scholarly journals Therapy-Related Myeloid Neoplasm Has a Distinct Pro-Inflammatory Bone Marrow Microenvironment and Delayed DNA Damage Repair

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 37-38
Author(s):  
Monika M Kutyna ◽  
Li Yan A Wee ◽  
Sharon Paton ◽  
Dimitrios Cakouros ◽  
Agnieszka Arthur ◽  
...  

Introduction: Therapy-related myeloid neoplasms (t-MN) are associated with extremely poor clinical outcomes in otherwise long-term cancer survivors. t-MN accounts for ~20% of cases of myeloid neoplasms and is expected to rise due to the increased use of chemotherapy/radiotherapy (CT/RT) and improved cancer survivorship. Historically, t-MN was considered a direct consequence of DNA damage induced in normal hematopoietic stem cells (HSC) by DNA damaging cytotoxics. However, these studies have largely ignored the bone marrow (BM) microenvironment and the effects of age and concurrent/previous cancers. Aim: We performed an exhaustive functional study of mesenchymal stromal cells (MSC) obtained from a comparatively large cohort of t-MN patients and carefully selected control populations to evaluate the long-term damage induced by cytotoxic therapy to BM microenvironment and its impact on malignant and normal haematopoiesis. Methods: Four different cohorts were used: (1) t-MN, in which myeloid malignancy occurred after CT/RT for a previous cancer (n=18); (2) patients with multiple cancer and in which a myeloid neoplasm developed following an independent cancer which was not treated with CT/RT (MC-MN; n=10); (3) primary MN (p-MN; n=7) untreated and without any prior cancer or CT/RT; (4) age-matched controls (HC; n=17). Morphology, proliferation, cellular senescence, differentiation potential and γH2AX DNA damage response was performed. Stem/progenitor supportive capacity was assessed by co-culturing haematopoietic stem cells on MSC feeder-layer in long-term culture initiating assay (LTC-IC). Cytokine measurements were performed using 38-plex magnetic bead panel (Millipore) and RNA sequencing libraries were prepared with Illumina TruSeq Total RNA protocol for 150bp paired-end sequencing on a NextSeq500 instrument. Functional enrichment analysis was performed using EnrichR software. Results: MSC cultured from t-MN patients were significantly different from HC, p-MN and MC-MN MSC according to multiple parameters. They exhibited aberrant morphology consisting of large, rounded and less adhesive cells compared to typical spindle-shaped morphology observed with controls. MSC from myeloid neoplasm also showed impaired proliferation, senescence, osteo- and adipogenic differentiation with t-MN MSC showing the greatest differences. DNA repair was dramatically impaired compared to p-MN and HC (Fig.1A). Importantly, these aberrant t-MN MSC were not able to support normal or autologous in vitro long-term haematopoiesis (Fig.1B). The biological characteristic and poor haematopoietic supportive capacity of MSC could be "cell-intrinsic" or driven by an altered paracrine inflammatory microenvironment. Interestingly, several inflammatory cytokines were higher in t-MN compared with marrow interstitial fluid obtained from p-MN patients (Fig.1Ci) and many of these including Fractalkine, IFNα2, IL-7 and G-CSF were also significantly higher in t-MN MSC conditional media (Fig.1Cii). Together, this data suggest that t-MN microenvironment is distinct from p-MN with paracrine production of pro-inflammatory milieu that may contribute to poor HSC supportive capacity. Preliminary whole transcriptome analysis revealed differential gene expression between t-MN and HC (Fig.1Di) and p-MN MSC. Importantly, the deregulated genes play critical role in cell cycle, DNA damage repair, and cellular senescence pathways explaining phenotypical characteristic of t-MN MSC (Fig.1Dii). Moreover CXCL12 expression, a key regulator of haematopoiesis, was significantly lower in t-MN compared to HC (p=0.002) and p-MN MSC (p=0.009), thus explaining poor HSC supportive capacity. The key difference between the p-MN, MC-MN and t-MN is prior exposure to CT/RT. To study this we obtained MSC from two t-MN patients for whom we had samples at the time of their primary cancer, post high-dose chemotherapy and at the time of t-MN. MSC displayed aberrant proliferation and differentiation capacity after high-dose cytotoxic therapy (2 to 4 years prior to developing t-MN) and remained aberrant at t-MN diagnosis (Fig.1E). Conclusions: BM-MSC from t-MN patients are significantly abnormal compared with age-matched controls and typical myeloid neoplasm. Importantly, prior CT/RT leads to long-term irreversible damage to the BM microenvironment which potentially contributes to t-MN pathogenesis. Disclosures Hughes: Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Hiwase:Novartis Australia: Research Funding.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2585-2585
Author(s):  
Monika M Kutyna ◽  
Chung Hoow Kok ◽  
Sharon Paton ◽  
Dimitrios Cakouros ◽  
Agnieszka Arthur ◽  
...  

