scholarly journals Relapse with BCR-ABL1 Elevation in Chronic Myeloid Leukemia after Progression to Multiple Myeloma from Monoclonal Gammopathy of Undetermined Significance with a Persistent KMT2D Mutation

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4608-4608
Author(s):  
Xiaofei Xu ◽  
Lan Zhang ◽  
Shengjie Wang ◽  
Keyi Jin ◽  
Chen DAN ◽  
...  

Abstract Chronic myeloid leukemia (CML) and monoclonal gammopathy of undetermined significance (MGUS) are two different hematologic malignancies, the former arising from the myeloid cell lineage, and the latter arising from plasma cells. The concurrent diagnosis of CML and MGUS progression to multiple myeloma (MM) in one patient is an extremely rare event. A 59-year-old male was diagnosed with CML and MGUS with no discomfort in August 2012. Bone marrow (BM) aspiration suggested chronic myelogenous leukemia in chronic phase and perhaps myeloproliferative with 6.5% mature plasma cells (Figure 1A). FISH analysis detected that the BCR-ABL1 expression was 130%. And Next-generation sequencing (NGS) of BM showed: ASXL1 , KMT2D , SPEN , BRINP3 , ANKRD26 , PLCG1 , CUX1 were mutated (Figure 2I). The patient started oral imatinib 400 mg per day and achieved a complete cytogenetic response at 3 months. In September 2019, his IgG levels were 2,790 mg/dl (Figure 2J and serum immunofixation electrophoresis revealed monoclonal (M) protein of IgG-Lambda type (Figure 1E). BM aspiration revealed 9.5% plasma cell infiltration, including 6% mature plasma cells and 3.5% proplasmacyte (Figure 1C and 2H). Flow cytometry in BM showed 6.3% plasmacytoma and abnormal cell expressing CD38+CD138+CD56+CD117+clambda+ (Figure 1F). BM biopsy showed hematopoietic hyperplasia with abnormal growth of immature cells (Figure 1B). Fluorescent in situ hybridization (FISH) was negative. Mutations of KMT2D, SPEN, BRINP3, ANKRD26, PLCG1, CUX1, and ZMYM3 still existed(Figure 2I). In January 2020, examination of a new BM aspiration revealed that mature plasma cells were 3% and plasmablast and proplasmacyte were 4.5% (Figure 2H). In February 2020, he stopped IM therapy with undetectable BCR-ABL1 copies because he met the requirement of stopping TKI therapy . In March 2020, IgG levels were 3520 mg/dl and serum immunofixation electrophoresis still revealed monoclonal (M) protein of IgG-Lambda type. His BM aspiration demonstrated 13.5% plasma cells in April 2020 (Figure 2B and 2H). Flow cytometry in BM showed 6.44% (Figure 2F). BM biopsy showed extremely increased proliferation with abnormal growth of abnormal cells (Figure 2A). FISH demonstrated the presence of t(4;14)(p16;q32)(IGH/FGFR3) , 13q14 deletion(RB-1) and 13q14.3 (D13S319) (Figure 2C, 2D and 2E). The patient was diagnosed as MM (IgGλ type, D-S stage IA; ISS stage II) . BCR-ABL1 copies were still not detected at this point (Figure 2G). The patient continued his follow-up treatment of MM without chemotherapy.However, in June 2020, he was considered to have a molecular relapse with 0.2013% BCR-ABL1 copies in the peripheral blood (Figure 2G). NGS showed that the variant allele fractions of KMT2D, SPEN, BRINP3, ANKRD26, PLCG1, CUX1, and ZMYM3 mutations were similar to former . He restarted 400 mg daily IM therapy and BCR-ABL1 copies were undetectable againafter one month therapy (Figure 2G). BM aspiration revealed that the percentage of plasma cells increased to 25.5% in August 2020 (Figure 2H). Then the patient was started on treatment for ISS stage II standard risk myeloma with ID regimen: ixazomib 4 mg on days 1, 8 , 15 and dexamethasone 20 mg on days 1, 8, 15 , 22 in 28-day cycles. After 6 cycles , the patient got VGPR. BM aspiration demonstrated 13% plasma cells (Figure 2H). And he continued to receive myeloma treatment and imatinib . BCR-ABL1 were <MR4.5 (Figure 2G). Our research indicated that KMT2D mutation may make MGUS progress to MM with NK cells functional defects and then promote the recurrence of BCR-ABL1. Co-existence of these two diseases is rare, therefore, additional investigations are warranted. Acknowledgment:The research was supported by the Public Technology Application Research Program of Zhejiang, China (LGF21H080003), the Key Project of Jinhua Science and Technology Plan, China (2020XG-29 and 2020-3-011), the Academician Workstation of the Fourth Affiliated Hospital of the Zhejiang University School of Medicine (2019-2024), the Key Medical Discipline of Yiwu, China (Hematology, 2018-2020) and the Key Medical Discipline of Jinhua, China (Hematology, 2019-2021). Correspondence to: Dr Jian Huang, Department of Hematology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine. N1 Shangcheng Road. Yiwu, Zhejiang, Peoples R China. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4779-4779
Author(s):  
Harris V.K. Naina ◽  
Robert Kyle ◽  
Thomas M. Habermann ◽  
Samar Harris ◽  
Fernando G. Cosio ◽  
...  

