scholarly journals Distinct Senescent Bone Marrow Microenvironment in Therapy-Related Myeloid Neoplasms

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2585-2585
Author(s):  
Monika M Kutyna ◽  
Chung Hoow Kok ◽  
Sharon Paton ◽  
Dimitrios Cakouros ◽  
Agnieszka Arthur ◽  
...  

Abstract Background: Therapy-related myeloid neoplasms (tMN) is a second haematological malignancy associated with distinct molecular profile (Singhal et al Leukemia 2019) and dismal outcome. tMN is believed to arise from cytotoxic DNA damage to haematopoietic stem cells (HSC). Although, cytotoxic therapy (CT) can damage bone marrow (BM) microenvironment, its role in tMN pathogenesis remains unknown. Aim and Methods: We performed comprehensive multiomic profiling (transcriptomic, cytokine quantification, phenotype, DNA damage) of BM stromal cells (BMSC) from (i) tMN patients previously exposed to CT. Critically, we compared it with (ii) patients with MN and a history of another cancer without CT (pMN+Ca), (iii) primary MN (pMN) and (iv) age-matched controls (Healthy). Results: To decipher microenvironmental changes induced by CT from that of MN and age-related changes, whole transcriptome analysis was performed on BMSC isolated from tMN and compared with all control cohorts. Twenty-nine genes were differentially expressed in tMN compared to Healthy (FDR < 0.1, P < 0.05). Unexpectedly 146 genes were differentially expressed in tMN BMSC compared to other MN and interestingly, ~90% of differentially expressed genes were involved in senescence. Moreover, functional enrichment and GO analysis suggest DNA damage repair, cell cycle regulation, and senescence pathways were deregulated in tMN BMSC (Fig. 1A). Genes such as CDKN1A (a critical cyclin dependent kinase inhibitor orchestrating cell cycle arrest), TNFRSF10D (senescence associated), and FGF-2 (a key player in cell proliferation) were highly expressed (P < 0.001). These findings were validated by demonstrating other features of senescence in tMN BMSC: (i) enlarged/flattened cellular morphology, (ii) decreased cell proliferation and colony-forming potential, (iii) increased β-galactosidase expression, and (iv) defective DNA damage repair (Fig. 1Bi-iv). Interestingly, within the tMN cohort there was no correlation between latency period (the interval between completion of CT until tMN diagnosis) and senescence, indicating that higher senescence is persistent even after several years of CT. Senescence associated secretory phenotype (SASP), a mixture of inflammatory cytokines and chemokines such as IL-7, IL-1β, IL-13, and IL-6, were significantly higher in conditioned media of tMN BMSC (9/14, 64%) (Fig. 1 Bv). Despite reduced proliferation and senescence, transcriptome analysis showed enrichment of metabolic and energy production pathways in tMN BMSC compared to controls. TXNRD1, regulator of glucose and lipid metabolism, and BNIP3, a negative regulator of mitochondrial potential, were highly expressed in tMN BMSC (P < 0.001). These findings were further verified by Seahorse bioenergetic analyses. The overall energetic rate (as assessed by ATP production) was higher in tMN compared to Healthy BMSC (P = 0.002), with higher proportion of ATP generated by glycolysis (77% versus 35.5%) (Fig. 1C). Adipogenic differentiation potential of senescent BMSC is not well known. Transcriptome analysis showed reduced expression of genes involved in adipogenesis in tMN BMSC. This was further validated by two independent in vitro assays showing reduced adipogenesis (Fig. 1D). Interestingly, PNPLA2, a catalyst of the first lipolysis reaction, were significantly de-regulated in tMN BMSC (P < 0.001). The key difference in tMN and other MN is prior exposure to CT. Hence, we hypothesise that prior CT leads to long-term irreversible damage to BM microenvironment and induced senescence, which in turn propagate senescence in surrounding normal cells and promote clonal abnormalities in HSC. Other possibility is that tMN clone can induce these changes in BM microenvironment. To decipher it, we assessed serial BMSC. We observed aberrant stroma proliferation and bi-differentiation capacity, following CT, well before the diagnosis of tMN. Conclusions: By multiple orthogonal indices, our results show that tMN BMSC lie on an extreme trajectory away from normal and typical MN, with massive defect in senescence and distinct metabolic phenotype. Importantly, prior CT leads to long-term irreversible damage to the BM microenvironment which potentially contributes to tMN pathogenesis. Together, these data provide a valuable resource for future strategies to delay or prevent the onset of tMN and assist in marrow regeneration in patients undergoing CT. Figure 1 Figure 1. Disclosures Hughes: BMS: Research Funding; Novartis: Honoraria, Research Funding; Takeda: Honoraria. Hiwase: Novartis: Membership on an entity's Board of Directors or advisory committees; AbbVie: Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 37-38
Author(s):  
Monika M Kutyna ◽  
Li Yan A Wee ◽  
Sharon Paton ◽  
Dimitrios Cakouros ◽  
Agnieszka Arthur ◽  
...  

Introduction: Therapy-related myeloid neoplasms (t-MN) are associated with extremely poor clinical outcomes in otherwise long-term cancer survivors. t-MN accounts for ~20% of cases of myeloid neoplasms and is expected to rise due to the increased use of chemotherapy/radiotherapy (CT/RT) and improved cancer survivorship. Historically, t-MN was considered a direct consequence of DNA damage induced in normal hematopoietic stem cells (HSC) by DNA damaging cytotoxics. However, these studies have largely ignored the bone marrow (BM) microenvironment and the effects of age and concurrent/previous cancers. Aim: We performed an exhaustive functional study of mesenchymal stromal cells (MSC) obtained from a comparatively large cohort of t-MN patients and carefully selected control populations to evaluate the long-term damage induced by cytotoxic therapy to BM microenvironment and its impact on malignant and normal haematopoiesis. Methods: Four different cohorts were used: (1) t-MN, in which myeloid malignancy occurred after CT/RT for a previous cancer (n=18); (2) patients with multiple cancer and in which a myeloid neoplasm developed following an independent cancer which was not treated with CT/RT (MC-MN; n=10); (3) primary MN (p-MN; n=7) untreated and without any prior cancer or CT/RT; (4) age-matched controls (HC; n=17). Morphology, proliferation, cellular senescence, differentiation potential and γH2AX DNA damage response was performed. Stem/progenitor supportive capacity was assessed by co-culturing haematopoietic stem cells on MSC feeder-layer in long-term culture initiating assay (LTC-IC). Cytokine measurements were performed using 38-plex magnetic bead panel (Millipore) and RNA sequencing libraries were prepared with Illumina TruSeq Total RNA protocol for 150bp paired-end sequencing on a NextSeq500 instrument. Functional enrichment analysis was performed using EnrichR software. Results: MSC cultured from t-MN patients were significantly different from HC, p-MN and MC-MN MSC according to multiple parameters. They exhibited aberrant morphology consisting of large, rounded and less adhesive cells compared to typical spindle-shaped morphology observed with controls. MSC from myeloid neoplasm also showed impaired proliferation, senescence, osteo- and adipogenic differentiation with t-MN MSC showing the greatest differences. DNA repair was dramatically impaired compared to p-MN and HC (Fig.1A). Importantly, these aberrant t-MN MSC were not able to support normal or autologous in vitro long-term haematopoiesis (Fig.1B). The biological characteristic and poor haematopoietic supportive capacity of MSC could be "cell-intrinsic" or driven by an altered paracrine inflammatory microenvironment. Interestingly, several inflammatory cytokines were higher in t-MN compared with marrow interstitial fluid obtained from p-MN patients (Fig.1Ci) and many of these including Fractalkine, IFNα2, IL-7 and G-CSF were also significantly higher in t-MN MSC conditional media (Fig.1Cii). Together, this data suggest that t-MN microenvironment is distinct from p-MN with paracrine production of pro-inflammatory milieu that may contribute to poor HSC supportive capacity. Preliminary whole transcriptome analysis revealed differential gene expression between t-MN and HC (Fig.1Di) and p-MN MSC. Importantly, the deregulated genes play critical role in cell cycle, DNA damage repair, and cellular senescence pathways explaining phenotypical characteristic of t-MN MSC (Fig.1Dii). Moreover CXCL12 expression, a key regulator of haematopoiesis, was significantly lower in t-MN compared to HC (p=0.002) and p-MN MSC (p=0.009), thus explaining poor HSC supportive capacity. The key difference between the p-MN, MC-MN and t-MN is prior exposure to CT/RT. To study this we obtained MSC from two t-MN patients for whom we had samples at the time of their primary cancer, post high-dose chemotherapy and at the time of t-MN. MSC displayed aberrant proliferation and differentiation capacity after high-dose cytotoxic therapy (2 to 4 years prior to developing t-MN) and remained aberrant at t-MN diagnosis (Fig.1E). Conclusions: BM-MSC from t-MN patients are significantly abnormal compared with age-matched controls and typical myeloid neoplasm. Importantly, prior CT/RT leads to long-term irreversible damage to the BM microenvironment which potentially contributes to t-MN pathogenesis. Disclosures Hughes: Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Hiwase:Novartis Australia: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1487-1487
Author(s):  
Tatjana Meyer ◽  
Nikolaus Jahn ◽  
Anna Dolnik ◽  
Peter Paschka ◽  
Verena I. Gaidzik ◽  
...  