Abstract Background: Therapy-related myeloid neoplasms (tMN) is a second haematological malignancy associated with distinct molecular profile (Singhal et al Leukemia 2019) and dismal outcome. tMN is believed to arise from cytotoxic DNA damage to haematopoietic stem cells (HSC). Although, cytotoxic therapy (CT) can damage bone marrow (BM) microenvironment, its role in tMN pathogenesis remains unknown. Aim and Methods: We performed comprehensive multiomic profiling (transcriptomic, cytokine quantification, phenotype, DNA damage) of BM stromal cells (BMSC) from (i) tMN patients previously exposed to CT. Critically, we compared it with (ii) patients with MN and a history of another cancer without CT (pMN+Ca), (iii) primary MN (pMN) and (iv) age-matched controls (Healthy). Results: To decipher microenvironmental changes induced by CT from that of MN and age-related changes, whole transcriptome analysis was performed on BMSC isolated from tMN and compared with all control cohorts. Twenty-nine genes were differentially expressed in tMN compared to Healthy (FDR < 0.1, P < 0.05). Unexpectedly 146 genes were differentially expressed in tMN BMSC compared to other MN and interestingly, ~90% of differentially expressed genes were involved in senescence. Moreover, functional enrichment and GO analysis suggest DNA damage repair, cell cycle regulation, and senescence pathways were deregulated in tMN BMSC (Fig. 1A). Genes such as CDKN1A (a critical cyclin dependent kinase inhibitor orchestrating cell cycle arrest), TNFRSF10D (senescence associated), and FGF-2 (a key player in cell proliferation) were highly expressed (P < 0.001). These findings were validated by demonstrating other features of senescence in tMN BMSC: (i) enlarged/flattened cellular morphology, (ii) decreased cell proliferation and colony-forming potential, (iii) increased β-galactosidase expression, and (iv) defective DNA damage repair (Fig. 1Bi-iv). Interestingly, within the tMN cohort there was no correlation between latency period (the interval between completion of CT until tMN diagnosis) and senescence, indicating that higher senescence is persistent even after several years of CT. Senescence associated secretory phenotype (SASP), a mixture of inflammatory cytokines and chemokines such as IL-7, IL-1β, IL-13, and IL-6, were significantly higher in conditioned media of tMN BMSC (9/14, 64%) (Fig. 1 Bv). Despite reduced proliferation and senescence, transcriptome analysis showed enrichment of metabolic and energy production pathways in tMN BMSC compared to controls. TXNRD1, regulator of glucose and lipid metabolism, and BNIP3, a negative regulator of mitochondrial potential, were highly expressed in tMN BMSC (P < 0.001). These findings were further verified by Seahorse bioenergetic analyses. The overall energetic rate (as assessed by ATP production) was higher in tMN compared to Healthy BMSC (P = 0.002), with higher proportion of ATP generated by glycolysis (77% versus 35.5%) (Fig. 1C). Adipogenic differentiation potential of senescent BMSC is not well known. Transcriptome analysis showed reduced expression of genes involved in adipogenesis in tMN BMSC. This was further validated by two independent in vitro assays showing reduced adipogenesis (Fig. 1D). Interestingly, PNPLA2, a catalyst of the first lipolysis reaction, were significantly de-regulated in tMN BMSC (P < 0.001). The key difference in tMN and other MN is prior exposure to CT. Hence, we hypothesise that prior CT leads to long-term irreversible damage to BM microenvironment and induced senescence, which in turn propagate senescence in surrounding normal cells and promote clonal abnormalities in HSC. Other possibility is that tMN clone can induce these changes in BM microenvironment. To decipher it, we assessed serial BMSC. We observed aberrant stroma proliferation and bi-differentiation capacity, following CT, well before the diagnosis of tMN. Conclusions: By multiple orthogonal indices, our results show that tMN BMSC lie on an extreme trajectory away from normal and typical MN, with massive defect in senescence and distinct metabolic phenotype. Importantly, prior CT leads to long-term irreversible damage to the BM microenvironment which potentially contributes to tMN pathogenesis. Together, these data provide a valuable resource for future strategies to delay or prevent the onset of tMN and assist in marrow regeneration in patients undergoing CT. Figure 1 Figure 1. Disclosures Hughes: BMS: Research Funding; Novartis: Honoraria, Research Funding; Takeda: Honoraria. Hiwase: Novartis: Membership on an entity's Board of Directors or advisory committees; AbbVie: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1589-1589
Author(s):  
Fabian Frontzek ◽  
Marita Ziepert ◽  
Maike Nickelsen ◽  
Bettina Altmann ◽  
Bertram Glass ◽  
...  

Introduction: The R-MegaCHOEP trial showed that dose-escalation of conventional chemotherapy necessitating autologous stem cell transplantation (ASCT) does not confer a survival benefit for younger patients (pts) with high-risk aggressive B-cell lymphoma in the Rituximab era (Schmitz et al., Lancet Oncology 2012; 13, 1250-1259). To describe efficacy and toxicity over time and document the long-term risks of relapse and secondary malignancy we present the 10-year follow-up of this study. Methods: In the randomized, prospective phase 3 trial R-MegaCHOEP younger pts aged 18-60 years with newly diagnosed, high-risk (aaIPI 2-3) aggressive B-cell lymphoma were assigned to 8 cycles of CHOEP (cyclophosphamide, doxorubcine, vincristine, etoposide, prednisone) or 4 cycles of dose-escalated high-dose therapy (HDT) necessitating repetitive ASCT both combined with Rituximab. Both arms were stratified according to aaIPI, bulky disease, and center. Primary endpoint was event-free survival (EFS). All analyses were calculated for the intention-to-treat population. This follow-up report includes molecular data based on immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH) for MYC (IHC: 31/92 positive [40-100%], FISH: 14/103 positive), BCL2 (IHC: 65/89 positive [50-100%], FISH: 23/111 positive) and BCL6 (IHC: 52/86 positive [30-100%], FISH: 34/110 positive) and data on cell of origin (COO) classification according to the Lymph2CX assay (GCB: 53/88; ABC: 24/88; unclassified: 11/88). Results: 130 pts had been assigned to R-CHOEP and 132 to R-MegaCHOEP. DLBCL was the most common lymphoma subtype (~80%). 73% of pts scored an aaIPI of 2 and 27% an aaIPI of 3. 60% of pts had an initial lymphoma bulk and in 40% more than 1 extranodal site was involved. After a median observation time of 111 months, EFS at 10 years was 57% (95% CI 47-67%) in the R-CHOEP vs. 51% in the R-MegaCHOEP arm (42-61%) (hazard ratio 1.3, 95% CI 0.9-1.8, p=0.228), overall survival (OS) after 10 years was 72% (63-81%) vs. 66% (57-76%) respectively (p=0.249). With regard to molecular characterization, we were unable to detect a significant benefit for HDT/ASCT in any subgroup analyzed. In total, 16% of pts (30 pts) relapsed after having achieved a complete remission (CR). 23% of all relapses (7 pts) showed an indolent histology (follicular lymphoma grade 1-3a) and 6 of these pts survived long-term. In contrast, of 23 pts (77%) relapsing with aggressive DLBCL or unknown histology 18 pts died due to lymphoma or related therapy. The majority of relapses occurred during the first 3 years after randomization (median time: 22 months) while after 5 years we detected relapses only in 5 pts (3% of all 190 pts prior CR). 