Abstract Background: Monoclonal gammopathy of undetermined significance (MGUS) is reported in 3 to 5 percent of population, with the prevalence increasing with advancing age. Patients with MGUS are at increased risk for progression to multiple myeloma or other plasma cell dyscrasias. There is a paucity of information on clinical outcomes of patients with MGUS undergoing renal transplantation. A retrospective study was performed to determine wether MGUS is a contraindication to renal transplantation. Methods: Data was collected from both the kidney transplant and MGUS database. The diagnosis of MGUS was made on the basis of either serum protein electrophoresis (SPEP) or immunofixation after excluding multiple myeloma, amyloidosis and monoclonal immunoglobulin deposition disease. Results: Between 1977 and 2004, 3518 patients underwent kidney transplantation of whom 23 patients had a preexisting monoclonal gammopathy of undetermined significance (MGUS). Fourteen (61%) of these patients were males. The median age at the time of transplant was 59 ±12 years. Ten patients (43.5%) had IgG Kappa (GK), 7 (30.4%) had IgG Lambda (GL), 2 (8.7%) had IgA Lambda (AL), 1 (4.3%) had IgA Kappa (AK), 2 (8.7%) had IgM Lambda (ML). One patient had a biclonal gammopathy GL and ML. Patients were monitored with either SPEP or immunofixation for median duration of 1542 days after transplantation. Thirteen patients had either no change or stable monoclonal protein, 6 had a decrease in their paraprotein level. Two patients had a mild increase in their paraprotein. Two patients with GK developed into biclonal gammopathy (GK and AK). The median follow up of this cohort after the renal transplant was 1783 days. Twelve (52%) patients remained alive at the time of the study. A patient with GK prior to the transplant who underwent kidney transplantation twice developed a biclonal gammopathy and was found to have increased plasma cells (20%) in bone marrow after 14 years. On follow up for 6 years, his M-protein remained stable. Another patient was found to have 17% plasma cells around the time of kidney transplantation. He had a stable M-protein at follow-up, but underwent a stem cell transplant for recurrent immunotactoid glomerulonephritis. Two (9%) patients developed more than 15% plasma cells in their bone marrow with a stable M-protein. None of the patients with a preexisting MGUS evolved into multiple myeloma. Conclusion: In this small study, the presence of MGUS prior to kidney transplantation did not appear to have increased the incidence of multiple myeloma post transplant. Therefore, MGUS by itself should not be considered as an absolute contraindication for renal transplantation.


2005 ◽  
Vol 23 (24) ◽  
pp. 5668-5674 ◽  
Author(s):  
Shaji Kumar ◽  
S. Vincent Rajkumar ◽  
Robert A. Kyle ◽  
Martha Q. Lacy ◽  
Angela Dispenzieri ◽  
...  

