scholarly journals Real World Evaluation of Deviation Outcomes in an Immune Effector Cell Quality Program

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 10-10
Author(s):  
Geoffrey Shouse ◽  
Sylvia O Dulan ◽  
Jamie Wagner ◽  
Michelle Mott ◽  
Alex Ly ◽  
...  

Introduction City of Hope (COH) was one of the first institutions to be granted Immune Effector Cell (IEC) Therapy accreditation by the Foundation for the Accreditation of Cellular Therapy, which supports our mission to provide safe, high quality patient care through expanded standardization. As part of the accreditation requirements, COH expanded established processes developed to monitor standard of care (SOC) deviations for the Hematopoietic Cell Transplantation Program to our IEC Clinical Program. As part of process improvement, we monitored our IEC Quality program to determine if there were any outcome changes as a result of deviations. Therefore, we performed a retrospective analysis of electronically submitted SOC deviations for patients treated with commercially available chimeric antigen receptor (CAR) T cell products (tisagenlecleucel or axicabtagene ciloleucel [Axi-cel]) between December 2017- March 2020 at COH. Methods During the reporting timeframe, 122 patients were planned to be treated with an IEC product. We retrieved 28 requests for SOC deviations from our electronic database for 24 of 122 patients. We analyzed for volume, trends and patient outcomes of submitted deviation requests, including trends in type of deviation, transfer to the intensive care unit (ICU), length of inpatient hospital stay and safety outcomes at 30 days post infusion. Patients who did not receive their SOC product for any reason during the reporting timeframe, or were lost to follow-up were excluded from the outcomes analysis. Results Sixteen of 24 patients were planned to be treated with SOC Axi-cel and 8 of 24 patients were planned to be treated with tisagenlecleucel; only 19 of 24 patients (10 women and 9 men) underwent infusion with their respective SOC product, 15 with Axi-cel and 4 with tisagenlecleucel. Five of 24 patients, including 1 Axi-cel and 4 tisagenlecleucel patients were excluded due to change in medical condition or infusion after the reporting timeframe. We identified elevated creatinine levels as the most common reason for SOC deviation requests for patients to be treated with tisagenlecleucel (4 of 8 patients), while deviations relating to rest days between lymphodepletion and CAR T cell infusion were the most common submitted deviations for patients planned to be treated with Axi-cel (9 of 16 patients). We also descriptively compared patients who required SOC deviations to a cohort of patients (n=98) who did not require deviations and were treated with either axicabtagene ciloleucel (n=86) or tisagenlecleucel (n=12) during the same timeframe. Eight of 98 (8%) of patients who did not have requests for SOC deviation were transferred to the ICU compared to 4 of 19 (21%) patients who required SOC deviations. Seventeen of 19 and 94 of 98 patients were discharged. The median length of inpatient hospital stay post infusion for SOC deviations cohorts who were discharged was 16 days (11-40) and 15 days (8-100) for non-SOC deviations patients. When we descriptively compared survival outcomes at 30 days post infusion, we found that all (4 of 4) patients who required SOC deviations and received tisagenlecleucel survived compared to 11 of 12 patients without SOC deviations. For patients who received Axi-cel, 14 of 15 patients with SOC deviations survived at day 30 post infusion compared to 85 of 86 patients without SOC deviations. The response to treatment and toxicities will be reported at the meeting. Conclusion These data suggest that careful selection of patients who may benefit from SOC deviations and still receive their infusion may not negatively affect survival outcomes at 30 days. The SOC deviation review process offers physicians a forum to evaluate non-SOC eligible cases and advise on SOC policy changes. While preliminary, our quality review identifies a role for comprehensive analysis of all IEC SOC deviations as part of standard practice, especially as the field of cellular immunotherapy expands to include more SOC cellular products. Overall, further monitoring of SOC deviations in real world patient populations treated with commercially available IEC products will allow us to continue to support patient safety, assess patient care management practices, expand patient access, meet accreditation standards and monitor SOC practice changes while advancing the field of cellular immunotherapy. Disclosures Shouse: Kite Pharma: Honoraria, Speakers Bureau. Mott:Janssen/Johnson & Johnson: Consultancy; Juno/BMS: Consultancy. Budde:Gilead Sciences: Consultancy; AstraZeneca: Research Funding; Merck: Research Funding; Mustang Therapeutics: Research Funding; Kite, a Gilead Company: Consultancy; Roche: Consultancy; Amgen: Research Funding.