Abstract Introduction BRCA1/BRCA2-containing complex 3 (BRCC36) is a Lys63-specific deubiquitinating enzyme (DUB) involved in DNA damage repair. Mutations in BRCC36 have been identified in 2-3% of patients with myelodysplastic syndromes (MDS) and secondary AML (sAML). The role of BRCC36 mutations in de novo AML and their impact on DNA damage-inducing cytotoxic chemotherapy sensitivity is not clear. Aim We aimed to determine the incidence of BRCC36 mutations in AML and their impact on outcome and drug sensitivity in vitro. Methods We analyzed the entire coding region of BRCC36 for mutations in 191 AML cases with t(8;21) (q22;q22.1) and 95 cases with inv(16) (p13.1q22) using a customized targeted sequencing panel. Data for de novo AML was derived from The Cancer Genome Atlas Research Network (TCGA) data set (NEJM 2013). Lentiviral CRISPR/Cas9 was used to inactivate BRCC36 in t(8;21)-positive AML cell lines - Kasumi-1 and SKNO-1 - and murine hematopoietic stem and progenitor cells (LSKs). Knockout was confirmed by a cleavage assay as well as Western blot. AML1-ETO-9a was expressed by a retroviral vector. Cell lines and LSK cells were treated with different concentrations of doxorubicin or cytarabine and their viability was assessed seven days post treatment. DNA damage was assessed through phospho-γH2AX staining using flow-cytometry. Results BRCC36 mutations were identified in 7 out of 191 patients (3.7%) with t(8;21) AML and none of 95 patients with inv(16). In the TCGA data set one out of 200 patients (0.5%) with de novo AML had a BRCC36 mutation. This patient had a complex karyotype and would be considered as secondary AML with myelodysplastic-associated changes according to the 2016 WHO classification. Six of the 7 mutations were missense or nonsense mutations that were predicted to be deleterious to BRCC36 function. One mutation affected a splice site at exon 6, resulting in an impaired splicing capability. With intensive standard chemotherapy all patients with BRCC36 mutations achieved a complete remission and had an estimated relapse-free and overall survival of 100% after a median follow up of 4.2 years. Given its role in DNA damage repair, we hypothesized that BRCC36 inactivation sensitizes AML cells to DNA-damage inducing drugs. In order to test this, we generated BRCC36 knockout Kasumi-1 and SKNO-1 cell lines using CRISPR-Cas9. BRCC36 inactivation had no impact on cell growth on either of the cell lines. However, we found that BRCC36 knockout cells were significantly more sensitive to doxorubicin as compared to the parental cells with normal BRCC36. This was accompanied by a significant increase in DNA damage as assessed by phospho-γH2AX in BRCC36 knockout vs control cells after doxorubicin treatment. In contrast, BRCC36 inactivation had no impact on cytarabine sensitivity. We next assessed drug sensitivity in primary murine leukemic cells expressing AML1-ETO-9a. Again, inactivation of BRCC36 resulted in a significant higher sensitivity to doxorubicin but not cytarabine. Conclusion We found BRCC36 to be recurrently mutated in t(8;21)-positive AML Inactivation of BRCC36 was associated with impairment of the DNA damage repair pathway and thus higher sensitivity to DNA damage-inducing chemotherapy. This might be also reflected by the favorable clinical outcome of patients with BRCC36 mutated t(8;21)-positive AML, a finding which has to be confirmed in a large patient cohort. Disclosures Paschka: Pfizer: Membership on an entity's Board of Directors or advisory committees; Takeda: Other: Travel support; Novartis: Membership on an entity's Board of Directors or advisory committees, Other: Travel support, Speakers Bureau; Otsuka: Membership on an entity's Board of Directors or advisory committees; Sunesis: Membership on an entity's Board of Directors or advisory committees; Jazz: Speakers Bureau; Amgen: Other: Travel support; Janssen: Other: Travel support; Bristol-Meyers Squibb: Other: Travel support, Speakers Bureau; Celgene: Membership on an entity's Board of Directors or advisory committees, Other: Travel support, Speakers Bureau; Astellas: Membership on an entity's Board of Directors or advisory committees, Travel support; Astex: Membership on an entity's Board of Directors or advisory committees; Agios: Membership on an entity's Board of Directors or advisory committees. Bullinger:Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Pfizer: Speakers Bureau; Bayer Oncology: Research Funding; Sanofi: Research Funding, Speakers Bureau; Janssen: Speakers Bureau; Bristol-Myers Squibb: Speakers Bureau; Amgen: Honoraria, Speakers Bureau; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Döhner:Novartis: Consultancy, Honoraria, Research Funding; Jazz: Consultancy, Honoraria; Jazz: Consultancy, Honoraria; AROG Pharmaceuticals: Research Funding; Janssen: Consultancy, Honoraria; Celator: Consultancy, Honoraria; Pfizer: Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Astex Pharmaceuticals: Consultancy, Honoraria; AROG Pharmaceuticals: Research Funding; Janssen: Consultancy, Honoraria; Seattle Genetics: Consultancy, Honoraria; Sunesis: Consultancy, Honoraria, Research Funding; Astellas: Consultancy, Honoraria; Astex Pharmaceuticals: Consultancy, Honoraria; Bristol Myers Squibb: Research Funding; Pfizer: Research Funding; Agios: Consultancy, Honoraria; Novartis: Consultancy, Honoraria, Research Funding; AbbVie: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Agios: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria; Celator: Consultancy, Honoraria; Astellas: Consultancy, Honoraria; Bristol Myers Squibb: Research Funding; Seattle Genetics: Consultancy, Honoraria; Celgene: Consultancy, Honoraria, Research Funding; Sunesis: Consultancy, Honoraria, Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 940-940
Author(s):  
Zuzana Tothova ◽  
John M. Krill-Burger ◽  
Daniel S. Day ◽  
J. Erika Haydu ◽  
Brian J. Abraham ◽  
...  

