hematological disease
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 47)

H-INDEX

13
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoxu Ma ◽  
Ang Li ◽  
Weijie Cao ◽  
Huiling Li ◽  
Suping Zhang ◽  
...  

Mucormycosis is an angioinvasive fungal infection, associated with high mortality. The aim of our study was to explore the high-risk factors and predict the death of hematological disease complicated with mucormycosis. We retrospectively analyzed clinical data of 31 patients with hematological disease complicated with mucormycosis, adopted random forest to establish the death prediction model, and validated the model in another 15 patients. The median age of the 31 cases was 46 (28–51) years, male to female ratio 1.38:1, and 90-day mortality rate 54.8%. The most common underlying disease was acute myeloid leukemia (58.1%). The main clinical symptoms were fever (100%), cough (87.1%), sputum (80.6%), chest pain (61.3%), and hemoptysis (19.4%). Reversed halo sign (83.9%) was the most common computed tomography sign. A total of 48.4% of patients also had aspergillus or bacterial infections. Discriminative models were constructed by random forest with 17 non-survivors and 14 survivors. Procalcitonin, the duration of intravenous administration of amphotericin B or amphotericin B liposomes, and neutropenia at death or 90 days of survival were the leading risk factors for poor prognosis, with area under the curve of 0.975 (95% CI 0.934–1). We chose 0.6775 as death prediction threshold (with 82.3% sensitivity and 100% specificity) and validated the model successfully in another 15 patients. Chest pain and reversed halo sign are specific clinical and image signs of hematological disease complicated with mucormycosis. Neutropenia, elevated procalcitonin, and insufficient use time of amphotericin B or amphotericin B liposomes are risk factors for death.


2021 ◽  
Vol 3 (6) ◽  
pp. 13-16
Author(s):  
Semir Mešanović ◽  
Haris Šahović ◽  
Maja Konrad Ćustović ◽  
Damir Sabitović

As we know, the Philadelphia chromosome (Ph) is a highly specific marker for chronic myeloid leukemia (CML). This hematological disease is characterised by the formation of the BCR/ABL1 fusion gene, usually with typical translocation pattern including 9q34 and 22q11. In this paper we describe a 55 years old female patient with typical clinical and haematological signs of CML and a chromosome 9 differing from that which normally participates in translocation t(9;22). The karyotype of this Ph positive patient is characterised by pericentric inv(9)(p13q34) of the der(9)t(9;22)(q34;q11). Reverse transcriptase-polymerase chain reaction revealed a e14a2 type of BCR/ABL1 fusion transcript. As a consequence of this unusual translocation, FISH also found the separation of the ABL1/BCR1 fusion gene on chromosome 9. On reviewing the literature, to date only 10 Ph-positive leukemia patients have been noticed to have pericentric inversion inv(9)(p22q34)der(9)t(9;22)(q34;q11). No one case has been described with pericentric inversion inv(9)(p13q34) of the der(9)t(9;22)(q34;q11). This indicate that pericentric inv(9)(p13q34) of the der(9)t(9;22)(q34;q11) is a novel, rare, chromosomal abnormality in Ph-positive CML.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 218-218
Author(s):  
Jil Rotterdam ◽  
Margot Thiaucourt ◽  
Juliana Schwaab ◽  
Andreas Reiter ◽  
Sebastian Kreil ◽  
...  