Purpose Monoclonal gammopathy of undetermined significance (MGUS) progresses to multiple myeloma or another related plasma cell disorder (PCD) at a rate of approximately 1% per year. Identification of patients with MGUS at high risk of progression will allow development of preventive strategies. We studied the prognostic value of circulating plasma cells (PCs) in patients with MGUS to predict progression. Patients and Methods Patients were eligible for this retrospective analysis if they were seen at the Mayo Clinic between 1984 and 1997, were diagnosed with MGUS, and had an analysis of the peripheral blood for circulating PCs by the slide-based immunofluorescence method. Patients were observed for progression to another PCD. Results Three hundred twenty-five patients were eligible and 63 (19%) had circulating PCs. Patients with circulating PCs were twice as likely (hazard ratio, 2.1) to experience progression to another PCD (most commonly myeloma), compared with those without circulating PCs (95% CI, 1.1 to 4.3; P = .03). In patients with circulating PCs, the median progression-free survival was 138 months compared with a median not yet reached for those without circulating PCs (P = .028). The median overall survival also was shorter for those with circulating PCs. Other factors with prognostic value were high levels of M protein and non–immunoglobulin G heavy-chain type. Conclusion The presence of circulating PCs, especially when combined with other known prognostic factors such as M protein concentration and immunoglobulin isotype, identify a group of individuals with MGUS at higher risk of progression to overt multiple myeloma.


Author(s):  
Constantine S. Mitsiades ◽  
Kenneth C. Anderson ◽  
Paul G. Richardson

Multiple myeloma (MM) is a clonal accumulation of malignant plasma cells (PCs) that typically produce a monoclonal immunoglobulin (Ig) (or fragment thereof), termed M-protein, detectable in the serum or urine. Despite recent advances in its treatment (median overall survival is now 5–7 years, compared to 2–3 years for patients diagnosed 10 or more years ago), MM remains incurable. Monoclonal gammopathy of undetermined significance (MGUS) is a premalignant condition in which a clonal population of plasma cells accumulates in the bone marrow (BM). MGUS is asymptomatic and does not otherwise meet diagnostic criteria for MM, but it can develop into MM, other plasma cell dyscrasia, or lymphoproliferative disease with a transformation rate of approximately 2% per year.


1998 ◽  
Vol 101 (2) ◽  
pp. 287-295 ◽  
Author(s):  
Hamdi I. A. Sati ◽  
Jane F. Apperley ◽  
Mike Greaves ◽  
John Lawry ◽  
Roger Gooding ◽  
...  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5180-5180
Author(s):  
Jian Huang ◽  
Jingxia Jin ◽  
Shuna Luo ◽  
Xingnong Ye