Abstract Recurrent somatic mutations in core components and modulators of the cohesin ring - a multimeric protein complex that forms a ring structure around DNA and provides spatial genome organization - have been identified across multiple cancer types, including acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS), where they are associated with poor overall survival. Cohesin proteins are involved in sister chromatid cohesion, chromatin organization into loops, transcriptional activation, and DNA damage repair. The mechanisms underlying clonal expansion of these driver mutations are unknown and no therapies have selective efficacy in cohesin-mutant cancers. We sought to determine the effects of mutations in the most frequently mutated cohesin subunit, STAG2, on cohesin complex composition using immunoprecipitation followed by quantitative mass spectrometry (IP-MS), genetic dependencies of STAG2-mutant cells by genome-wide CRISPR screening, and mutant cohesin association with chromatin using chromatin immunoprecipitation followed by sequencing (ChIP-Seq). Our goal was to understand how these mutations contribute to cellular transformation and to identify possible therapeutic targets. Applying IP-MS in AML cell lines engineered with different STAG2 mutations, we identified and validated a switch from STAG2- to its paralog STAG1-containing cohesin complexes. In addition, we observed changes in the interaction of the mutant cohesin complex with proteins involved in DNA repair and replication, including PARP1, and RNA-mediated interaction with RNA splicing machinery, including SF3B family members. We next hypothesized that these cohesin-dependent alterations could lead to shifts in genetic dependencies. Using genome-scale CRISPR-Cas9 screens, we identified preferential dependency of STAG2-mutant cells on STAG1, consistent with our proteomics studies. We also found a striking concordance between additional cellular processes highlighted by IP-MS experiments and observed increased dependency of STAG2-mutant cells on DNA damage repair and mRNA processing. Therefore, STAG2 mutations lead to changes in cohesin complex structure and alter interactions with proteins involved in DNA damage, replication, and RNA modification, which become genetic dependencies in this context. Prompted by this concordance, we evaluated DNA replication, DNA damage and splicing in cohesin-mutant cells. We observed a 4-fold increase in replication fork stalling in STAG2-mutant cells, which was associated with accumulation of double strand DNA breaks and activation of the ATR and ATM DNA damage checkpoints. STAG2-mutant cells demonstrated ~100-fold increased sensitivity to the PARP inhibitor talazoparib, which was consistent across models of other cohesin-mutant subunits. In addition, cohesin-mutant cells showed aberrant splicing and increased sensitivity to treatment with SF3B1 inhibitors E7107 and H3B-8800. In aggregate, genetic or pharmacologic perturbation of DNA damage repair or splicing created a synthetic vulnerability for cohesin-mutant cells in vitro and in vivo. Finally, we explored how STAG1-containing complexes alter cohesin-mediated genome compartmentalization in cohesin-mutant cells. Using ChIP-Seq, we observed that STAG2 loss leads to a global decrease in cohesin binding to chromatin, including at sites of insulated neighborhood boundaries, with subsequent gene expression changes. Loss of cohesin binding was associated with increased enhancer activity and super-enhancer expansion in STAG2-mutant cells. In addition, we identified changes in the co-localization of the mutant cohesin complex with super-enhancer enriched factors, DNA damage repair and splicing machinery. These findings are consistent with a model in which wild type and mutant cohesin complexes, defined by their unique composition and patterns of chromatin binding and architecture, have differential abilities to maintain chromatin organization as it relates to spatial organization of super-enhancers, coactivators and transcription factors, as well as DNA damage repair and splicing machinery. Perturbation of any of these components, which have been recently proposed to form phase-separated nuclear bodies, creates vulnerabilities that may be exploited therapeutically with existing drugs in patients with cohesin-mutated malignancies. Disclosures Abraham: Syros Pharmaceuticals: Equity Ownership. Seiler:H3 Biomedicine: Employment. Buonamici:H3 Biomedicine: Employment. D'Andrea:Intellia Therapeutics: Consultancy; Cedilla Therpeutics: Consultancy, Equity Ownership; EMD-Serono: Consultancy, Research Funding; Sierra: Consultancy, Research Funding; Ideaya: Consultancy, Equity Ownership; Lilly: Consultancy, Research Funding; Formation Biologics: Consultancy. Young:Omega Therapeutics: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Syros Pharmaceuticals: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Camp4 Therapeutics: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4112-4112
Author(s):  
Charline Moulin ◽  
Romain Morizot ◽  
Thomas Remen ◽  
Hélène Augé ◽  
Florian Bouclet ◽  
...  