2020 ◽  
Vol 41 (10) ◽  
pp. 673-679
Author(s):  
Jorge Garcia Borrega ◽  
Michael von Bergwelt-Baildon ◽  
Boris Böll

Zusammenfassung CRS und ICANS als Nebenwirkung von CAR-T-Zellen Das Cytokine-Release-Syndrome (CRS) ist die häufigste Nebenwirkung einer CAR-T-Zell-Therapie und kann von leichtem Fieber bis zu einem Multiorganversagen führen. Pathophysiologisch kommt es beim CRS zu einem Zytokinsturm und trotz einer Therapie mit Tocilizumab sind refraktäre und tödliche Verläufe beschrieben. Die Symptome des Immune-Effector-Cell-associated-Neurotoxicity-Syndrome (ICANS) variieren von leichter Desorientiertheit bis zum lebensbedrohlichen Hirnödem. Die Pathophysiologie und Therapie des ICANS sind noch nicht ausreichend erforscht. Die Differenzialdiagnosen von CRS und ICANS sind komplex und umfassen neben Infektionen und Sepsis unter anderem auch eine Toxizität der vorhergehenden Therapie, ein Tumorlysesyndrom und nicht zuletzt einen Progress der Grunderkrankung. Ein klinischer oder laborchemischer Parameter zum sicheren Beweis oder Ausschluss eines CRS oder ICANS gibt es zum heutigen Zeitpunkt nicht. Intensivmedizinische Relevanz und potenzielle Entwicklungen der CAR-T-Zell-Therapie Erste Auswertungen von Real-world-Daten deuten auf eine höhere Rate an schweren Nebenwirkungen im Rahmen der CAR-T-Zell-Therapie als in den Zulassungsstudien hin. Für die Indikation r/r-DLBCL könnten schätzungsweise bis zu maximal 300 Patienten pro Jahr in Deutschland eine intensivmedizinische Betreuung im Rahmen der CAR-T-Zell-Therapie benötigen. Studien mit wesentlich häufigeren soliden Tumoren könnten die Patientenzahl drastisch erhöhen. Therapieziel bei CAR-T-Zell-Patienten und Entscheidungen bei Therapiezieländerung Aufgrund des neuen Therapiekonzepts kann ein Konflikt zwischen bislang palliativem Patientenkollektiv und nun möglicherweise langfristigen Remissionen entstehen. Eine frühzeitige Aufklärung über potenziell lebensbedrohliche Nebenwirkungen im Rahmen der Therapie und eine interdisziplinäre Besprechung der Therapieziele mit den Patienten ist entscheidend.


2019 ◽  
Vol 144 (24) ◽  
pp. 1703-1708
Author(s):  
Jorge Garcia Borrega ◽  
Michael von Bergwelt-Baildon ◽  
Boris Böll