Acute myeloid leukemia(AML) originates from the abnormal clonal proliferation of myeloblast which often combined with clinical symptoms. Cytogenetic and molecular abnormalities are frequent in AML patience. To date, the driver genes for leukemia remain largely undiscovered. Monoclonal immunoglobulinemia is a group of diseases caused by excessive proliferation of plasma cells or immunoglobulin-producing lymphoid plasma cells and B lymphocytes. It can develop into malignant plasma cell disease. Herein, we report a AML patient was concomitant with monoclonal immunoglobulinemia, the patient was also accompanied by BCOR mutation and TLS-ERG fusion gene. A 55-year-old married female was admitted into our hospital due to repeated edema for 3 weeks. On admission, peripheral blood counts: PLT142×10^9/L, HB77g/L↓, WBC35.2×10^9/L.Bone marrow examination showed the mononuclear cell system proliferated actively, and the primitive infantile monocytes accounted for 86%. Cell morphology suggested M5b(Figure1A ). Fusion gene screening in bone marrow revealed that TLS-ERG expression. Immunophenotype of bone marrow cell:Abnormal myeloid primitive cells accounted for 96.39% of the nuclear cells,expressCD33, CD13, CD123, CD34, CD9, MPO(Figure 1D). Karyotype analysis of bone marrow cells showed in Figure 1B. Thus, AML was diagnosed. Next-generation DNA sequencing technology showed that BCOR (51.7%),PLCG1(49.9%),DIS3(48.4%),BRAF(51.6%), JAK2(45.1%) ,JAK3(49.0%) were mutated. Meanwhile, we found that Peripheral blood immunofixation electrophoresis showed that Gamma region is seen with a monoclonal light chain lambda component((Figure 1C.).Then, the patient underwent one cycle of IA(Idabisine hydrochloride 10mg d1-4, cytarabine 0.075g q12h d1-7). Twenty-five after chemotherapy onset, bone marrow examination showed that primitive and immature monocytes accounted for 3%. Chromosome become normal. Minimal residual disease(MRD):0.01%. The disease reached complete remission(CR). Peripheral blood immunofixation electrophoresis turned negative. Fusion gene detection showed that TLS-ERG turned negative. BCOR mutation was not detected by Next-generation DNA sequencing. Mutations of PLCG1,DIS3,BRAF,JAK2,JAK3 still exist. Monoclonal immunoglobulinemia and AML are both clonal diseases, but originated from different clones. This case has both malignant clones of granulocyte stem cell and malignant clones of B line, so it is worthy of discussion. By comparing CR before and after we found that while the patient's M protein turned negative, the TLS-ERG fusion gene and BCOR gene mutation also disappeared. The TLS-ERG fusion gene is formed by the rearrangement of TLS and ERG genes on chromosomes 16 and 21. The current study holds that the expression of this fusion gene indicates rapid disease progression and poor prognosis. BCOR mutations can be found in AML and often coincide with DNMT3 gene mutations, suggesting it may affect the occurrence of leukemia through epigenetics. BCOR is a newly discovered corepressor of BCL-6, which can play a supporting role when BCOR combines with DNA; when BCOR is overexpressed, it can enhance the inhibition of BCL-6. BCL-6 is highly expressed in tumor cells,it encodes transcriptional repressors which are required for the formation of germinal center and may affect apoptosis. We thinked that the monoclonal immunoglobulinemia of this patient may caused by the BCOR abnormal expression which increased the inhibitory effect of BCL-6 and affect the apoptosis of B cells, and B cells continue to secrete immunoglobulin. BCOR mutations are associated with poor prognosis. The patient with TLS-ERG fusion gene which is a poor prognosis gene.However, the BCOR gene mutation site is a non-hot spot mutation which has few clinical studies. Whether the BCOR gene mutation results in the combination of the two diseases requires further study. Acknowledgment:The research was supported by fundings of the public technology research projects of Yiwu,China (2016-S-05), the key medical discipline of Yiwu,China(Hematology,2018-2020),and the academician workstation of the Fourth Affiliated Hospital of Zhejiang University School of Medicine. Correspondence to: Dr Jian Huang, Department of Hematology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine. N1 Shangcheng Road. Yiwu, Zhejiang, Peoples R China. Email: [email protected] Figure 1 Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1999 ◽  
Vol 93 (1) ◽  
pp. 300-305 ◽  
Author(s):  
Martha Q. Lacy ◽  
Kathleen A. Donovan ◽  
Julie K. Heimbach ◽  
Gregory J. Ahmann ◽  
John A. Lust

Abstract We investigated whether interleukin-1β (IL-1β) is differentially expressed in plasma cells from monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM) patients because IL-1β appears to play a major role in the development of lytic bone lesions, the major clinical feature distinguishing MGUS from myeloma. In situ hybridization (ISH) for IL-1β was performed using bone marrow aspirates from 51 MM, 7 smoldering MM, 21 MGUS, and 5 normal control samples. Using the ISH technique IL-1β mRNA was detectable in the plasma cells from 49 of 51 patients with active myeloma and 7 of 7 patients with smoldering myeloma. In contrast, 5 of 21 patients with MGUS and 0 of 5 normal controls had detectable IL-1β message. Bone lesions were present in 40 of the 51 MM patients analyzed, and all 40 patients had IL-1β mRNA by ISH. These results show that greater than 95% of MM patients but less than 25% of MGUS patients are positive for IL-1β production. In the future, continued follow-up of IL-1β positive and negative MGUS patients should determine whether aberrant expression of plasma cell IL-1β is predictive of those MGUS patients that will eventually progress to active myeloma.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4876-4876
Author(s):  
Ola Landgren ◽  
Vincent Rajkumar ◽  
Ruth Pfeiffer ◽  
Robert Kyle ◽  
Jerry Katzmann ◽  
...  