Abstract Background: In general, patients with hematological diseases are predisposed to develop infections. Severe COVID-19 infection associated with high mortality is more likely in these patient cohorts compared to the general population. Due to immune defects related to the primary disease and/or to immunosuppressive treatment regimes, vaccination efficacy may be reduced in patients with hematological diseases. So far, data on this area are limited. Aim: To evaluate vaccination-related antibody response to BNT162b2, mRNA-1273, and ChADOx1 in patients with hematological disorders. Patients and methods: In this interim analysis of a prospective, observational single-center study, we report antibody levels at least 2 weeks after COVID-19 vaccination. A FDA/CE approved electrochemiluminescent assay (ECLIA) (Elecsys®, Roche, Mannheim, Germany) was used to quantify antibodies, pan Ig (including IgG) against the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. The assay has a measurement range of 0.4 to 250 U/mL, with a concentration ≥0.8 U/ml considered as positive. Data were analyzed for patients without detection of anti-N (nucleocapsid) SARS-CoV-2 antibody (i.e., without having passed SARS-CoV-2 infection). All tests were performed according to the manufacturer's instructions in an accredited laboratory at the University Hospital Mannheim. Results: Between February 2021 and July 2021, a total of 175 patients with hematological diseases were included in this study. The median age was 66 years (range 21-90 years), and 81 (46.3%) were female. The antibody levels were measured at least 14 days (median, 58 days) after the 2 nd vaccination. The patients were vaccinated with BNT162b2 (BioNTech, n=134), mRNA-1273 (Moderna, n=19), ChADOx1 (AstraZeneca, n=12), or got the first vaccination with BNT162b2 and the second with ChADOx1 (n=10). Overall, 145/175 (82.9%) were diagnosed with a malignant hematological disease (myeloid neoplasms, n=108; lymphoid neoplasms, n=37) and 30/175 with a non-malignant hematological disease (autoimmune disease, n=24; benign, n=6). 124 patients (70.1%) were on active therapy, and 51 patients (29.1%) were previously treated or treatment naïve. Correlation to specific therapies is ongoing and will be presented. In general, vaccination-related antibody response was positive (≥0.8 U/mL) in 148/175 (84.6%) patients with a median level of 208.6 U/mL (range 0.8-250.00) and negative (<0.8 U/mL) in 27/175 (15.4%) patients. The distribution of the negative cohort regarding the disease subgroups were as followed: myeloid neoplasms 7/27 (25.9%), lymphoid neoplasms 16/27 (59.3%), non-malignant hematological disease 4/27 (14.8%). Within the negative cohort, 21/27 (77.8%) were treated on active therapy, 6/27 (22.2%) were previously treated or treatment naïve. In myeloid neoplasms, patients with classical myeloproliferative neoplasm (MPN) had the highest negative result for antibodies with 4/7 (57.1%) followed by myelodysplastic syndrome (MDS) 2/7 (28.6%). Interestingly, all patients with chronic myeloid leukemia (CML) had a measurable immune response. In lymphoid neoplasms, patients with low-grade non-hodgkin lymphoma (NHL) (predominately chronic lymphocytic leukemia, CLL) had the highest negative antibody result 13/16 (81.3%) followed by high-grade NHL 4/8 (50%; predominately diffuse large b-cell lymphoma, DLBCL). In non-malignant hematological diseases, only patients with autoimmune diseases had a negative result. Conclusion: A remarkable group of patients with hematological disease were measured with no or low immune response after 2 nd COVID-vaccination, especially those with low-grade NHL, MDS and autoimmune disease. It seems that the percentage of patients with MPN and low response is less critical. No problems appeared in CML patients. Further explorations are needed with focus on potential risk of COVID infections despite full vaccination: The potential of 3 rd booster vaccination should be explored within clinical trials. Disclosures Reiter: AOP Orphan Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: travel support; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel expenses, Research Funding; Celgene/BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: travel support; Incyte: Membership on an entity's Board of Directors or advisory committees, Other: Travel expenses; Blueprint Medicines: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel expenses; Abbvie: Membership on an entity's Board of Directors or advisory committees; Deciphera: Membership on an entity's Board of Directors or advisory committees, Other: Travel expenses. Kreil: Novartis: Research Funding. Hofmann: Amgen: Honoraria; BMS: Honoraria; Novartis: Honoraria. Jawhar: Takeda: Honoraria, Other: Travel support; Blueprint Medicines: Honoraria; Stemline: Consultancy, Honoraria; Celgene: Other: Travel support; Novartis: Consultancy, Honoraria, Other: Travel support, Speakers Bureau. Saussele: Roche: Honoraria; Pfizer: Honoraria; Incyte: Honoraria, Research Funding; BMS: Honoraria, Research Funding; Novartis: Honoraria, Research Funding.