Was ist neu? CRS und ICANS als Nebenwirkung von CAR-T-Zellen Das Cytokine-Release-Syndrome (CRS) ist die häufigste Nebenwirkung einer CAR-T-Zell-Therapie und kann von leichtem Fieber bis zu einem Multiorganversagen führen. Pathophysiologisch kommt es beim CRS zu einem Zytokinsturm und trotz einer Therapie mit Tocilizumab sind refraktäre und tödliche Verläufe beschrieben. Die Symptome des Immune-Effector-Cell-associated-Neurotoxicity-Syndrome (ICANS) variieren von leichter Desorientiertheit bis zum lebensbedrohlichen Hirnödem. Die Pathophysiologie und Therapie des ICANS sind noch nicht ausreichend erforscht. Die Differenzialdiagnosen von CRS und ICANS sind komplex und umfassen neben Infektionen und Sepsis unter anderem auch eine Toxizität der vorhergehenden Therapie, ein Tumorlysesyndrom und nicht zuletzt einen Progress der Grunderkrankung. Ein klinischer oder laborchemischer Parameter zum sicheren Beweis oder Ausschluss eines CRS oder ICANS gibt es zum heutigen Zeitpunkt nicht. Intensivmedizinische Relevanz und potenzielle Entwicklungen der CAR-T-Zell-Therapie Erste Auswertungen von Real-world-Daten deuten auf eine höhere Rate an schweren Nebenwirkungen im Rahmen der CAR-T-Zell-Therapie als in den Zulassungsstudien hin. Für die Indikation r/r-DLBCL könnten schätzungsweise bis zu maximal 300 Patienten pro Jahr in Deutschland eine intensivmedizinische Betreuung im Rahmen der CAR-T-Zell-Therapie benötigen. Studien mit wesentlich häufigeren soliden Tumoren könnten die Patientenzahl drastisch erhöhen. Therapieziel bei CAR-T-Zell-Patienten und Entscheidungen bei Therapiezieländerung Aufgrund des neuen Therapiekonzepts kann ein Konflikt zwischen bislang palliativem Patientenkollektiv und nun möglicherweise langfristigen Remissionen entstehen. Eine frühzeitige Aufklärung über potenziell lebensbedrohliche Nebenwirkungen im Rahmen der Therapie und eine interdisziplinäre Besprechung der Therapieziele mit den Patienten ist entscheidend.


2020 ◽  
Vol 11 (06) ◽  
pp. 283-288
Author(s):  
Jorge Garcia Borrega ◽  
Michael von Bergwelt-Baildon ◽  
Boris Böll

ZUSAMMENFASSUNG WAS IST NEU? CRS und ICANS als Nebenwirkung von CAR-T-Zellen Das Cytokine-Release-Syndrome (CRS) ist die häufigste Nebenwirkung einer CAR-T-Zell-Therapie und kann von leichtem Fieber bis zu einem Multiorganversagen führen. Pathophysiologisch kommt es beim CRS zu einem Zytokinsturm und trotz einer Therapie mit Tocilizumab sind refraktäre und tödliche Verläufe beschrieben. Die Symptome des Immune-Effector-Cell-associated-Neurotoxicity-Syndrome (ICANS) variieren von leichter Desorientiertheit bis zum lebensbedrohlichen Hirnödem. Die Pathophysiologie und Therapie des ICANS sind noch nicht ausreichend erforscht. Die Differenzialdiagnosen von CRS und ICANS sind komplex und umfassen neben Infektionen und Sepsis unter anderem auch eine Toxizität der vorhergehenden Therapie, ein Tumorlysesyndrom und nicht zuletzt einen Progress der Grunderkrankung. Ein klinischer oder laborchemischer Parameter zum sicheren Beweis oder Ausschluss eines CRS oder ICANS gibt es zum heutigen Zeitpunkt nicht. Intensivmedizinische Relevanz und potenzielle Entwicklungen der CAR-T-Zell-Therapie Erste Auswertungen von Real-world-Daten deuten auf eine höhere Rate an schweren Nebenwirkungen im Rahmen der CAR-T-Zell-Therapie als in den Zulassungsstudien hin. Für die Indikation r/r-DLBCL könnten schätzungsweise bis zu maximal 300 Patienten pro Jahr in Deutschland eine intensivmedizinische Betreuung im Rahmen der CAR-T-Zell-Therapie benötigen. Studien mit wesentlich häufigeren soliden Tumoren könnten die Patientenzahl drastisch erhöhen. Therapieziel bei CAR-T-Zell-Patienten und Entscheidungen bei Therapiezieländerung Aufgrund des neuen Therapiekonzepts kann ein Konflikt zwischen bislang palliativem Patientenkollektiv und nun möglicherweise langfristigen Remissionen entstehen. Eine frühzeitige Aufklärung über potenziell lebensbedrohliche Nebenwirkungen im Rahmen der Therapie und eine interdisziplinäre Besprechung der Therapieziele mit den Patienten ist entscheidend.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi151-vi151
Author(s):  
Omar Butt ◽  
Alice Zhou ◽  
Kenneth Lee ◽  
Gregory Wu ◽  
Paolo Caimi ◽  
...  