Abstract Abstract 4876 Background Recent studies have found obesity to be associated with a 1.5- to 2-fold elevated risk of developing multiple myeloma. This is of particular interest given that elevated levels of the pro-inflammatory cytokine interleukin (IL)-6 have been found in obese persons, and, at the same time, IL-6 has well-known proliferative and anti-apoptotic effects on monoclonal plasma-cells. Also insulin-like growth factors (IGFs) have been proposed to play a role since obesity often causes insulin resistance, which in turn modulates the bioavailability of IGF-1 Similar to IL-6, prior studies have found IGF-1 to have both growth and survival effects on monoclonal plasma-cells. Based on these facts, we have speculated that obesity might increase the risk of the multiple myeloma precursor monoclonal gammopathy of undetermined significance (MGUS), or, alternatively, that obesity may increase the risk for transformation from MGUS to multiple myeloma. We conducted the first large screening study designed to assess the association between obesity and MGUS among almost 2,000 African-American and Caucasian women. Methods We included 1000 African-American and 996 Caucasian women (age 40-79, median 48 years) from the Southern Community Cohort Study to assess MGUS risk in relation to obesity. Per our sampling strategy, about 50% of the participants were obese. Medical record-abstracted weight and height (measured on the day of study enrollment) and self-reported values had very high concordance (Pearson correlation >0.95). Serum samples from all subjects were analyzed by electrophoresis performed on agarose gel; samples with a discrete or localized band were subjected to immunofixation. Using logistic regression models, we estimated odds ratios (ORs) as measures of risk. Results Among all study participants, 39 (3.9%) African-Americans and 21 (2.1%) Caucasians were found to have MGUS, yielding a 1.9-fold (95%CI 1.1-2.3; p=0.021) higher risk of MGUS among African-Americans (vs. Caucasians). On multivariate analysis, we found obesity (OR=1.8, 95%CI 1.03-3.1; p=0.039), African-American race (OR=1.8, 95%CI 1.04-3.1; p=0.037), and increasing age (quartiles: ≥55 vs. <43 years) (OR=2.5, 95%CI 1.1-5.7; p=0.028) to be independently associated with an excess risk of MGUS. Another interesting finding was that the distribution of the monoclonal immunoglobulin isotype usage among African-American and Caucasian women was significantly different (p=0.007). Their respective rates were: IgG in 79.5% and 71.3 %; IgA in 7.7% and 0%; IgM in 7.7% and 19%; biclonal in 5.1% and 4.7%; and triclonal in 0% and 4.7%. The distribution of serum light-chain types between the two races was also significantly different (P=0.003, chi-square test): kappa in 53.8% and 47.6%; lambda in 43.6% and 42.8%; biclonal 2.6% and 4.7%; and triclonal in 0% and 4.7%. Conclusions Our finding that MGUS is twice as common among obese (vs. non-obese) women, and independent of race, supports the hypothesis that obesity is etiologically linked to myelomagenesis and may have public health impact. The observed 2-fold excess of MGUS among African-Americans (vs. Caucasians) of similar socio-economic status, coupled with other recent studies supports a role for susceptibility genes as the cause for racial disparity in the prevalence of MGUS. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Enrique Bergón ◽  
Elena Miravalles ◽  
Elena Bergón ◽  
Isabel Miranda ◽  
Marta Bergón

AbstractThe predictive power of serum κ/λ ratios on initial presentation of immunoglobulin G (IgG) or IgA monoclonal component was studied to differentiate between monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM) patients. The retrospective study involved 145 patients clinically diagnosed with monoclonal gammopathy of undetermined significance or multiple myeloma, who had serum M-protein IgG <35g/L or IgA <20g/L at M-protein detection. Serum light chains κ and λ were measured by fixed-time nephelometry. Test performance indices, predictive values and likelihood ratios were calculated according to the Weissler recommendation. MM patients were considered as diseased and MGUS patients as non-diseased in order to estimate the performance characteristics of serum κ/λ ratios. There was a statistically significant difference in κ/λ ratios distribution between both groups of patients, in both M-protein κ-type (Mann-Whitney U=168, p<0.001) and in M-protein λ-type (Mann-Whitney U=143, p<0.001). Negative likelihood ratios at threshold levels of 0.6 and 4.2 were 2.17- and 3.32-fold greater, respectively, than positive likelihood ratios, so that the predictive power of a serum κ/λ ratio within these limits is better in ruling out (negative predictive power) than ruling in disease (positive predictive power). The post-test characteristics of a serum κ/λ ratio interval between 0.6 and 4.2 in discriminating MGUS from MM in our geographic population were: sensitivity 0.96 (0.93–0.99 95%CI); specificity 0.70 (0.63–0.77); positive predictive value 0.68 (0.64–0.73); negative predictive value 0.96 (0.94–0.99); likelihood ratios (+)LR 3.23 (2.68–4.04); and (−)LR 17.16 (11.00–63.00). Thus, serum M-protein with a κ/λ ratio between 0.6 and 4.2 increases the posterior probability of MGUS from 0.60 to 0.96 in asymptomatic patients, for whom only monitoring may be suggested when the serum κ/λ ratio is within these limits.