11% of pts were initially progressive (28 pts) among whom 71% (20 pts) died rapidly due to lymphoma. Interestingly, the remaining 29% (8 pts) showed a long-term survival after salvage therapy (+/- ASCT); only 1 pt received allogeneic transplantation. The frequency of secondary malignancies was very similar in both treatment arms (9% vs. 8%) despite the very high dose of etoposide (total 4g/m2)in the R-MegaCHOEP arm. We observed 2 cases of AML and 1 case of MDS per arm. In total 70 pts (28%) have died: 30 pts due to lymphoma (12%), 22 pts therapy-related (11 pts due to salvage therapy) (9%), 8 pts of secondary neoplasia (3%), 5 pts due to concomitant disease (2%) and 5 pts for unknown reasons. Conclusions: This 10-year long-term follow-up of the R-MegaCHOEP trial confirms the very encouraging outcome of young high-risk pts following conventional chemotherapy with R-CHOEP. High-dose therapy did not improve outcome in any subgroup analysis including molecular high-risk groups. Relapse rate was generally low. Pts with aggressive relapse showed a very poor long-term outcome while pts with indolent histology at relapse survived long-term. Secondary malignancies occurred; however, they were rare with no excess leukemias/MDS following treatment with very high doses of etoposide and other cytotoxic agents. Supported by Deutsche Krebshilfe. Figure Disclosures Nickelsen: Roche Pharma AG: Membership on an entity's Board of Directors or advisory committees, Other: Travel Grants; Celgene: Membership on an entity's Board of Directors or advisory committees, Other: Travel Grant; Janssen: Membership on an entity's Board of Directors or advisory committees. Hänel:Amgen: Honoraria; Celgene: Other: advisory board; Novartis: Honoraria; Takeda: Other: advisory board; Roche: Honoraria. Truemper:Nordic Nanovector: Consultancy; Roche: Research Funding; Mundipharma: Research Funding; Janssen Oncology: Consultancy; Takeda: Consultancy, Research Funding; Seattle Genetics, Inc.: Research Funding. Held:Roche: Consultancy, Other: Travel support, Research Funding; Amgen: Research Funding; Acrotech: Research Funding; MSD: Consultancy; Bristol-Myers Squibb: Consultancy, Other: Travel support, Research Funding. Dreyling:Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: scientific advisory board, Research Funding, Speakers Bureau; Bayer: Consultancy, Other: scientific advisory board, Speakers Bureau; Celgene: Consultancy, Other: scientific advisory board, Research Funding, Speakers Bureau; Mundipharma: Consultancy, Research Funding; Gilead: Consultancy, Other: scientific advisory board, Speakers Bureau; Novartis: Other: scientific advisory board; Sandoz: Other: scientific advisory board; Janssen: Consultancy, Other: scientific advisory board, Research Funding, Speakers Bureau; Acerta: Other: scientific advisory board. Viardot:Kite/Gilead: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Pfizer: Honoraria; F. Hoffmann-La Roche Ltd: Honoraria, Membership on an entity's Board of Directors or advisory committees. Rosenwald:MorphoSys: Consultancy. Lenz:Gilead: Consultancy, Honoraria, Research Funding, Speakers Bureau; AstraZeneca: Consultancy, Honoraria, Research Funding; Agios: Research Funding; Celgene: Consultancy, Honoraria, Research Funding, Speakers Bureau; Bayer: Consultancy, Honoraria, Research Funding, Speakers Bureau; Janssen: Consultancy, Honoraria, Research Funding, Speakers Bureau; Roche: Employment, Honoraria, Research Funding, Speakers Bureau; BMS: Consultancy. Schmitz:Novartis: Honoraria; Gilead: Honoraria; Celgene: Equity Ownership; Riemser: Consultancy, Honoraria.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3345-3345
Author(s):  
Rebecca L. Elstrom ◽  
Caroline Seery ◽  
Christina Moll ◽  
Allison Miller ◽  
Julia Gabor ◽  
...  

Abstract Abstract 3345 Introduction: Adults with newly-diagnosed ITP usually respond to initial prednisone treatment but typically relapse upon its tapering or discontinuation. Patients with persistent/chronic ITP treated with prednisone have an even lower likelihood of a lasting response. Dexamethasone (Dex) has been reported to have curative effects in newly diagnosed patients. Rituximab (Ritux) is thought to be effective in newly diagnosed patients but only yields a long term response in 20–25% of chronic ITP patients. Recently, newly-diagnosed previously-untreated patients received a single cycle of 4 days of Dex 40 mg/day or 4 infusions of 375mg/m2 Ritux combined with Dex. R+Dex in that study yielded a 63% response at 6 months and 34% at 3 years without additional treatment, which was more effective than Dex alone. Methods: Given the additive activity of these two drugs, 59 patients at Weill-Cornell Medical College with ITP of any duration were treated with 4 infusions of 375mg/m2 rituximab and three 4-day cycles of high-dose dexamethasone at 2-week intervals (R+Dex). Optimal response was assessed after 8 weeks as complete remission (CR, platelet count≥100×109/L) or partial remission (PR, 50–100×109/L). Long term outcome was also assessed and both were related to clinical variables. Data was compared to that of rituximab alone using the previous study from our center (Cooper BJH 2004). AIPF values were gathered prior to treatment until 12 weeks after treatment initiation. Results: All but 5 patients had been previously treated with a median of 2 therapies (range 0–7). Assessing optimal response achieved, 44/59 (74.5%) patients responded, with a CR in 64% and a PR in 10%. Only 1/28 patients with ITP < 1yr relapsed (at 12 months). Duration of ITP less than 24 months (p=0.0426) and being an adult predicted better optimal responses (p=0.0154). Of the original 44 responders, 33/59 patients [74% of responding adults and 77% of responding children] had ongoing responses at last f/u at a median of 14 months without the need for further ITP treatment (Figure). Eleven of the 44 relapsed (25%) including the one at 12 months mentioned above. Two additional patients relapsed who had ITP for 1–2 years prior to R+Dex and the other 8 patients who relapsed had ITP for greater than 3 years, 5 of whom had had ITP for 6+ years. Additionally, 53 of the 59 patients were genotyped for β1-tubulin gene. Of the ten patients with heterozygote genotypes, 9 (90%) responded to combination R+Dex treatment and 32 of the 43 wild type patients responded to treatment (p=0.46). There were no overt differences in the AIPF levels over the first 12 weeks between responders and non-responders. No AIPF differences were seen between the heterozygote and wild type patients for the β1-tubulin gene. In our previous study of rituximab alone, 54% of the 57 adult patients responded to rituximab treatment, compared to 86% of the 36 adult patients who responded to R+Dex treatment. R+Dex responders were found to have a longer duration of lower B cell numbers when compared with responders to rituximab alone, preliminarily demonstrating the additive effect of the 2 medications. Adverse events related to R+Dex generally were mild but one patient was hospitalized with colitis, two others experienced serum sickness reactions and dexamethasone was sometimes difficult to tolerate. Conclusion: R+Dex is active and appears clearly superior to rituximab alone in this single-center, pilot study. Adults and patients who have a shorter duration of ITP (< 1–2 years) fare better but children and those with a longer duration of ITP still have a 1/3 chance of a lasting response. The absence of homozygote β1-tubulin SNP's in this population made interpretation of its effect difficult. High dose Dex is not always easy to tolerate but helps maintain the count during the treatment course of 32 days. A prospective, randomized trial is planned. Disclosures: Basciano: Alexion: Consultancy. Ghanima:Roche Pharmaceuticals: Research Funding. Bussel:Amgen: Family owns Amgen stock Other, Membership on an entity's Board of Directors or advisory committees, Research Funding; Cangene: Research Funding; GlaxoSmithKline: Family owns GSK stock, Family owns GSK stock Other, Membership on an entity's Board of Directors or advisory committees, Research Funding; Genzyme: Research Funding; IgG of America: Research Funding; Immunomedics: Research Funding; Ligand: Membership on an entity's Board of Directors or advisory committees, Research Funding; Eisai: Membership on an entity's Board of Directors or advisory committees, Research Funding; Shionogi: Membership on an entity's Board of Directors or advisory committees, Research Funding; Sysmex: Research Funding; Portola: Consultancy. Off Label Use: The use of romiplostim in pediatric patients was examined in this study.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1487-1487
Author(s):  
Tatjana Meyer ◽  
Nikolaus Jahn ◽  
Anna Dolnik ◽  
Peter Paschka ◽  
Verena I. Gaidzik ◽  
...  