Abstract BACKGROUND Neurological side effects after chimeric antigen receptor-modified (CAR) T cell therapy, termed immune effector cell-associated neurotoxicity syndrome (ICANS), are common and potentially devastating. We previously demonstrated that pre-infusion plasma neurofilament light chain (NfL), a well-established marker of neurodegeneration, may predict subsequent development of ICANS in a small, single-center cohort. This larger, retrospective multicenter study compares pre-infusion NfL to known post-infusion risk factors for developing ICANs including white blood cell (WBC) count, platelet count, C-reactive protein (CRP), fibrinogen, and ferritin levels. METHODS Inclusion criteria included available pre-infusion (up to 4 weeks prior to lymphodepletion) plasma from patients treated with a CAR T cell therapy (n = 30, 36% with ICANS, ASTCT consensus ICANS grade range 1-4). Exclusion criteria included confounding diagnoses known to elevate NfL levels (dementia, multiple sclerosis, recent stroke). Plasma NfL was assayed using a Simoa HD-1/HD-X kit (QuanterixTM). Post-infusion Day 3 or Day 5 WBC, Platelet, CRP, fibrinogen, and ferritin were obtained from the medical record. Group comparisons were done using log-rank tests with a Bonferroni-derived significance threshold, followed by receiver operating characteristic (ROC) curve classification. RESULTS Prior to infusion, individuals who ultimately developed ICANS had elevations in NfL ([87.6 v 29.4 pg/ml], p = 0.00004) with excellent classification (AUC 0.96), sensitivity (0.91) and specificity (0.95). Among known post-infusion risk factors, only post-infusion Day 3 ferritin (p = 0.004) and Day 5 ferritin (p = 0.003) differed between groups. Classification was inferior for both time points (Day 3 AUC = 0.87, specificity 0.71; Day 5 AUC 0.87, specificity 0.86). CONCLUSION Pre-infusion plasma NfL levels are a robust early marker for the development of ICANS that exceeds known post-infusion markers. Our findings suggest the risk of developing ICANS reflects pre-existing host-factors. Foreknowledge of ICANS development of may permit early, aggressive (preemptive or prophylaxis) ICANS-directed therapies, improving patient outcomes.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3009-3009
Author(s):  
Rahul Banerjee ◽  
Bella Sykes ◽  
Nina Shah ◽  
Charalambos Andreadis ◽  
Peter H. Sayre ◽  
...  