2021 ◽  
Vol 8 (5) ◽  
Author(s):  
Hammad Z ◽  
◽  
Hernandez E ◽  
Tate S ◽  
◽  
...  

Monoclonal Gammopathy of Undetermined Significance (MGUS) is a condition in which M protein, an abnormal monoclonal immunoglobulin, is present in the blood at a nonmalignant level. Specifically, it is defined by: blood serum M protein concentration <3 g/dL (<30 g/L), <10% plasma cells in the bone marrow, and no evidence of end organ damage [1,2]. Evidence of end organ damage includes hypercalcemia, renal insufficiency, anemia, and bone lesions. These are indicative of MGUS progression and which can be attributed to the monoclonal plasma cell proliferative process [3]. MGUS occurs in 3% of the general population older than 50 years. Incidence increases with age and varies with sex with higher rates observered in males than females [1,4]. MGUS is the most common plasma cell disorder, with 60% of patients that present to the Mayo Clinic with a monoclonal gammopathy being diagnosed with MGUS [3]. While it is typically an asymptomatic condition, it is premalignant disorder to other monoclonal gammopathies. Multiple Myeloma (MM) is almost always preceded by MGUS and the majority of patients will have detectable levels of M protein for at least 5 years prior to MM diagnosis [5,6]. MGUS also precedes immunoglobulin light chain (AL) amyloidosis and Waldenstrom Macroglobulinemia (WM) and tends to progress to disorders at a fixed but unrelenting rate of 1% per year [4].


Blood ◽  
1996 ◽  
Vol 88 (1) ◽  
pp. 289-296 ◽  
Author(s):  
D Billadeau ◽  
B Van Ness ◽  
T Kimlinger ◽  
RA Kyle ◽  
TM Therneau ◽  
...  

The blood of most patients with active multiple myeloma (MM) contains cells related to the bone marrow tumor. However, identifying clonal cells in the blood of patients with monoclonal gammopathy of undetermined significance (MGUS) has been difficult. In this study, we analyzed blood mononuclear cells (BMNCs) from 16 patients with MGUS, 2 with amyloidosis, 8 with smoldering MM (SMM), 2 with indolent MM (IMM), and 15 with active MM using three different methods to detect and quantitate clonal cells, ie, immunofluorescence microscopy (IM) for monoclonal plasma cells, three-color flow cytometry (FC) for CD38(+)CD45- CD45(dim) cells, and the allele-specific oligonucleotide polymerase chain reaction (ASO-PCR). Using ASO-PCR, we were able to detect clonal cells in the blood in 13 of 16 patients with MGUS, 2 of 2 with amyloid, 6 of 8 with SMM, 2 of 2 with IMM, and 13 of 15 with MM. In 9 of the 13 patients with MGUS with blood involvement, the number of clonal cells was very small ( < 0.04% of the BMNCs). The median percentage of clonal cells as determined by ASO-PCR was 0.02 for MGUS, 0.02 for SMM, and 0.24 for MM. Clonal plasma cells or CD38+CD45- CD45(dim) cells were identified by IM or FC in 6 of 16 MGUS patients, 4 of 8 with SMM, and 11 of 15 with MM. In all cases in which IM or FC detected clonal cells, the ASO-PCR was positive. This study shows that, by using ASO-PCR, clonal cells can be found at very low levels in the blood in most patients with MGUS. However, the number of clonal cells in the blood of MGUS patients is less than those with overt MM (P = .006). In contrast to MGUS, patients with active MM are more likely to have identifiable clonal circulating plasma cells (P = .05).


Sign in / Sign up

Export Citation Format

Share Document