Introduction: About 2 to 10% of patients (pts) diagnosed with Chronic Lymphocytic Leukemia (CLL) develop diffuse large B-cell lymphoma (DLBCL, so-called Richter transformation (RT)) over long-term follow-up. The outcomes of pts with RT are variable and poorly understood and there is no consensus on the best therapeutic approach. The aim of this study was to analyze the clinical characteristics, outcomes and factors predictive of survival in a large series of RT from the French Innovative Leukemia Organization (FILO). Methods: Biopsy-confirmed RT (limited to DLBCL and excluding Hodgkin lymphoma) diagnosed from 2001 to 2018 were identified from eight FILO centers. Clinical and biological characteristics of CLL and RT at diagnosis, including cytogenetics, clonal relation with the pre-existing CLL, Epstein-Barr virus (EBV) status, cell of origin (COO) analyzed by immunohistochemistry and RT score (Tsimberidou AM et al, J Clin Oncol, 2006) were analyzed as well as treatment and outcomes. Overall survivals (OS) were defined as time from CLL and RT diagnosis to death from any cause and analyzed using the Kaplan-Meier method. Statistical analyses were performed with SAS version 9.4. Results: A total of 70 CLL pts who developed RT were identified. The median age at CLL diagnosis was 62 years old (range 35-82), and 50 (71.4 %) were male. The median time to transformation was 5.5 years (range 0 to 22 years), with 12 simultaneous diagnosis of CLL and RT. Prior to RT, 20 (29%) pts had not been treated for CLL, 50 received one (n=21) or more (n= 29) line of treatment ; 6 pts had received a novel agent (ibrutinib, idelalisib or venetoclax). The median age at RT diagnosis was 68 years old (range 42-88). All biopsies were centrally reviewed; 38/58 pts (66%) had elevated LDH (>1.5N) ; 35/65 pts (54 %) had bulky disease (≥ 5 cm); 10/54 (18.5%) pts had del(17p) or TP53 mutation ; 9/42 pts (21%) had a complex karyotype (at least 3 abnormalities). The CLL and RT were clonally related in 27/27 (100%) tested pts. COO by Hans algorithm was non germinal center B cell-like (GCB) in 26/28 pts (93%). EBV was positive or detected in 5/40 (12.5%) pts. The median of Ki67 positivity was 70% (range 30% to 100%). The RT score (based at RT diagnosis on ECOG performance status 2-4, LDH >1.5 x normal, platelets<100 x 109/L, tumor size >5 cm and >1 prior therapy for CLL) was : low risk in 17 pts (31%), low-intermediate risk in 10 pts (19%), high-intermediate risk in 14 pts (25%) and high risk in 14 pts (25%). The most common first-line treatment of RT was immunochemotherapy (n=57, 87%) including R-CHOP-like regimen (n=48, 73%). Autologous or allogeneic transplantation was performed for 7 pts (11%). Response to first-line treatment was complete or partial response in 26 pts (40%), and stable disease or progression in 39 pts (60%). After a median follow-up of 8 years, 51/64 pts (80%) have died. The main causes of death were progressive DLBCL (n=36, 71%), infection (n=8, 16%) or progressive CLL (n=2, 4%). The median OS of the cohort from CLL and RT diagnosis (Figure 1) were 7.8 years and 9.5 months, respectively. In univariate analysis, patients with TP53 disruption at CLL stage, low platelets count, elevated LDH, elevated beta2-microglobulin, high ECOG score, high RT score, EBV positivity and absence of response to first-line RT treatment had worse OS. The ECOG score, platelets count and TP53 disruption remain significant in multivariate Cox-regression. Last, we compared the clinical and biological parameters of two Richter groups defined as: (i) short-term survivors (<12 months, n = 34) and (ii) long-term survivors (>48 months, n = 18). Long survival was significantly associated with elevated platelets count, low LDH, low ECOG, low RT score and response to RT first-line treatment. Discussion: The clinical outcomes of RT patients is poor and novel treatment options are needed. However, a group of long-term survivors was identified, characterized by elevated platelets count, low LDH, low ECOG, low RT score and response to immunochemotherapy. Disclosures Leblond: Astra Zeneca: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Gilead: Honoraria, Speakers Bureau; Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Abbvie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Amgen: Honoraria, Speakers Bureau. Thieblemont:Roche: Honoraria, Research Funding; Gilead: Honoraria; Novartis: Honoraria; Kyte: Honoraria; Janssen: Honoraria; Celgene: Honoraria; Cellectis: Membership on an entity's Board of Directors or advisory committees. Cymbalista:Janssen: Honoraria; Gilead: Honoraria; AstraZeneca: Honoraria; Sunesis: Research Funding; Roche: Research Funding; Abbvie: Honoraria. Guièze:Abbvie: Honoraria; Janssen: Honoraria; Gilead: Honoraria; Roche: Honoraria. Broseus:Janssen: Honoraria; Gilead: Honoraria; Novartis: Research Funding. Feugier:gilead: Honoraria, Research Funding, Speakers Bureau; janssen: Honoraria, Research Funding, Speakers Bureau; abbvie: Honoraria, Research Funding, Speakers Bureau; roche: Honoraria, Research Funding, Speakers Bureau.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1226-1226
Author(s):  
Hassan Awada ◽  
Reda Z. Mahfouz ◽  
Jibran Durrani ◽  
Ashwin Kishtagari ◽  
Deepa Jagadeesh ◽  
...  

T-cell large granular lymphocyte leukemia (T-LGLL) is a clonal proliferation of cytotoxic T lymphocytes (CTL). T-LGLL mainly manifest in elderly and is associated with autoimmune diseases including rheumatoid arthritis (RA), B cell dyscrasias, non-hematologic cancers and immunodeficiency (e.g., hypogammaglobulinemia). LGL manifestations often resemble reactive immune processes leading to the dilemmas that LGLs act like CTL expansion during viral infections (for example EBV associated infectious mononucleosis). While studying a cohort of 246 adult patients with T-LGLL seen at Cleveland Clinic over the past 10 years, we encountered 15 cases of overt T-LGLL following transplantation of solid organs (SOT; n=8) and hematopoietic stem cell transplantation (HSCT; n=7). Although early studies reported on the occurrence of LGL post-transplant, these studies focused on the analysis of oligoclonality skewed reactive CTL responses rather than frank T-LGLL. We aimed to characterize post-transplantation T-LGLL in SOT and HSCT simultaneously and compare them to a control group of 231 de novo T-LGLL (cases with no history of SOT or HSCT). To characterize an unambiguous "WHO-defined T-LGLL" we applied stringent and uniform criteria. All cases were diagnosed if 3 out of 4 criteria were fulfilled, including: 1) LGL count >500/µL in blood for more than 6 months; 2) abnormal CTLs expressing CD3, CD8 and CD57 by flow cytometry; 3) preferential usage of a TCR Vβ family by flow cytometry; 4) TCR gene rearrangement by PCR. In addition, targeted deep sequencing for STAT3 mutations was performed and charts of bone marrow biopsies were reviewed to exclude other possible conditions. Diagnosis was made 0.2-27 yrs post-transplantation (median: 4 yrs). At the time of T-LGLL diagnosis, relative lymphocytosis (15-91%), T lymphocytosis (49-99%) and elevated absolute LGL counts (>500 /µL; 93%) were also seen. Post-transplantation T-LGLL were significantly younger than de novo T-LGLL, (median age: 48 vs. 61 yr; P<.0001). Sixty% of post-transplantation T-LGLL patients were males. Fifteen% of patients had more cytogenetic abnormalities compared to de novo T-LGLL, had a lower absolute LGL count (median: 4.5 vs. 8.5 k/µL) and had less frequent neutropenia, thrombocytopenia and anemia (27 vs. 43%, 33 vs. 35% and 20% vs. 55%; P=.01). TCR Vb analysis identified clonal expansion of ≥1 of the Vb proteins in 60% (n=9) of the patients; the remaining 40% (n=6) of the cases had either a clonal process involving a Vb protein not tested in the panel (20%; n=3) or no clear expansion (20%; n=3). Signs of rejection were observed in 20% (n=3/15) and GvHD in 13% (n=2/15) of the patients. Post-transplantation, 27% of cases presented with neutropenia (absolute neutrophil count <1.5 x109/L; n=4), 33% with thrombocytopenia (platelet count <150 x109/L; n=5) and 25% with anemia (hemoglobin <10 g/dL; n=3). T-LGLL evolved in 10 patients (67%; 10/15) despite IST including cyclosporine (n=5), tacrolimus (n=4), mycophenolate mofetil (n=5), cyclophosphamide (n=1), anti-thymocyte globulin (n=1), and corticosteroids (n=6). Lymphadenopathy and splenomegaly were seen in 13% (n=2) and 33% (n=5) of the patients. Other conditions observed were MGUS (20%; n=3) and RA (7%; n=1). Conventional cytogenetic showed normal karyotype in 89% (n=11, tested individuals 13/15). Somatic STAT3 mutations were identified in 2 patients. Sixty% of cases (n=9) were seropositive for EBV when tested at different time points after transplant. Similarly, 53% (n=8) were seropositive for CMV, of which, 5 were positive post-transplantation and 3 pre-/post-transplantation. The complexity of T-LGLL expansion post-transplantation might be due to several mechanisms including active viral infections, latent oncogenic viral reactivation and graft allo-antigenic stimulation. However, in our cohort graft rejection or GvHD was encountered in a few patients (2 allo-HSCT recipients). Autoimmune conditions were present in 50% of SOT recipients (n=4/ 8, including RA, ulcerative colitis, systemic lupus erythematosus). Some of our patients also had low immunoglobulin levels. Overt EBV (post-transplant lymphoproliferative disorder) and CMV reactivation was diagnosed in only 27% (4/15) of the patients. In sum we report the long term follow up of a cohort of T-LGLL and emphasize the expansion of T-LGLL post-transplant highlighting the difficulty in assigning one unique origin of LGLL. Disclosures Hill: Genentech: Consultancy, Research Funding; Takeda: Research Funding; Celegene: Consultancy, Honoraria, Research Funding; Kite: Consultancy, Honoraria; Abbvie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Seattle Genetics: Consultancy, Honoraria; Amgen: Research Funding; Pharmacyclics: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Gilead: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; TG therapeutics: Research Funding; AstraZeneca: Consultancy, Honoraria. Majhail:Atara Bio: Consultancy; Mallinckrodt: Honoraria; Nkarta: Consultancy; Anthem, Inc.: Consultancy; Incyte: Consultancy. Sekeres:Syros: Membership on an entity's Board of Directors or advisory committees; Millenium: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees. Maciejewski:Alexion: Consultancy; Novartis: Consultancy.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 218-218
Author(s):  
Jil Rotterdam ◽  
Margot Thiaucourt ◽  
Juliana Schwaab ◽  
Andreas Reiter ◽  
Sebastian Kreil ◽  
...  