Abstract BACKGROUND: The operationalization of chimeric antigen receptor (CAR-T) therapy for hematologic malignancies can be complex for patients and their caregivers. In the weeks before CAR-T therapy, patients must process large amounts of information and coordinate logistics involving caregivers, lodging, and transportation. Immediately following CAR-T therapy, patients must be monitored closely for toxicities such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). In the months following CAR-T therapy, patients may be referred back to local oncologists without a clear plan for managing potential late effects such as hypogammaglobulinemia or neuropsychiatric complications (Chakraborty 2021). Mobile health (mHealth) apps may be able to improve the patient experience during CAR-T therapy by facilitating care coordination, home-based toxicity monitoring, and patient education (Banerjee 2021). By empowering patients and caregivers to better understand CAR-T therapy and actively participate in their care, mHealth tools may ultimately augment workflows for CAR-T clinics as well. However, the feasibility and acceptability of such supportive mHealth apps during CAR-T therapy have not been established. STUDY DESIGN: We have designed a "Companion for CAR-T" mHealth app to assist with care coordination, toxicity monitoring, and patient education during CAR-T therapy. Key components of the app are summarized in the Figure. In brief, pre-CAR-T components include educational videos and dynamic calendars to assist patients with coordinating logistics. Post-CAR-T components include app-based prompts to input body temperature daily, an electronic Immune Effector Cell-Associated Encephalopathy (eICE) screening tool for ICANS that can be administered by caregivers, and a patient-specific long-term survivorship care plan. Global app components include an 'Appointment Companion' to facilitate patient-provider discussions during appointments as well as a digital CAR-T wallet card to convey key health-related information to other healthcare providers. We plan to investigate the "Companion for CAR-T" app through a pilot study of 20 patients receiving commercially available CAR-T therapies for any hematologic malignancy at our institution. Co-primary endpoints include (1) app feasibility, defined as the percentage of patients who access all 5 core modules shown in the Figure at least once; and (2) app acceptability, defined as the percentage of patients who agree that the app was helpful during their experience with CAR-T therapy. Secondary endpoints include the incidence of fevers or eICE deficits recorded via the app. Exploratory endpoints include longitudinal trends in patient-reported outcomes such as emotional distress at each clinic visit. DISCUSSION: If feasibility and acceptability of the "Companion for CAR-T" app are demonstrated through this pilot study, we plan to launch a multicenter randomized Phase 2 study of this mHealth tool versus usual care to assess its effect on perceived stress and decisional conflict. Other important steps for our group include the translation of app content into different languages and the provision of tablet computing devices for patients who do not own smartphones. Once validated and expanded in these aforementioned ways, potential strengths of the "Companion for CAR-T" app include its ability to be personalized easily with information specific to individual CAR-T therapies, malignancies, and centers. Figure 1 Figure 1. Disclosures Banerjee: Sanofi: Consultancy; SparkCures: Consultancy; Pack Health: Research Funding. Sykes: Patient Discovery Solutions, Inc.: Current Employment. Shah: Amgen: Consultancy; Indapta Therapeutics: Consultancy; Sutro Biopharma: Research Funding; Sanofi: Consultancy; Teneobio: Research Funding; Precision Biosciences: Research Funding; Poseida: Research Funding; Karyopharm: Consultancy; Janssen: Research Funding; GSK: Consultancy; Kite: Consultancy; Nektar: Research Funding; Oncopeptides: Consultancy; CSL Behring: Consultancy; Bluebird Bio: Research Funding; BMS/Celgene: Research Funding; CareDx: Consultancy. Andreadis: Incyte: Honoraria; Roche: Current equity holder in publicly-traded company, Ended employment in the past 24 months; GenMAB: Research Funding; Merck: Research Funding; Novartis: Research Funding; Epizyme: Honoraria; Crispr Therapeutics: Research Funding; Atara: Consultancy, Honoraria; Karyopharm: Honoraria; TG Therapeutics: Honoraria; Kite: Honoraria; BMS/Celgene: Research Funding. Martin: Amgen: Research Funding; GlaxoSmithKline: Consultancy; Oncopeptides: Consultancy; Janssen: Research Funding; Sanofi: Research Funding. Shore: Patient Discovery Solutions, Inc.: Current Employment. Sodowick: Patient Discovery Solutions, Inc.: Current Employment. Wong: Amgen: Consultancy; Genentech: Research Funding; Fortis: Research Funding; Janssen: Research Funding; GloxoSmithKlein: Research Funding; Dren Biosciences: Consultancy; Caelum: Research Funding; BMS: Research Funding; Sanofi: Membership on an entity's Board of Directors or advisory committees.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii361-iii361
Author(s):  
Brandon Brown ◽  
Paolo Tambaro ◽  
Kris Mahadeo ◽  
Sajad Khazal ◽  
Priti Tewari ◽  
...  