Abstract Introduction BRCA1/BRCA2-containing complex 3 (BRCC36) is a Lys63-specific deubiquitinating enzyme (DUB) involved in DNA damage repair. Mutations in BRCC36 have been identified in 2-3% of patients with myelodysplastic syndromes (MDS) and secondary AML (sAML). The role of BRCC36 mutations in de novo AML and their impact on DNA damage-inducing cytotoxic chemotherapy sensitivity is not clear. Aim We aimed to determine the incidence of BRCC36 mutations in AML and their impact on outcome and drug sensitivity in vitro. Methods We analyzed the entire coding region of BRCC36 for mutations in 191 AML cases with t(8;21) (q22;q22.1) and 95 cases with inv(16) (p13.1q22) using a customized targeted sequencing panel. Data for de novo AML was derived from The Cancer Genome Atlas Research Network (TCGA) data set (NEJM 2013). Lentiviral CRISPR/Cas9 was used to inactivate BRCC36 in t(8;21)-positive AML cell lines - Kasumi-1 and SKNO-1 - and murine hematopoietic stem and progenitor cells (LSKs). Knockout was confirmed by a cleavage assay as well as Western blot. AML1-ETO-9a was expressed by a retroviral vector. Cell lines and LSK cells were treated with different concentrations of doxorubicin or cytarabine and their viability was assessed seven days post treatment. DNA damage was assessed through phospho-γH2AX staining using flow-cytometry. Results BRCC36 mutations were identified in 7 out of 191 patients (3.7%) with t(8;21) AML and none of 95 patients with inv(16). In the TCGA data set one out of 200 patients (0.5%) with de novo AML had a BRCC36 mutation. This patient had a complex karyotype and would be considered as secondary AML with myelodysplastic-associated changes according to the 2016 WHO classification. Six of the 7 mutations were missense or nonsense mutations that were predicted to be deleterious to BRCC36 function. One mutation affected a splice site at exon 6, resulting in an impaired splicing capability. With intensive standard chemotherapy all patients with BRCC36 mutations achieved a complete remission and had an estimated relapse-free and overall survival of 100% after a median follow up of 4.2 years. Given its role in DNA damage repair, we hypothesized that BRCC36 inactivation sensitizes AML cells to DNA-damage inducing drugs. In order to test this, we generated BRCC36 knockout Kasumi-1 and SKNO-1 cell lines using CRISPR-Cas9. BRCC36 inactivation had no impact on cell growth on either of the cell lines. However, we found that BRCC36 knockout cells were significantly more sensitive to doxorubicin as compared to the parental cells with normal BRCC36. This was accompanied by a significant increase in DNA damage as assessed by phospho-γH2AX in BRCC36 knockout vs control cells after doxorubicin treatment. In contrast, BRCC36 inactivation had no impact on cytarabine sensitivity. We next assessed drug sensitivity in primary murine leukemic cells expressing AML1-ETO-9a. Again, inactivation of BRCC36 resulted in a significant higher sensitivity to doxorubicin but not cytarabine. Conclusion We found BRCC36 to be recurrently mutated in t(8;21)-positive AML Inactivation of BRCC36 was associated with impairment of the DNA damage repair pathway and thus higher sensitivity to DNA damage-inducing chemotherapy. This might be also reflected by the favorable clinical outcome of patients with BRCC36 mutated t(8;21)-positive AML, a finding which has to be confirmed in a large patient cohort. Disclosures Paschka: Pfizer: Membership on an entity's Board of Directors or advisory committees; Takeda: Other: Travel support; Novartis: Membership on an entity's Board of Directors or advisory committees, Other: Travel support, Speakers Bureau; Otsuka: Membership on an entity's Board of Directors or advisory committees; Sunesis: Membership on an entity's Board of Directors or advisory committees; Jazz: Speakers Bureau; Amgen: Other: Travel support; Janssen: Other: Travel support; Bristol-Meyers Squibb: Other: Travel support, Speakers Bureau; Celgene: Membership on an entity's Board of Directors or advisory committees, Other: Travel support, Speakers Bureau; Astellas: Membership on an entity's Board of Directors or advisory committees, Travel support; Astex: Membership on an entity's Board of Directors or advisory committees; Agios: Membership on an entity's Board of Directors or advisory committees. Bullinger:Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Pfizer: Speakers Bureau; Bayer Oncology: Research Funding; Sanofi: Research Funding, Speakers Bureau; Janssen: Speakers Bureau; Bristol-Myers Squibb: Speakers Bureau; Amgen: Honoraria, Speakers Bureau; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Döhner:Novartis: Consultancy, Honoraria, Research Funding; Jazz: Consultancy, Honoraria; Jazz: Consultancy, Honoraria; AROG Pharmaceuticals: Research Funding; Janssen: Consultancy, Honoraria; Celator: Consultancy, Honoraria; Pfizer: Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Astex Pharmaceuticals: Consultancy, Honoraria; AROG Pharmaceuticals: Research Funding; Janssen: Consultancy, Honoraria; Seattle Genetics: Consultancy, Honoraria; Sunesis: Consultancy, Honoraria, Research Funding; Astellas: Consultancy, Honoraria; Astex Pharmaceuticals: Consultancy, Honoraria; Bristol Myers Squibb: Research Funding; Pfizer: Research Funding; Agios: Consultancy, Honoraria; Novartis: Consultancy, Honoraria, Research Funding; AbbVie: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Agios: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria; Celator: Consultancy, Honoraria; Astellas: Consultancy, Honoraria; Bristol Myers Squibb: Research Funding; Seattle Genetics: Consultancy, Honoraria; Celgene: Consultancy, Honoraria, Research Funding; Sunesis: Consultancy, Honoraria, Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 940-940
Author(s):  
Zuzana Tothova ◽  
John M. Krill-Burger ◽  
Daniel S. Day ◽  
J. Erika Haydu ◽  
Brian J. Abraham ◽  
...  