Abstract Background: In general, patients with hematological diseases are predisposed to develop infections. Severe COVID-19 infection associated with high mortality is more likely in these patient cohorts compared to the general population. Due to immune defects related to the primary disease and/or to immunosuppressive treatment regimes, vaccination efficacy may be reduced in patients with hematological diseases. So far, data on this area are limited. Aim: To evaluate vaccination-related antibody response to BNT162b2, mRNA-1273, and ChADOx1 in patients with hematological disorders. Patients and methods: In this interim analysis of a prospective, observational single-center study, we report antibody levels at least 2 weeks after COVID-19 vaccination. A FDA/CE approved electrochemiluminescent assay (ECLIA) (Elecsys®, Roche, Mannheim, Germany) was used to quantify antibodies, pan Ig (including IgG) against the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. The assay has a measurement range of 0.4 to 250 U/mL, with a concentration ≥0.8 U/ml considered as positive. Data were analyzed for patients without detection of anti-N (nucleocapsid) SARS-CoV-2 antibody (i.e., without having passed SARS-CoV-2 infection). All tests were performed according to the manufacturer's instructions in an accredited laboratory at the University Hospital Mannheim. Results: Between February 2021 and July 2021, a total of 175 patients with hematological diseases were included in this study. The median age was 66 years (range 21-90 years), and 81 (46.3%) were female. The antibody levels were measured at least 14 days (median, 58 days) after the 2 nd vaccination. The patients were vaccinated with BNT162b2 (BioNTech, n=134), mRNA-1273 (Moderna, n=19), ChADOx1 (AstraZeneca, n=12), or got the first vaccination with BNT162b2 and the second with ChADOx1 (n=10). Overall, 145/175 (82.9%) were diagnosed with a malignant hematological disease (myeloid neoplasms, n=108; lymphoid neoplasms, n=37) and 30/175 with a non-malignant hematological disease (autoimmune disease, n=24; benign, n=6). 124 patients (70.1%) were on active therapy, and 51 patients (29.1%) were previously treated or treatment naïve. Correlation to specific therapies is ongoing and will be presented. In general, vaccination-related antibody response was positive (≥0.8 U/mL) in 148/175 (84.6%) patients with a median level of 208.6 U/mL (range 0.8-250.00) and negative (&lt;0.8 U/mL) in 27/175 (15.4%) patients. The distribution of the negative cohort regarding the disease subgroups were as followed: myeloid neoplasms 7/27 (25.9%), lymphoid neoplasms 16/27 (59.3%), non-malignant hematological disease 4/27 (14.8%). Within the negative cohort, 21/27 (77.8%) were treated on active therapy, 6/27 (22.2%) were previously treated or treatment naïve. In myeloid neoplasms, patients with classical myeloproliferative neoplasm (MPN) had the highest negative result for antibodies with 4/7 (57.1%) followed by myelodysplastic syndrome (MDS) 2/7 (28.6%). Interestingly, all patients with chronic myeloid leukemia (CML) had a measurable immune response. In lymphoid neoplasms, patients with low-grade non-hodgkin lymphoma (NHL) (predominately chronic lymphocytic leukemia, CLL) had the highest negative antibody result 13/16 (81.3%) followed by high-grade NHL 4/8 (50%; predominately diffuse large b-cell lymphoma, DLBCL). In non-malignant hematological diseases, only patients with autoimmune diseases had a negative result. Conclusion: A remarkable group of patients with hematological disease were measured with no or low immune response after 2 nd COVID-vaccination, especially those with low-grade NHL, MDS and autoimmune disease. It seems that the percentage of patients with MPN and low response is less critical. No problems appeared in CML patients. Further explorations are needed with focus on potential risk of COVID infections despite full vaccination: The potential of 3 rd booster vaccination should be explored within clinical trials. Disclosures Reiter: AOP Orphan Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: travel support; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel expenses, Research Funding; Celgene/BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: travel support; Incyte: Membership on an entity's Board of Directors or advisory committees, Other: Travel expenses; Blueprint Medicines: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel expenses; Abbvie: Membership on an entity's Board of Directors or advisory committees; Deciphera: Membership on an entity's Board of Directors or advisory committees, Other: Travel expenses. Kreil: Novartis: Research Funding. Hofmann: Amgen: Honoraria; BMS: Honoraria; Novartis: Honoraria. Jawhar: Takeda: Honoraria, Other: Travel support; Blueprint Medicines: Honoraria; Stemline: Consultancy, Honoraria; Celgene: Other: Travel support; Novartis: Consultancy, Honoraria, Other: Travel support, Speakers Bureau. Saussele: Roche: Honoraria; Pfizer: Honoraria; Incyte: Honoraria, Research Funding; BMS: Honoraria, Research Funding; Novartis: Honoraria, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1589-1589
Author(s):  
Fabian Frontzek ◽  
Marita Ziepert ◽  
Maike Nickelsen ◽  
Bettina Altmann ◽  
Bertram Glass ◽  
...  