Abstract INTRODUCTION Immune effector cell associated neurotoxicity (ICANS) and cytokine release syndrome (CRS) are potentially life-threatening complications associated with immune effector cell (IEC) therapies. We characterize ICANS in pediatric and adult young adolescent (AYA) patients receiving IEC therapy at our institution. METHODS We reviewed clinical characteristics and severity (based on ASTCT Consensus Criteria) in pediatric and AYA patients with IEC products from 2018–2019 at MDACC. RESULTS Nine patients, median age 15.5 (range: 3–25) years received chimeric antigen receptor (CART) IEC therapy. Four (44%) developed ICANS within median of 8 (range: 3–27) days of CAR T cell infusion and median 6 (range: 2–7) days after CRS. Primary diagnoses were pre-B cell acute lymphoblastic leukemia (8) and mediastinal large B-cell lymphoma (1). Median CRS and ICANS severity grade was 2 (range 1–4). Symptoms included altered mental status (AMS) (5), seizure (1), aphasia (2), impaired ability to write a standard sentence (4). Neuroimaging did not correlate to ICANS symptoms or severity. EEG was performed in 3 and 1 had background slowing correlating with aphasia. CSF was obtained in two revealing lymphocytosis. All received prophylactic anti-epileptic medication and tocilizumab for concomitant CRS. Three received steroids. CONCLUSION ICANS may present in almost half of pediatric patients within one week of receiving CART products associated with CRS. CAR-T trafficking into the CSF may explain pleocytosis in the CSF. Prospective studies may clarify. Impaired ability to write a standard sentence and the Cornell Assessment of Pediatric Delirium (CAPD) may be early indicators of ICANS in pediatric/AYA patients.


2022 ◽  
Vol 10 (1) ◽  
pp. e003847
Author(s):  
Marc Wehrli ◽  
Kathleen Gallagher ◽  
Yi-Bin Chen ◽  
Mark B Leick ◽  
Steven L McAfee ◽  
...  

In addition to remarkable antitumor activity, chimeric antigen receptor (CAR) T-cell therapy is associated with acute toxicities such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Current treatment guidelines for CRS and ICANS include use of tocilizumab, a monoclonal antibody that blocks the interleukin (IL)-6 receptor, and corticosteroids. In patients with refractory CRS, use of several other agents as third-line therapy (including siltuximab, ruxolitinib, anakinra, dasatinib, and cyclophosphamide) has been reported on an anecdotal basis. At our institution, anakinra has become the standard treatment for the management of steroid-refractory ICANS with or without CRS, based on recent animal data demonstrating the role of IL-1 in the pathogenesis of ICANS/CRS. Here, we retrospectively analyzed clinical and laboratory parameters, including serum cytokines, in 14 patients at our center treated with anakinra for steroid-refractory ICANS with or without CRS after standard treatment with tisagenlecleucel (Kymriah) or axicabtagene ciloleucel (Yescarta) CD19-targeting CAR T. We observed statistically significant and rapid reductions in fever, inflammatory cytokines, and biomarkers associated with ICANS/CRS after anakinra treatment. With three daily subcutaneous doses, anakinra did not have a clear, clinically dramatic effect on neurotoxicity, and its use did not result in rapid tapering of corticosteroids; although neutropenia and thrombocytopenia were common at the time of anakinra dosing, there were no clear delays in hematopoietic recovery or infections that were directly attributable to anakinra. Anakinra may be useful adjunct to steroids and tocilizumab in the management of CRS and/or steroid-refractory ICANs resulting from CAR T-cell therapies, but prospective studies are needed to determine its efficacy in these settings.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4816-4816
Author(s):  
Urwat Til Vusqa ◽  
Palash Asawa ◽  
Maitreyee Rai ◽  
Yazan Samhouri ◽  
Prerna Mewawalla ◽  
...  