Abstract Recurrent somatic mutations in core components and modulators of the cohesin ring - a multimeric protein complex that forms a ring structure around DNA and provides spatial genome organization - have been identified across multiple cancer types, including acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS), where they are associated with poor overall survival. Cohesin proteins are involved in sister chromatid cohesion, chromatin organization into loops, transcriptional activation, and DNA damage repair. The mechanisms underlying clonal expansion of these driver mutations are unknown and no therapies have selective efficacy in cohesin-mutant cancers. We sought to determine the effects of mutations in the most frequently mutated cohesin subunit, STAG2, on cohesin complex composition using immunoprecipitation followed by quantitative mass spectrometry (IP-MS), genetic dependencies of STAG2-mutant cells by genome-wide CRISPR screening, and mutant cohesin association with chromatin using chromatin immunoprecipitation followed by sequencing (ChIP-Seq). Our goal was to understand how these mutations contribute to cellular transformation and to identify possible therapeutic targets. Applying IP-MS in AML cell lines engineered with different STAG2 mutations, we identified and validated a switch from STAG2- to its paralog STAG1-containing cohesin complexes. In addition, we observed changes in the interaction of the mutant cohesin complex with proteins involved in DNA repair and replication, including PARP1, and RNA-mediated interaction with RNA splicing machinery, including SF3B family members. We next hypothesized that these cohesin-dependent alterations could lead to shifts in genetic dependencies. Using genome-scale CRISPR-Cas9 screens, we identified preferential dependency of STAG2-mutant cells on STAG1, consistent with our proteomics studies. We also found a striking concordance between additional cellular processes highlighted by IP-MS experiments and observed increased dependency of STAG2-mutant cells on DNA damage repair and mRNA processing. Therefore, STAG2 mutations lead to changes in cohesin complex structure and alter interactions with proteins involved in DNA damage, replication, and RNA modification, which become genetic dependencies in this context. Prompted by this concordance, we evaluated DNA replication, DNA damage and splicing in cohesin-mutant cells. We observed a 4-fold increase in replication fork stalling in STAG2-mutant cells, which was associated with accumulation of double strand DNA breaks and activation of the ATR and ATM DNA damage checkpoints. STAG2-mutant cells demonstrated ~100-fold increased sensitivity to the PARP inhibitor talazoparib, which was consistent across models of other cohesin-mutant subunits. In addition, cohesin-mutant cells showed aberrant splicing and increased sensitivity to treatment with SF3B1 inhibitors E7107 and H3B-8800. In aggregate, genetic or pharmacologic perturbation of DNA damage repair or splicing created a synthetic vulnerability for cohesin-mutant cells in vitro and in vivo. Finally, we explored how STAG1-containing complexes alter cohesin-mediated genome compartmentalization in cohesin-mutant cells. Using ChIP-Seq, we observed that STAG2 loss leads to a global decrease in cohesin binding to chromatin, including at sites of insulated neighborhood boundaries, with subsequent gene expression changes. Loss of cohesin binding was associated with increased enhancer activity and super-enhancer expansion in STAG2-mutant cells. In addition, we identified changes in the co-localization of the mutant cohesin complex with super-enhancer enriched factors, DNA damage repair and splicing machinery. These findings are consistent with a model in which wild type and mutant cohesin complexes, defined by their unique composition and patterns of chromatin binding and architecture, have differential abilities to maintain chromatin organization as it relates to spatial organization of super-enhancers, coactivators and transcription factors, as well as DNA damage repair and splicing machinery. Perturbation of any of these components, which have been recently proposed to form phase-separated nuclear bodies, creates vulnerabilities that may be exploited therapeutically with existing drugs in patients with cohesin-mutated malignancies. Disclosures Abraham: Syros Pharmaceuticals: Equity Ownership. Seiler:H3 Biomedicine: Employment. Buonamici:H3 Biomedicine: Employment. D'Andrea:Intellia Therapeutics: Consultancy; Cedilla Therpeutics: Consultancy, Equity Ownership; EMD-Serono: Consultancy, Research Funding; Sierra: Consultancy, Research Funding; Ideaya: Consultancy, Equity Ownership; Lilly: Consultancy, Research Funding; Formation Biologics: Consultancy. Young:Omega Therapeutics: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Syros Pharmaceuticals: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Camp4 Therapeutics: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2000-2000
Author(s):  
Lisa Giulino Roth ◽  
Tara O'Donohue MD ◽  
Tanya Trippett ◽  
Elizabeth Klein ◽  
Nancy A. Kernan ◽  
...  