Introduction: The R-MegaCHOEP trial showed that dose-escalation of conventional chemotherapy necessitating autologous stem cell transplantation (ASCT) does not confer a survival benefit for younger patients (pts) with high-risk aggressive B-cell lymphoma in the Rituximab era (Schmitz et al., Lancet Oncology 2012; 13, 1250-1259). To describe efficacy and toxicity over time and document the long-term risks of relapse and secondary malignancy we present the 10-year follow-up of this study. Methods: In the randomized, prospective phase 3 trial R-MegaCHOEP younger pts aged 18-60 years with newly diagnosed, high-risk (aaIPI 2-3) aggressive B-cell lymphoma were assigned to 8 cycles of CHOEP (cyclophosphamide, doxorubcine, vincristine, etoposide, prednisone) or 4 cycles of dose-escalated high-dose therapy (HDT) necessitating repetitive ASCT both combined with Rituximab. Both arms were stratified according to aaIPI, bulky disease, and center. Primary endpoint was event-free survival (EFS). All analyses were calculated for the intention-to-treat population. This follow-up report includes molecular data based on immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH) for MYC (IHC: 31/92 positive [40-100%], FISH: 14/103 positive), BCL2 (IHC: 65/89 positive [50-100%], FISH: 23/111 positive) and BCL6 (IHC: 52/86 positive [30-100%], FISH: 34/110 positive) and data on cell of origin (COO) classification according to the Lymph2CX assay (GCB: 53/88; ABC: 24/88; unclassified: 11/88). Results: 130 pts had been assigned to R-CHOEP and 132 to R-MegaCHOEP. DLBCL was the most common lymphoma subtype (~80%). 73% of pts scored an aaIPI of 2 and 27% an aaIPI of 3. 60% of pts had an initial lymphoma bulk and in 40% more than 1 extranodal site was involved. After a median observation time of 111 months, EFS at 10 years was 57% (95% CI 47-67%) in the R-CHOEP vs. 51% in the R-MegaCHOEP arm (42-61%) (hazard ratio 1.3, 95% CI 0.9-1.8, p=0.228), overall survival (OS) after 10 years was 72% (63-81%) vs. 66% (57-76%) respectively (p=0.249). With regard to molecular characterization, we were unable to detect a significant benefit for HDT/ASCT in any subgroup analyzed. In total, 16% of pts (30 pts) relapsed after having achieved a complete remission (CR). 23% of all relapses (7 pts) showed an indolent histology (follicular lymphoma grade 1-3a) and 6 of these pts survived long-term. In contrast, of 23 pts (77%) relapsing with aggressive DLBCL or unknown histology 18 pts died due to lymphoma or related therapy. The majority of relapses occurred during the first 3 years after randomization (median time: 22 months) while after 5 years we detected relapses only in 5 pts (3% of all 190 pts prior CR). 11% of pts were initially progressive (28 pts) among whom 71% (20 pts) died rapidly due to lymphoma. Interestingly, the remaining 29% (8 pts) showed a long-term survival after salvage therapy (+/- ASCT); only 1 pt received allogeneic transplantation. The frequency of secondary malignancies was very similar in both treatment arms (9% vs. 8%) despite the very high dose of etoposide (total 4g/m2)in the R-MegaCHOEP arm. We observed 2 cases of AML and 1 case of MDS per arm. In total 70 pts (28%) have died: 30 pts due to lymphoma (12%), 22 pts therapy-related (11 pts due to salvage therapy) (9%), 8 pts of secondary neoplasia (3%), 5 pts due to concomitant disease (2%) and 5 pts for unknown reasons. Conclusions: This 10-year long-term follow-up of the R-MegaCHOEP trial confirms the very encouraging outcome of young high-risk pts following conventional chemotherapy with R-CHOEP. High-dose therapy did not improve outcome in any subgroup analysis including molecular high-risk groups. Relapse rate was generally low. Pts with aggressive relapse showed a very poor long-term outcome while pts with indolent histology at relapse survived long-term. Secondary malignancies occurred; however, they were rare with no excess leukemias/MDS following treatment with very high doses of etoposide and other cytotoxic agents. Supported by Deutsche Krebshilfe. Figure Disclosures Nickelsen: Roche Pharma AG: Membership on an entity's Board of Directors or advisory committees, Other: Travel Grants; Celgene: Membership on an entity's Board of Directors or advisory committees, Other: Travel Grant; Janssen: Membership on an entity's Board of Directors or advisory committees. Hänel:Amgen: Honoraria; Celgene: Other: advisory board; Novartis: Honoraria; Takeda: Other: advisory board; Roche: Honoraria. Truemper:Nordic Nanovector: Consultancy; Roche: Research Funding; Mundipharma: Research Funding; Janssen Oncology: Consultancy; Takeda: Consultancy, Research Funding; Seattle Genetics, Inc.: Research Funding. Held:Roche: Consultancy, Other: Travel support, Research Funding; Amgen: Research Funding; Acrotech: Research Funding; MSD: Consultancy; Bristol-Myers Squibb: Consultancy, Other: Travel support, Research Funding. Dreyling:Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: scientific advisory board, Research Funding, Speakers Bureau; Bayer: Consultancy, Other: scientific advisory board, Speakers Bureau; Celgene: Consultancy, Other: scientific advisory board, Research Funding, Speakers Bureau; Mundipharma: Consultancy, Research Funding; Gilead: Consultancy, Other: scientific advisory board, Speakers Bureau; Novartis: Other: scientific advisory board; Sandoz: Other: scientific advisory board; Janssen: Consultancy, Other: scientific advisory board, Research Funding, Speakers Bureau; Acerta: Other: scientific advisory board. Viardot:Kite/Gilead: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Pfizer: Honoraria; F. Hoffmann-La Roche Ltd: Honoraria, Membership on an entity's Board of Directors or advisory committees. Rosenwald:MorphoSys: Consultancy. Lenz:Gilead: Consultancy, Honoraria, Research Funding, Speakers Bureau; AstraZeneca: Consultancy, Honoraria, Research Funding; Agios: Research Funding; Celgene: Consultancy, Honoraria, Research Funding, Speakers Bureau; Bayer: Consultancy, Honoraria, Research Funding, Speakers Bureau; Janssen: Consultancy, Honoraria, Research Funding, Speakers Bureau; Roche: Employment, Honoraria, Research Funding, Speakers Bureau; BMS: Consultancy. Schmitz:Novartis: Honoraria; Gilead: Honoraria; Celgene: Equity Ownership; Riemser: Consultancy, Honoraria.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 9-10
Author(s):  
Piers Blombery ◽  
Ella R Thompson ◽  
Xiangting Chen ◽  
Tamia Nguyen ◽  
Mary Ann Anderson ◽  
...  