2021 ◽  
Vol 12 ◽  
Author(s):  
Virginia Camacho ◽  
Valeriya Kuznetsova ◽  
Robert S. Welner

The immune microenvironment is a critical driver and regulator of leukemic progression and hematological disease. Recent investigations have demonstrated that multiple immune components play a central role in regulating hematopoiesis, and dysfunction at the immune cell level significantly contributes to neoplastic disease. Immune cells are acutely sensitive to remodeling by leukemic inflammatory cytokine exposure. Importantly, immune cells are the principal cytokine producers in the hematopoietic system, representing an untapped frontier for clinical interventions. Due to a proinflammatory cytokine environment, dysregulation of immune cell states is a hallmark of hematological disease and neoplasia. Malignant immune adaptations have profound effects on leukemic blast proliferation, disease propagation, and drug-resistance. Conversely, targeting the immune landscape to restore hematopoietic function and limit leukemic expansion may have significant therapeutic value. Despite the fundamental role of the immune microenvironment during the initiation, progression, and treatment response of hematological disease, a detailed examination of how leukemic cytokines alter immune cells to permit, promote, or inhibit leukemia growth is lacking. Here we outline an immune-based model of leukemic transformation and highlight how the profound effect of immune alterations on the trajectory of malignancy. The focus of this review is to summarize current knowledge about the impacts of pro- and anti-inflammatory cytokines on immune cells subsets, their modes of action, and immunotherapeutic approaches with the potential to improve clinical outcomes for patients suffering from hematological myeloid malignancies.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2865
Author(s):  
Alessandro Allegra ◽  
Mario Di Gioacchino ◽  
Alessandro Tonacci ◽  
Claudia Petrarca ◽  
Caterina Musolino ◽  
...  

Multiple myeloma (MM) is a hematological disease that is still not curable. The bone marrow milieu, with cellular and non-cellular elements, participate in the creation of a pro-tumoral environment enhancing growth and survival of MM plasma cells. Exosomes are vesicles oscillating in dimension between 50 nm and 100 nm in size that can be released by various cells and contribute to the pathogenesis and progression of MM. Exosomes enclose proteins, cytokines, lipids, microRNAs, long noncoding RNAs, and circular RNAs able to regulate interactions between MM plasma cells and adjacent cells. Through exosomes, mesenchymal stem cells confer chemoresistance to MM cells, while myeloma cells promote angiogenesis, influence immune response, cause bone lesions, and have an impact on the outcome of MM patients. In this review, we analyze the role played by exosomes in the progression of monoclonal gammopathies and the effects on the proliferation of neoplastic plasma cells, and discuss the possible employment of exosomes as potential targets for the treatment of MM patients.


Author(s):  
Conny Katrin Baldauf ◽  
Peter Müller ◽  
Tobias Ronny Haage ◽  
Stephanie Adam-Frey ◽  
Juliane Lokau ◽  
...  

Somatic mutations in JAK2, MPL and Calreticulin and inflammation play a key role in pathophysiology of chronic myeloproliferative neoplasia (CMN). One of the most prominent cytokines elevated in serum of Polycythemia vera patients is interleukin-6 (IL-6). Currently, it is being discussed whether suppression of inflammation by anti-cytokine approaches as anti-IL-6 treatment may be therapeutically useful in CMN. We here sought to investigate the efficacy of anti-IL-6 treatment on inflammatory cytokines, hematocrit and splenomegaly in CMN like disease. JAK2-V617F knock-in mice (JAK2+/V617F) were treated for three weeks with anti-IL-6 antibody (Ab) or IgG-control. Upon anti-IL-6 Ab treatment, serum levels of CXCL2 and CXCL10 were significantly reduced. In addition, CXCL1, CCL11, M-CSF, G-CSF, IL-17, IL-12p40 and CCL2 were reduced by a factor of 0.3 - 0.8. Partly, this was also achieved by applying high-dose IgG. Hematocrit, erythrocyte and leukocyte counts were elevated in JAK2+/V617F mice but were not reduced by anti-IL6 Ab treatment. In addition, there was no apparent amelioration of splenomegaly and spleen histopathology. In conclusion, anti-IL-6 Ab treatment did not result in improvement of hematological disease parameters but was shown to modulate the serum cytokine signature.


