces rapid expansion of erythroid precursors and accelerated differentiation to replenish erythrocytes. Paracrine signals – involving cooperation between SCF/c-Kit signaling and other signaling inputs – are required for the increased erythroid precursor activity in anemia. Our prior work revealed that the Sterile Alpha Motif (SAM) Domain 14 (Samd14) gene increases the regenerative capacity of the erythroid system and promotes stress-dependent c-Kit signaling. However, the mechanism underlying Samd14’s role in stress erythropoiesis is unknown. We identified a protein-protein interaction between Samd14 and the α- and β heterodimers of the F-actin capping protein (CP) complex. Knockdown of the CP β subunit increased erythroid maturation in ex vivo cultures and decreased colony forming potential of stress erythroid precursors. In a genetic complementation assay for Samd14 activity, our results revealed that the Samd14-CP interaction is a determinant of erythroid precursor cell levels and function. Samd14-CP promotes SCF/c-kit signaling in CD71med spleen erythroid precursors. Given the roles of c-Kit signaling in hematopoiesis and Samd14 in c-Kit pathway activation, this mechanism may have pathological implications in acute/chronic anemia.


2021 ◽  
pp. 166891
Author(s):  
Shuichi Takeda ◽  
Ryotaro Koike ◽  
Ikuko Fujiwara ◽  
Akihiro Narita ◽  
Makoto Miyata ◽  
...  

2019 ◽  
Vol 151 (5) ◽  
pp. 660-669 ◽  
Author(s):  
Christopher Solís ◽  
Brenda Russell

Muscle adaptation is a response to physiological demand elicited by changes in mechanical load, hormones, or metabolic stress. Cytoskeletal remodeling processes in many cell types are thought to be primarily regulated by thin filament formation due to actin-binding accessory proteins, such as the actin-capping protein. Here, we hypothesize that in muscle, the actin-capping protein (named CapZ) integrates signaling by a variety of pathways, including phosphorylation and phosphatidylinositol 4,5-bisphosphate (PIP2) binding, to regulate muscle fiber growth in response to mechanical load. To test this hypothesis, we assess mechanotransduction signaling that regulates muscle growth using neonatal rat ventricular myocytes cultured on substrates with the stiffness of the healthy myocardium (10 kPa), fibrotic myocardium (100 kPa), or glass. We investigate how PIP2 signaling affects CapZ using the PIP2 sequestering agent neomycin and the effect of PKC-mediated CapZ phosphorylation using the PKC-activating drug phorbol 12-myristate 13-acetate (PMA). Molecular simulations suggest that close interactions between PIP2 and the β-tentacle of CapZ are modified by phosphorylation at T267. Fluorescence recovery after photobleaching (FRAP) demonstrates that the kinetic binding constant of CapZ to sarcomeric thin filaments in living muscle cells increases with stiffness or PMA treatment but is diminished by PIP2 reduction. Furthermore, CapZ with a deletion of the β-tentacle that lacks the phosphorylation site T267 shows increased FRAP kinetics with lack of sensitivity to PMA treatment or PIP2 reduction. Förster resonance energy transfer (FRET) probes the molecular interactions between PIP2 and CapZ, which are decreased by PIP2 availability or by the β-tentacle truncation. These data suggest that CapZ is bound to actin tightly in the idle, locked state, with little phosphorylation or PIP2 binding. However, this tight binding is loosened in growth states triggered by mechanical stimuli such as substrate stiffness, which may have relevance to fibrotic heart disease.


Gene ◽  
1999 ◽  
Vol 237 (1) ◽  
pp. 193-199 ◽  
Author(s):  
Yasuhide Yoshimura ◽  
Hiromitsu Tanaka ◽  
Masami Nozaki ◽  
Kentaro Yomogida ◽  
Kazuo Shimamura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document