Abstract Introduction Chimeric antigen receptor (CAR) T-cell therapy has revolutionized the treatment paradigm for patients with relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLBCL) and other hematologic malignancies. However, its use is associated with serious adverse effects including cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Severe ICANS can present with aphasia, mutism, somnolence, seizures, signs of increased intracranial pressure and rarely cerebral edema. Corticosteroids (CS) and IL-6 inhibitors are first line treatment for CRS and ICANS. Prolonged CS use has been associated with decreased over-all survival in CAR T-cell treated patients. Data on effective treatments for CART T-cell induced neurotoxicity is limited, especially in steroid-refractory ICANS. Blood-brain barrier (BBB) disruption and infiltration of myeloid and immune effector cells into the central nervous system are implicated in the pathogenesis of ICANS. This likely explains the role of intrathecal chemotherapy, which has been described in literature for treatment of steroid-refractory ICANS. Here, we report the outcomes of two patients with refractory DLBCL who developed severe ICANS after receiving axicabtagene ciloleucel (axi cel) and treated with intrathecal (IT) chemotherapy. Case Presentation Our first case is of a 66 year old male with diagnosis of R/R DLBCL, who was treated with R-CHOP, followed by R-GemOx, with no response then received axi cel. Patient developed grade 2 CRS and grade 1 ICANS (National Cancer Institute Common Terminology Criteria for Adverse Effects v4.03) on day +2 post infusion, treated with tocilizumab and dexamethasone with good response initially. While tapering dexamethasone on day +5, he developed grade 3 CRS and grade 3 ICANS. Brain MRI did not show any intracranial abnormality and EEG showed no seizure activity. Lumbar puncture (LP) was done on day +7 and showed opening pressure of 32 cm H2O, and 12 lymphocytes. He was started on IV solumedrol and tocilizumab was resumed. CRS improved while neurotoxicity progressed to grade 4 prompting intubation and mechanical ventilation on day +8. On day +9, patient received intrathecal methotrexate 12 mg and hydrocortisone 50 mg. On day +12, neurotoxicity improved to grade 1 and patient was extubated on day +13. Steroid taper stopped on +17. Despite disease response, patient remained hospitalized at day +45 for deconditioning and vocal cord paralysis related to a lengthy hospital stay and intubation. He was eventually discharged, however passed away on day +49 from complications of prolonged hospitalization. Our second case is of a 69 year old female with a diagnosis of R/R DLBCL with CNS involvement, treated with RCHOP x6 followed by salvage chemotherapy with refractory disease, She then received axi cel. Patient developed grade 1 CRS on day +4, treated with tocilizumab and dexamethasone, and patient responded well. On day +9, she developed grade 2 CRS and grade 3 ICANS. At that time, dexamethasone was switched to pulse dose solumedrol and tocilizumab was continued. CT head showed no acute intracranial abnormality and EEG did not show any epileptiform activity. LP showed opening pressure of 21, and 84 lymphocytes. On day +11, patient's CRS resolved, however ICANS developed to grade 4 and patient received 12 mg intrathecal methotrexate and hydrocortisone 50 mg for steroid-refractory ICANS. The very next day, patient showed significant neurological improvement. Steroid taper was initiated and patient's ICANS resolved on day +16. MRI brain showed decrease in size of nodular enhancement along periventricular white matter and left occipital area corresponding to treatment response. She was discharged on day +28 and continues to do well one year out of axi cel infusion Conclusion Our abstract adds to the sparse literature about the use IT chemotherapy in cases with severe ICANS. It also highlights its importance as an alternative potential therapy to high doses and prolonged courses of corticosteroids which is associated with increased morbidity and mortality. Steroid-refractory ICANS has limited treatment options and further evaluation of the use of IT chemotherapy in large scale studies is warranted. Disclosures Kahn: Abbvie: Research Funding, Speakers Bureau; Astrazeneca: Research Funding, Speakers Bureau; Beigene: Research Funding, Speakers Bureau; Epizyme: Research Funding, Speakers Bureau; Genetech: Research Funding, Speakers Bureau; GSK: Speakers Bureau; Karyopharm: Speakers Bureau; Kite: Speakers Bureau; Morphosys: Speakers Bureau; Sanofi: Speakers Bureau; SeaGen: Speakers Bureau. Fazal: Agios: Consultancy, Honoraria, Speakers Bureau; AMGEN: Consultancy, Honoraria, Speakers Bureau; Bristol Myers Squibb: Consultancy, Honoraria, Speakers Bureau; Gilead Sciences: Consultancy, Honoraria, Speakers Bureau; Glaxo Smith Kline: Consultancy, Honoraria, Speakers Bureau; Incyte: Consultancy, Honoraria, Speakers Bureau; Janssen Oncology: Consultancy, Honoraria, Speakers Bureau; Jazz Pharmaceuticals: Consultancy, Honoraria, Speakers Bureau; Karyopharm Pharmaceuticals: Consultancy, Honoraria, Speakers Bureau; Novartis: Consultancy, Honoraria, Speakers Bureau; Sanofi Genzyme: Consultancy, Honoraria, Speakers Bureau; Stemline Therapeutics: Consultancy, Honoraria, Speakers Bureau; Taiho Pharmaceuticals: Consultancy, Honoraria, Speakers Bureau; Takeda: Consultancy, Honoraria, Speakers Bureau. Lister: Oncology Analytics: Other: Academic Board.