Abstract Introduction: Despite improved outcomes for children with Hodgkin lymphoma (HL), relapsed and refractory disease remain a challenge for a subset of patients. High dose therapy followed by autologous stem cell transplantation (ASCT) is the standard of care for relapsed disease, largely based on data from studies in adults. As new therapies emerge for HL, risk stratification of pediatric patients with relapsed disease will be essential to determine which patients are likely to benefit from ASCT and which patients should be selected for alternative therapy. In this study we report the long-term outcome of 34 pediatric patients with HL who underwent ASCT at a single institution. Methods: We conducted a retrospective analysis of 34 consecutive pediatric patients with HL who underwent ASCT at Memorial Sloan Kettering Cancer Center from 1989-2013. Data collected included age, histology, treatment prior to ASCT, disease status at the time of transplant, conditioning regimen, and outcome after ASCT. Given recent data supporting a Childhood Hodgkin International Prognostic Score (CHIPS) for risk stratification in first-line therapy(Schwartz et al, ASH Abstract #3649, 2011), this score was calculated at the time of relapse to evaluate its prognostic relevance in the relapse setting. One point was awarded for each of the following: stage IV disease, bulky mediastinal adenopathy, albumin <3.5, and fever. Kaplan-Meier survival analysis was used to estimate the probability of overall survival (OS) and disease-free survival (DFS). Patient Characteristics: Pathologic classification included nodular sclerosis (n=30), mixed cellularity (n=1), lymphocyte predominant (n=2), or subtype unspecified (n=1). The median age was 17.9 yrs (range 9.7-21) and 47% of patients were male. Thirty-three patients had relapsed disease; one patient had primary refractory disease. The median time from diagnosis to first relapse was 13 months (range 5-60). Twenty-five patients (73.5%) had chemotherapy responsive disease at the time of transplant (CR or PR). Others had stable disease (n=6), mixed response (n=2) or progressive disease (n=1). Thirty-one of 34 patients received radiation therapy either during initial treatment or as part of a salvage regimen. Four patients received brentuximab vedotin at the time of relapse. ASCT preparative regimen consisted of cyclophosphamide-etoposide + total lymphoid irradiation (n=14) or + carmustine (n=16), while 4 patients received the BEAM regimen. All but two patients treated after 1997 received chemotherapy-only preparative regimens. Results: The median follow up for the cohort was 70.5 months (range 2.5-144). The 12-year OS and DFS were 65.1% and 63.6% respectively. The cause of death included HL (n=7), sepsis (n=1) and end stage renal disease (n=1). Patient age, stage at diagnosis, and time from diagnosis to relapse were not associated with differences in DFS. Patients who received an ASCT after 1997 had a better outcome than those who received an ASCT before 1997 (DFS 44.9% vs. 81.8%, p=0.012). Patients with chemotherapy sensitive disease at the time of transplant had a superior DFS (74.5% vs. 33.3%, p=0.005). Although not statistically significant, there was a trend toward improved outcome among patients with early stage disease at relapse (stage I/II) compared to advanced stage (III/IV) (DFS 81.3% vs. 54.2%, p=0.098). Among 21 patients with data available to calculate CHIPS at time of relapse, there was a superior OS among those with a lower CHIPS with OS of 100%, 70%, 50%, and 0% for patients with a CHIPS of 0, 1, 2, and 3 respectively (p=0.021). There were no patients with a CHIPS of 4. There was a trend toward improved DFS among patients with a low CHIPS, however this was not statistically significant (DFS of 100%, 70%, 66.7%, and 0% in patients with a CHIPS of 0, 1, 2, and 3 respectively, p=0.176). Conclusions: ASCT offers the prospect of durable, disease free survival for a significant proportion of pediatric patients with relapsed HL. The outcome among patients who received an ASCT in recent years (1997-2013) was high (DFS 81.8%). Chemotherapy sensitive disease at the time of transplant was associated with superior DFS. To our knowledge this is the first report evaluating the potential utility of CHIPS in the relapse setting. Despite the small sample size (n=21) CHIPS was predictive of OS, suggesting that this measure should be studied further as a potential prognostic marker in relapsed HL. Disclosures Trippett: Seattle Genetics, Inc.: Research Funding; OSI Pharmaceuticals: Research Funding. Kernan:Gentium S.p.A.: Research Funding. Prockop:Atara Biotherapeutics: Other: I have no financial disclosures, but Atara Biotherapeutics has exercised a licensing agreement with Memorial Sloan Kettering Cancer Center and MSKCC and some investigators at MSKCC have a financial interest in Atara.. Scaradavou:National Cord Blood Program- New York Blood Center: Employment. Moskowitz:Celgene: Membership on an entity's Board of Directors or advisory committees; Seattle Genetics: Honoraria, Research Funding; Merck: Membership on an entity's Board of Directors or advisory committees, Research Funding; Genentech: Membership on an entity's Board of Directors or advisory committees; Pharmacyclics: Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 525-525 ◽  
Author(s):  
Benedetto Bruno ◽  
Barry Storer ◽  
Francesca Patriarca ◽  
Marcello Rotta ◽  
Roberto Sorasio ◽  
...  