Venetoclax (Ven) is an effective element of treatments for chronic lymphocytic leukemia (CLL) with high response rates observed in the upfront and relapsed/refractory (R/R) settings. In addition to inducing apoptosis in CLL cells, Ven also induces apoptosis within normal and malignant myeloid lineage populations (accounting for its efficacy in the treatment of acute myeloid leukemia). We investigated the effects of Ven outside the target tumor compartment in patients (pts) with CLL receiving long-term continuous Ven and make the novel observation of the development of BAX-mutated clonal hematopoiesis in this heavily pre-treated patient group. 92 pts with CLL receiving continuous non time-limited Ven have been treated at our institutions on clinical trials. Of these, 41 had sufficient (&gt;6 mo) follow up (median 70; range 14-95 mo) and suitable samples available for further analysis. 38/41 (93%) pts had received previous treatment with alkylators and/or fludarabine. In order to assess the non-CLL compartment in these 41 pts we identified those with peripheral blood or bone marrow aspirate samples taken during deep response to Ven demonstrating either minimal (&lt;5%) or no CLL involvement by flow cytometry (sensitivity 10-4). We initially performed unique molecular index (UMI)-based targeted next generation sequencing of apoptosis pathway genes as well a panel of 60 genes recurrently mutated in lymphoid and myeloid malignancy. From these 41 pts we identified mutations in the apoptosis effector BAX in samples from 12 (29%). 20 different BAX mutations were observed across these 12 pts at variant allele frequencies (VAF) consistent with their occurrence in the non-CLL compartment. Mutations included frameshift, nonsense, canonical splice site and missense mutations occurring in key structural elements of BAX consistent with a loss-of-function mechanism (Fig 1A). Interestingly, an enrichment of missense and truncating mutations predicted to escape nonsense mediated decay were observed at the C-terminus of the BAX protein affecting the critical α9 helix. Mutations in this region have previously been shown in cell lines to cause aberrant intracellular BAX localization and abrogation of normal BAX function in apoptosis (Fresquet Blood 2014; Kuwana J Biol Chem 2020). For comparison, NGS targeted sequencing for BAX mutations was performed on samples from cohorts of pts with (i) myeloid or lymphoid malignancy (n=80) or (ii) R/R CLL treated with BTK inhibitors (n=15) after a similar extent of preceding chemotherapy. Neither of these cohorts had previous exposure to Ven. BAX mutations were not detected in any samples from these pts. Longitudinal sampling from pts on Ven harboring BAX mutations in the non-CLL compartment was performed to further understand compartment dynamics over time (in 9 pts over 21-93 months of follow up). Multiple pts demonstrated a progressive increase in VAF of single BAX mutations over time to become clonally dominant within the non-CLL compartment and with observed VAFs consistent with their presence in the myeloid compartment. Mutations in other genes implicated in clonal hematopoiesis and myeloid malignancy including ASXL1, DNMT3A, TET2, U2AF1 and ZRSR2 were also detected in these pts samples. Targeted amplicon single cell sequencing (Mission Bio) demonstrated the co-occurrence of clonally progressive BAX mutations within the same clones as mutations in DNMT3A and ASXL1 as well as the existence of further BAX mutations at low VAF outside these dominant clones which remained non-progressive over time (Fig 1B). In addition, fluctuations in the presence and VAF of myeloid-disease associated mutations was noted with Ven exposure. In aggregate these data are consistent with the existence of a selective pressure within the myeloid compartment of these pts and an interplay of BAX with other mutations in determining survival and enrichment of these clones over time with ongoing Ven therapy. In summary, we have observed the development of BAX-mutated clonal hematopoiesis specifically in pts with CLL treated with long-term Ven. These data are consistent with a multi-lineage pharmacological effect of Ven leading to a survival advantage for clones harboring BAX mutations within the myeloid compartment during chronic Ven exposure. Finally, our data support the further investigation of BAX mutations as a potential resistance mechanism in myeloid malignancies treated with Ven. Disclosures Blombery: Invivoscribe: Honoraria; Amgen: Consultancy; Janssen: Honoraria; Novartis: Consultancy. Anderson:Walter and Eliza Hall Institute: Patents & Royalties: milestone and royalty payments related to venetoclax.. Seymour:Celgene: Consultancy, Honoraria, Research Funding; F. Hoffmann-La Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Janssen: Consultancy, Honoraria, Research Funding; AstraZeneca: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Gilead: Consultancy; Mei Pharma: Consultancy, Honoraria; Morphosys: Consultancy, Honoraria; Nurix: Honoraria; AbbVie: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Tam:Janssen: Honoraria, Research Funding; AbbVie: Honoraria, Research Funding; BeiGene: Honoraria. Huang:Servier: Research Funding; Walter and Eliza Hall Institute: Patents & Royalties: milestone and royalty payments related to venetoclax.; Genentech: Research Funding. Wei:Janssen: Honoraria, Other; Walter and Eliza Hall Institute: Patents & Royalties; AMGEN: Honoraria, Other: Advisory committee, Research Funding; Novartis: Honoraria, Research Funding, Speakers Bureau; Astellas: Honoraria, Other: Advisory committee; Pfizer: Honoraria, Other: Advisory committee; Macrogenics: Honoraria, Other: Advisory committee; Abbvie: Honoraria, Other: Advisory committee, Research Funding, Speakers Bureau; Genentech: Honoraria, Other: Advisory committee; Servier: Consultancy, Honoraria, Other: Advisory committee; Celgene: Honoraria, Other: Advisory committee, Speakers Bureau; Astra-Zeneca: Honoraria, Other: Advisory committee, Research Funding. Roberts:Janssen: Research Funding; Servier: Research Funding; AbbVie: Research Funding; Genentech: Patents & Royalties: for venetoclax to one of my employers (Walter & Eliza Hall Institute); I receive a share of these royalties.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3512-3512
Author(s):  
Rachael F. Grace ◽  
D. Mark Layton ◽  
Frédéric Galactéros ◽  
Wilma Barcellini ◽  
Eduard J. van Beers ◽  
...  

Background: Pyruvate kinase (PK) deficiency is a congenital hemolytic anemia caused by mutations in the PKLR gene, leading to a deficiency of the glycolytic enzyme red cell PK (PK-R). Current treatments for PK deficiency are supportive only. Mitapivat (AG-348) is an oral, small-molecule, allosteric PK-R activator in clinical trials for PK deficiency. We previously described results from DRIVE PK, a phase 2, randomized, open-label, dose-ranging study in adults with PK deficiency (N=52) treated with mitapivat for a median of 6 months. Aim: To report long-term safety and efficacy of mitapivat in patients who continue treatment in the ongoing Extension period of the DRIVE PK study (ClinicalTrials.gov NCT02476916). Methods: Patients were eligible to participate if ≥18 years of age with a confirmed diagnosis of PK deficiency (enzyme and molecular testing); baseline hemoglobin (Hb) levels ≤12.0 g/dL (males) or ≤11.0 g/dL (females); and if they had not received more than 3 units of red blood cells in the prior 12 months, with no transfusions in the prior 4 months. Patients were initially randomized 1:1 to receive mitapivat 50 mg twice daily (BID) or 300 mg BID for a 6-month Core period. Dose adjustment was allowed during the Core period based on safety and efficacy. Patients experiencing clinical benefit without concerning safety issues related to mitapivat (investigator discretion) could opt to enter the Extension period, with follow-up visits every 3 months. Safety (adverse events [AEs]) and efficacy (hematologic parameters including Hb) were assessed. Protocol amendments during the Extension period required that (1) patients who did not have an increase from baseline Hb of ≥1.0 g/dL for ≥3 of the prior 4 measurements withdraw from the study, and (2) patients treated with mitapivat doses &gt;25 mg BID undergo a dose taper and continue on the dose that maintained their Hb level no lower than 1.0 g/dL below their pre-taper Hb level. Results: Fifty-two patients enrolled in this study and were treated in the 24-week Core period; 43 (83%) patients completed the Core period and 36 (69%) entered the Extension period. Eighteen patients discontinued from the Extension period: investigator decision (n=8), AEs (n=1), consent withdrawal (n=1), noncompliance (n=1), or other (n=7). Thus, 18 patients, all of whom received ≥29 months of treatment with mitapivat (median 35.6, range 28.7-41.9) have continued treatment. Ten of these 18 patients were male, 11 had a prior splenectomy, and 5 had a history of iron chelation. Median age was 33.5 (range 19-61) years; mean baseline Hb was 9.7 (range 7.9-12.0) g/dL. All patients had ≥1 missense PKLR mutation. The doses (post-taper) at which treatment was continued were (BID): ≤25 mg (n=12), 50 mg (n=5), and 200 mg (n=1). Improvements in Hb levels and markers of hemolysis (reticulocytes, indirect bilirubin, haptoglobin) were sustained (Figure). Among the 18 patients, headache was the most commonly reported AE during both the Extension (n=7, 38.9%) and Core (n=10, 55.6%) periods. Reports of insomnia and fatigue during the Extension period (n=5, 27.8% each) were the same as or similar to those during the Core period. There were fewer reports of nausea (2 vs 6) and hot flush (0 vs 5) in the Extension period. Nasopharyngitis was reported in 5 patients in the Extension period vs 1 patient in the Core period. These data are consistent with the AE profile for the 52 patients treated overall in the Core period, in that headache (44%), insomnia (40%), and nausea (38%) were the most commonly reported AEs and were transient (generally resolved within 7 days without intervention). Conclusion: Chronic daily dosing with mitapivat for a median of 3 years was well tolerated, with no new safety signals reported. Increased Hb levels and improvements in hemolysis markers were sustained at the optimized individual doses. These long-term data support the potential of mitapivat as the first disease-altering therapy for PK deficiency. Two phase 3 trials are underway to further study the effect of mitapivat in patients with PK deficiency. Disclosures Grace: Novartis: Research Funding; Agios Pharmaceuticals, Inc: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding. Layton:Novartis: Membership on an entity's Board of Directors or advisory committees; Cerus Corporation: Membership on an entity's Board of Directors or advisory committees; Agios: Membership on an entity's Board of Directors or advisory committees. Galactéros:Addmedica: Membership on an entity's Board of Directors or advisory committees. Barcellini:Novartis: Research Funding, Speakers Bureau; Alexion: Consultancy, Research Funding, Speakers Bureau; Apellis: Consultancy; Incyte: Consultancy, Other: Advisory board; Agios: Consultancy, Other: Advisory board; Bioverativ: Consultancy, Other: Advisory board. van Beers:Agios Pharmaceuticals, Inc.: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Research Funding; Pfizer: Research Funding; RR Mechatronics: Research Funding. Ravindranath:Agios Pharmaceuticals, Inc.: Other: I am site PI on several Agios-sponsored studies, Research Funding. Kuo:Agios: Consultancy; Alexion: Consultancy, Honoraria; Apellis: Consultancy; Bioverativ: Other: Data Safety Monitoring Board; Bluebird Bio: Consultancy; Celgene: Consultancy; Novartis: Consultancy, Honoraria; Pfizer: Consultancy. Sheth:Apopharma: Other: Clinical trial DSMB; CRSPR/Vertex: Other: Clinical Trial Steering committee; Celgene: Consultancy. Kwiatkowski:bluebird bio, Inc.: Consultancy, Research Funding; Apopharma: Research Funding; Novartis: Research Funding; Terumo: Research Funding; Celgene: Consultancy; Imara: Consultancy; Agios: Consultancy. Hua:Agios Pharmaceuticals, Inc.: Employment, Equity Ownership. Hawkins:Bristol Myers Squibb: Equity Ownership; Infinity Pharma: Equity Ownership; Agios: Employment, Equity Ownership; Jazz Pharmaceuticals: Equity Ownership. Mix:Agios: Employment, Equity Ownership. Glader:Agios Pharmaceuticals, Inc: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1828-1828
Author(s):  
Alfred Chung ◽  
Gregory P. Kaufman ◽  
Surbhi Sidana ◽  
Erik Eckhert ◽  
Stanley Schrier ◽  
...  