2021 ◽  
pp. 668-678
Author(s):  
Rahul Banerjee ◽  
Nina Shah ◽  
Adam P. Dicker

Chimeric antigen receptor T-cell (CAR-T) therapy is a paradigm-shifting immunotherapy modality in oncology; however, unique toxicities such as cytokine release syndrome (CRS) and immune effector cell–associated neurotoxicity syndrome limit its ability to be implemented more widely in the outpatient setting or at smaller-volume centers. Three operational challenges with CAR-T therapy include the following: (1) the logistics of toxicity monitoring, ie, with frequent vital sign checks and neurologic assessments; (2) the specialized knowledge required for toxicity management, particularly with regard to CRS and immune effector cell–associated neurotoxicity syndrome; and (3) the need for high-quality symptomatic and supportive care during this intensive period. In this review, we explore potential niches for digital innovations that can improve the implementation of CAR-T therapy in each of these domains. These tools include patient-facing technologies and provider-facing platforms: for example, wearable devices and mobile health apps to screen for fevers and encephalopathy, electronic patient-reported outcome assessments–based workflows to assist with symptom management, machine learning algorithms to predict emerging CRS in real time, clinical decision support systems to assist with toxicity management, and digital coaching to help maintain wellness. Televisits, which have grown in prominence since the novel coronavirus pandemic, will continue to play a key role in the monitoring and management of CAR-T–related toxicities as well. Limitations of these strategies include the need to ensure care equity and stakeholder buy-in, both operationally and financially. Nevertheless, once developed and validated, the next-generation implementation of CAR-T therapy using these digital tools may improve both its safety and accessibility.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii116-ii116
Author(s):  
Brandon Brown ◽  
Kris Mahadeo ◽  
Sajad Khazal ◽  
Demetrios Petropoulos ◽  
Priti Tewari ◽  
...  

Abstract INTRODUCTION Immune effector cell associated neurotoxicity (ICANS) and cytokine release syndrome (CRS) are potentially life-threatening complications associated with immune effector cell (IEC) therapies. We characterize ICANS in pediatric and adult young adolescent (AYA) patients receiving IEC therapy at our institution. METHODS We reviewed clinical characteristics and severity (based on ASTCT Consensus Criteria) in pediatric and AYA patients who received IEC products from 2018–2019 at MDACC. RESULTS Nine patients, median age 15.5 (range: 3–25) years received chimeric antigen receptor (CART) IEC therapy. Four (44%) developed ICANS within median of 8 (range: 3–27) days of CAR T cell infusion and median 6 (range: 2–7) days after CRS. Primary diagnoses were pre-B cell acute lymphoblastic leukemia (8) and mediastinal large B-cell lymphoma (1). Median CRS and ICANS severity grade was 2 (range 1–4). Symptoms included altered mental status (AMS) (5), seizure (1), aphasia (2), impaired ability to write a standard sentence (4). Neuroimaging did not correlate to ICANS symptoms or severity. EEG was performed in 3 and 1 had background slowing correlating with aphasia. CSF was obtained in two revealing lymphocytosis. All received prophylactic anti-epileptic medication and tocilizumab for concomitant CRS. Three received steroids. CONCLUSION ICANS may present in almost half of pediatric patients within one week of receiving CART products associated with CRS. CAR-T trafficking into the CSF may explain pleocytosis in the CSF. Prospective studies may clarify. Impaired ability to write a standard sentence and the Cornell Assessment of Pediatric Delirium (CAPD) may be early indicators of ICANS in pediatric/AYA patients.


Sign in / Sign up

Export Citation Format

Share Document