Abstract Abstract 525 Background: Role and timing of allografting in myeloma are hotly debated. Before the introduction of new drugs, we carried out a trial where the treatment assignment was based only on the presence/absence of an HLA-identical sibling (Bruno et al, N Engl J Med 2007). Methods: Overall, 162/199 (81%) of patients with at least one sibling were HLA-typed. First-line treatments included induction with VAD-based regimens and a cytoreductive autograft, followed by a nonmyeloablative allograft (Tandem auto-allo) or a second melphalan-based autograft (Double-auto). We now report an update at a median follow up of 7.1 years. Results: Response rates [complete (CR) and partial remissions (PR)] at the time and after the non-myeloablative allograft and at the time and after the second autograft did not differ between the two cohorts: 76% and 86%, and 76% and 91% respectively (p=1 and p=0,54). However, CR rate was significantly higher after the non-myeloablative allograft than after the second autograft: 55% versus 26% (p=0,0026). At a median follow up of 7.1 years (range 2.5 – 10.7+), by intention-to-treat analysis, median overall survival (OS) and event free survival (EFS) were significantly longer in patients with HLA-identical siblings (No.80) as compared with those without (No.82): not reached vs. 4.25 years (HR 0.51, CI 95% 0.34–0.76, p=0.001) and 2.8 vs. 2.4 years (HR 0.62, CI 95% 0.44–0.87, p=0.005). By multivariate analysis, independent of age, gender, myeloma protein isotype, Durie&Salmon stage, and disease status at the first autograft; the presence of an HLA-identical sibling was significantly associated with longer OS (HR 0.5, CI 95% 0.3–0.8, p=0.001) and EFS (HR 0.63, CI 95% 0.4–0.9, p=0.01). At a median follow up of 7.3 (range 5.4 – 10.7+ years), median OS was not reached in the 58 patients who received a non-myeloablative allograft and 5.3 years in the 46 who received a second high-dose melphalan autograft (HR 0.55, CI 95% 0.32–0.94, p=0.02), whereas EFS was 39 months and 33 months (HR 0.62, CI 95% 0.40–0.96, p=0.02) respectively. Cumulative incidence of transplant related mortality was 11% and 2% at 2 years respectively. At median follow-ups of 7.3 years from diagnosis (range 5.4 – 10.4+) and 6.5 years from the allograft (range 4.2 – 9.4+), and 7.4 years from diagnosis (range 5.6 – 10.7+) and 6.2 years from the second autograft (range 4.7 – 9.1+), 30/58 (52%) and 37/46 (80%) patients, respectively, were treated for disease relapse/progression. Salvage therapies included bortezomib- or thalidomide-containing regimens in most patients of both cohorts. After 1–3 lines of therapy, 22/30 (73%) had a response, including 5 CR and 17 PR, in the tandem auto-allo group, whereas 21/37 (54%) had a response, including 4 CR and 16 PR after the second autograft. Of note, at a median follow up of 3.9 years from the start of the first salvage therapy, OS was not reached and was 1.7 years in patients who had relapsed/progressed after the allograft and the second high-dose melphalan (HR 0.44, CI 95% 0.24–0.82, p=0.01) respectively. Conclusions: In this study, allografting conferred a long term survival advantage over standard autografting. Salvage therapy was associated with longer OS perhaps due to a synergistic effect between new drugs and residual graft-vs.-myeloma effects. In prospective clinical trials, the combination of graft-vs.-myeloma effects with “new drugs” should be explored and may increase the cure rate of myeloma patients. Disclosures: Bringhen: Celgene: Honoraria; Janssen-Cilag: Honoraria. Palumbo:Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen-Cilag: Honoraria, Membership on an entity's Board of Directors or advisory committees. Boccadoro:Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen-Cilag: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4112-4112
Author(s):  
Charline Moulin ◽  
Romain Morizot ◽  
Thomas Remen ◽  
Hélène Augé ◽  
Florian Bouclet ◽  
...  

Introduction: About 2 to 10% of patients (pts) diagnosed with Chronic Lymphocytic Leukemia (CLL) develop diffuse large B-cell lymphoma (DLBCL, so-called Richter transformation (RT)) over long-term follow-up. The outcomes of pts with RT are variable and poorly understood and there is no consensus on the best therapeutic approach. The aim of this study was to analyze the clinical characteristics, outcomes and factors predictive of survival in a large series of RT from the French Innovative Leukemia Organization (FILO). Methods: Biopsy-confirmed RT (limited to DLBCL and excluding Hodgkin lymphoma) diagnosed from 2001 to 2018 were identified from eight FILO centers. Clinical and biological characteristics of CLL and RT at diagnosis, including cytogenetics, clonal relation with the pre-existing CLL, Epstein-Barr virus (EBV) status, cell of origin (COO) analyzed by immunohistochemistry and RT score (Tsimberidou AM et al, J Clin Oncol, 2006) were analyzed as well as treatment and outcomes. Overall survivals (OS) were defined as time from CLL and RT diagnosis to death from any cause and analyzed using the Kaplan-Meier method. Statistical analyses were performed with SAS version 9.4. Results: A total of 70 CLL pts who developed RT were identified. The median age at CLL diagnosis was 62 years old (range 35-82), and 50 (71.4 %) were male. The median time to transformation was 5.5 years (range 0 to 22 years), with 12 simultaneous diagnosis of CLL and RT. Prior to RT, 20 (29%) pts had not been treated for CLL, 50 received one (n=21) or more (n= 29) line of treatment ; 6 pts had received a novel agent (ibrutinib, idelalisib or venetoclax). The median age at RT diagnosis was 68 years old (range 42-88). All biopsies were centrally reviewed; 38/58 pts (66%) had elevated LDH (>1.5N) ; 35/65 pts (54 %) had bulky disease (≥ 5 cm); 10/54 (18.5%) pts had del(17p) or TP53 mutation ; 9/42 pts (21%) had a complex karyotype (at least 3 abnormalities). The CLL and RT were clonally related in 27/27 (100%) tested pts. COO by Hans algorithm was non germinal center B cell-like (GCB) in 26/28 pts (93%). EBV was positive or detected in 5/40 (12.5%) pts. The median of Ki67 positivity was 70% (range 30% to 100%). The RT score (based at RT diagnosis on ECOG performance status 2-4, LDH >1.5 x normal, platelets<100 x 109/L, tumor size >5 cm and >1 prior therapy for CLL) was : low risk in 17 pts (31%), low-intermediate risk in 10 pts (19%), high-intermediate risk in 14 pts (25%) and high risk in 14 pts (25%). The most common first-line treatment of RT was immunochemotherapy (n=57, 87%) including R-CHOP-like regimen (n=48, 73%). Autologous or allogeneic transplantation was performed for 7 pts (11%). Response to first-line treatment was complete or partial response in 26 pts (40%), and stable disease or progression in 39 pts (60%). After a median follow-up of 8 years, 51/64 pts (80%) have died. The main causes of death were progressive DLBCL (n=36, 71%), infection (n=8, 16%) or progressive CLL (n=2, 4%). The median OS of the cohort from CLL and RT diagnosis (Figure 1) were 7.8 years and 9.5 months, respectively. In univariate analysis, patients with TP53 disruption at CLL stage, low platelets count, elevated LDH, elevated beta2-microglobulin, high ECOG score, high RT score, EBV positivity and absence of response to first-line RT treatment had worse OS. The ECOG score, platelets count and TP53 disruption remain significant in multivariate Cox-regression. Last, we compared the clinical and biological parameters of two Richter groups defined as: (i) short-term survivors (<12 months, n = 34) and (ii) long-term survivors (>48 months, n = 18). Long survival was significantly associated with elevated platelets count, low LDH, low ECOG, low RT score and response to RT first-line treatment. Discussion: The clinical outcomes of RT patients is poor and novel treatment options are needed. However, a group of long-term survivors was identified, characterized by elevated platelets count, low LDH, low ECOG, low RT score and response to immunochemotherapy. Disclosures Leblond: Astra Zeneca: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Gilead: Honoraria, Speakers Bureau; Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Abbvie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Amgen: Honoraria, Speakers Bureau. Thieblemont:Roche: Honoraria, Research Funding; Gilead: Honoraria; Novartis: Honoraria; Kyte: Honoraria; Janssen: Honoraria; Celgene: Honoraria; Cellectis: Membership on an entity's Board of Directors or advisory committees. Cymbalista:Janssen: Honoraria; Gilead: Honoraria; AstraZeneca: Honoraria; Sunesis: Research Funding; Roche: Research Funding; Abbvie: Honoraria. Guièze:Abbvie: Honoraria; Janssen: Honoraria; Gilead: Honoraria; Roche: Honoraria. Broseus:Janssen: Honoraria; Gilead: Honoraria; Novartis: Research Funding. Feugier:gilead: Honoraria, Research Funding, Speakers Bureau; janssen: Honoraria, Research Funding, Speakers Bureau; abbvie: Honoraria, Research Funding, Speakers Bureau; roche: Honoraria, Research Funding, Speakers Bureau.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1226-1226
Author(s):  
Hassan Awada ◽  
Reda Z. Mahfouz ◽  
Jibran Durrani ◽  
Ashwin Kishtagari ◽  
Deepa Jagadeesh ◽  
...  