2021 ◽  
Author(s):  
Mark Shamoun ◽  
Mario Gutierrez ◽  
Omolola Eniola-Adefeso

Sickle cell disease (SCD) is a systemic hematological disease. Various genotypes of the disease exist; however, the two most common include hemoglobin SS (Hgb SS) and hemoglobin SC (Hgb SC) disease. Hgb SC is typically considered a less severe genotype; however, some patients with SC disease still have significant complications. Ektacytometry is utilized to measure red blood cell deformability in sickle cell patients and may help identify patients at risk for severe disease. We described a patient with genotype hemoglobin SC with a more severe phenotype, who we show to have very rigid red blood cells via ektacytometry.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Kitti Kormányos ◽  
Klaudia Kovács ◽  
Orsolya Németh ◽  
Gábor Tóth ◽  
Gábor László Sándor ◽  
...  

Purpose. To examine the ocular signs of monoclonal gammopathy and to evaluate ocular comorbidities in subjects with monoclonal gammopathy. Patients and Methods. We analyzed patients from two large referral hematology centers in Budapest, diagnosed and/or treated with monoclonal gammopathy between 1997 and 2020. As a control group, randomly selected individuals of the same age group, without hematological disease, have been included. There were 160 eyes of 80 patients (38.75% males; age 67.61 ± 10.48 (range: 38–85) years) with monoclonal gammopathy and 86 eyes of 43 control subjects (32.56% males; age 62.44 ± 11.89 (range 37–86) years). The hematological diagnosis was MGUS in 9 (11.25%), multiple myeloma in 61 (76.25%), smoldering myeloma in 6 (7.50%), and amyloidosis or Waldenström macroglobulinemia in 2 cases (2.50%–2.50%). Before detailed ophthalmic examination with fundoscopy, 42 subjects with gammopathy (52.50%) and all controls filled the Ocular Surface Disease Index (OSDI) questionnaire. Results. The OSDI score and best-corrected visual acuity (BCVA) were significantly worse in subjects with monoclonal gammopathy than in controls ( p = 0.02 ; p = 0.0005 ). Among gammopathy subjects, we observed potential corneal immunoglobulin deposition in 6 eyes of 4 (3.75%) patients. Ocular surface disease ( p = 0.0001 ), posterior cortical cataract ( p = 0.01 ), and cataract ( p = 0.0001 ) were significantly more common among gammopathy subjects than in controls (χ2 test). Conclusions. Ocular surface disease and cataract are more common, and BCVA is worse in patients with monoclonal gammopathy than in age-matched controls. Therefore, and due to the potential ocular signs and comorbidities of monoclonal gammopathy, we suggest a regular, yearly ophthalmic checkup of these patients to improve their quality of life.


Author(s):  
Chenchen Dan ◽  
Hongjing Pei ◽  
Buzhe Zhang ◽  
Xuan Zheng ◽  
Dongmei Ran ◽  
...  

AbstractFanconi Anemia (FA) is a rare inherited hematological disease, caused by mutations in genes involved in the DNA interstrand crosslink (ICL) repair. Up to date, 22 genes have been identified that encode a series of functionally associated proteins that recognize ICL lesion and mediate the activation of the downstream DNA repair pathway including nucleotide excision repair, translesion synthesis, and homologous recombination. The FA pathway is strictly regulated by complex mechanisms such as ubiquitination, phosphorylation, and degradation signals that are essential for the maintenance of genome stability. Here, we summarize the discovery history and recent advances of the FA genes, and further discuss the role of FA pathway in carcinogenesis and cancer therapies.


Sign in / Sign up

Export Citation Format

Share Document