Introduction: AL amyloidosis involves deposition of abnormally folded light chains into a wide range of tissues causing end-organ dysfunction, including in the heart and kidney. Daratumumab, a CD38-targeted antibody, has recently demonstrated efficacy in producing hematologic responses in previously relapsed/refractory disease. However, data on long-term outcomes to daratumumab, including organ responses, are lacking. Here we present the largest retrospective study to date on patients with previously treated AL amyloidosis treated with daratumumab. Methods: We conducted a retrospective analysis of relapsed/refractory AL amyloidosis patients treated at Stanford University from January 2016 to January 2019. Patients treated with daratumumab, either as monotherapy with dexamethasone (DMT) or in combination with other plasma-cell directed therapies (DCT) were included. Hematologic and organ responses were assessed by consensus guidelines. Hematologic responses were based on the maximal change in the difference between involved and uninvolved free light chains (dFLC). For cardiac response, a >30% and >300 pg/mL decrease in NT-proBNP for patients with initial baseline NT-proBNP ≥650 pg/mL was considered a response. A graded cardiac response metric was also explored with partial response (PR) representing 30-59% reduction, very good partial response (VGPR) ≥60% reduction, and complete response (CR) NT-proBNP <450 pg/mL as previously reported. For renal response, a >30% decrease (by at least 0.5 g/day) in 24-hour urine protein without worsening in creatinine or creatinine clearance by more than 25% in patients with at least 0.5 g/day pretreatment was considered a response. A graded renal response metric was also explored with PR representing 30-59% reduction in proteinuria, VGPR ≥60%, and CR ≤ 200 mg per 24-hour period. Survival data was analyzed using the Kaplan-Meier method. All time-to-event outcomes, including survival and organ responses, were determined from initiation of daratumumab. Results: Eighty-four patients were identified with baseline characteristics at start of daratumumab shown in Table 1. Median duration of follow-up was 16 months. Two-year overall survival (OS) was 83% and median OS was not reached. Median time-to-next-treatment or death was 31 months. Sixty-seven out of 80 evaluable patients (84%) achieved a hematologic response, with 47 patients (59%) achieving a VGPR or better (Figure 1). Sixty-eight patients (81%) had cardiac involvement, and among the 34 evaluable patients, 18 (53%) of evaluable patients achieved a cardiac response with a median response time of 2 months among responders. In terms of a graded cardiac response, 6 patients (18%) were able to achieve cardiac CR, 5 patients (15%) cardiac VGPR, and 7 patients (21%) PR (Figure 2). The median NT-proBNP percent reduction was 64.5% (IQR: 48.3 - 81.1%) and the median absolute reduction was 2395 pg/mL (IQR 1279.5 - 4089.5 pg/mL). Cardiac responses were associated with an improvement in OS (p<0.001, Figure 3), with landmark analysis for cardiac responses at 6-month trending towards statistical significance (100% vs. 51% at 30 months, p=0.052). Fifty-three patients (63%) had renal involvement, and among the 26 evaluable patients, 12 patients (46%) achieved a renal response with a median initial response time of 6 months among responders. Using graded response, 1 patient (4%) achieved renal CR, 7 patients (27%) renal VGPR, 4 patients (15%) renal PR, and 14 patients had no response, worsening creatinine, or were subsequently started on hemodialysis (54%) (Figure 4). The median percent reduction in proteinuria was 74.1% (IQR: 49.2 - 83.1%) and the median absolute reduction in proteinuria was 3.1 g/24 hours (IQR 2.1 - 4.9 g) among responders. There were no significant differences in OS between renal responders and non-responders. Conclusion: Daratumumab is highly effective in the treatment of previously treated AL amyloidosis, and a significant proportion of patients can achieve durable hematologic responses as well as improvements in organ function. Disclosures Kaufman: Janssen: Other: travel/lodging, Research Funding. Liedtke:Prothena: Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; IQVIA/Jazz: Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Genentech/Roche: Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celator: Research Funding; Caelum: Membership on an entity's Board of Directors or advisory committees; BlueBirdBio: Research Funding; Amgen/Onyx: Consultancy, Honoraria, Research Funding; Adaptive: Membership on an entity's Board of Directors or advisory committees; Agios: Research Funding. OffLabel Disclosure: Daratumumab in AL amyloidosis


Sign in / Sign up

Export Citation Format

Share Document