T-cell large granular lymphocyte leukemia (T-LGLL) is a clonal proliferation of cytotoxic T lymphocytes (CTL). T-LGLL mainly manifest in elderly and is associated with autoimmune diseases including rheumatoid arthritis (RA), B cell dyscrasias, non-hematologic cancers and immunodeficiency (e.g., hypogammaglobulinemia). LGL manifestations often resemble reactive immune processes leading to the dilemmas that LGLs act like CTL expansion during viral infections (for example EBV associated infectious mononucleosis). While studying a cohort of 246 adult patients with T-LGLL seen at Cleveland Clinic over the past 10 years, we encountered 15 cases of overt T-LGLL following transplantation of solid organs (SOT; n=8) and hematopoietic stem cell transplantation (HSCT; n=7). Although early studies reported on the occurrence of LGL post-transplant, these studies focused on the analysis of oligoclonality skewed reactive CTL responses rather than frank T-LGLL. We aimed to characterize post-transplantation T-LGLL in SOT and HSCT simultaneously and compare them to a control group of 231 de novo T-LGLL (cases with no history of SOT or HSCT). To characterize an unambiguous "WHO-defined T-LGLL" we applied stringent and uniform criteria. All cases were diagnosed if 3 out of 4 criteria were fulfilled, including: 1) LGL count >500/µL in blood for more than 6 months; 2) abnormal CTLs expressing CD3, CD8 and CD57 by flow cytometry; 3) preferential usage of a TCR Vβ family by flow cytometry; 4) TCR gene rearrangement by PCR. In addition, targeted deep sequencing for STAT3 mutations was performed and charts of bone marrow biopsies were reviewed to exclude other possible conditions. Diagnosis was made 0.2-27 yrs post-transplantation (median: 4 yrs). At the time of T-LGLL diagnosis, relative lymphocytosis (15-91%), T lymphocytosis (49-99%) and elevated absolute LGL counts (>500 /µL; 93%) were also seen. Post-transplantation T-LGLL were significantly younger than de novo T-LGLL, (median age: 48 vs. 61 yr; P<.0001). Sixty% of post-transplantation T-LGLL patients were males. Fifteen% of patients had more cytogenetic abnormalities compared to de novo T-LGLL, had a lower absolute LGL count (median: 4.5 vs. 8.5 k/µL) and had less frequent neutropenia, thrombocytopenia and anemia (27 vs. 43%, 33 vs. 35% and 20% vs. 55%; P=.01). TCR Vb analysis identified clonal expansion of ≥1 of the Vb proteins in 60% (n=9) of the patients; the remaining 40% (n=6) of the cases had either a clonal process involving a Vb protein not tested in the panel (20%; n=3) or no clear expansion (20%; n=3). Signs of rejection were observed in 20% (n=3/15) and GvHD in 13% (n=2/15) of the patients. Post-transplantation, 27% of cases presented with neutropenia (absolute neutrophil count <1.5 x109/L; n=4), 33% with thrombocytopenia (platelet count <150 x109/L; n=5) and 25% with anemia (hemoglobin <10 g/dL; n=3). T-LGLL evolved in 10 patients (67%; 10/15) despite IST including cyclosporine (n=5), tacrolimus (n=4), mycophenolate mofetil (n=5), cyclophosphamide (n=1), anti-thymocyte globulin (n=1), and corticosteroids (n=6). Lymphadenopathy and splenomegaly were seen in 13% (n=2) and 33% (n=5) of the patients. Other conditions observed were MGUS (20%; n=3) and RA (7%; n=1). Conventional cytogenetic showed normal karyotype in 89% (n=11, tested individuals 13/15). Somatic STAT3 mutations were identified in 2 patients. Sixty% of cases (n=9) were seropositive for EBV when tested at different time points after transplant. Similarly, 53% (n=8) were seropositive for CMV, of which, 5 were positive post-transplantation and 3 pre-/post-transplantation. The complexity of T-LGLL expansion post-transplantation might be due to several mechanisms including active viral infections, latent oncogenic viral reactivation and graft allo-antigenic stimulation. However, in our cohort graft rejection or GvHD was encountered in a few patients (2 allo-HSCT recipients). Autoimmune conditions were present in 50% of SOT recipients (n=4/ 8, including RA, ulcerative colitis, systemic lupus erythematosus). Some of our patients also had low immunoglobulin levels. Overt EBV (post-transplant lymphoproliferative disorder) and CMV reactivation was diagnosed in only 27% (4/15) of the patients. In sum we report the long term follow up of a cohort of T-LGLL and emphasize the expansion of T-LGLL post-transplant highlighting the difficulty in assigning one unique origin of LGLL. Disclosures Hill: Genentech: Consultancy, Research Funding; Takeda: Research Funding; Celegene: Consultancy, Honoraria, Research Funding; Kite: Consultancy, Honoraria; Abbvie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Seattle Genetics: Consultancy, Honoraria; Amgen: Research Funding; Pharmacyclics: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Gilead: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; TG therapeutics: Research Funding; AstraZeneca: Consultancy, Honoraria. Majhail:Atara Bio: Consultancy; Mallinckrodt: Honoraria; Nkarta: Consultancy; Anthem, Inc.: Consultancy; Incyte: Consultancy. Sekeres:Syros: Membership on an entity's Board of Directors or advisory committees; Millenium: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees. Maciejewski:Alexion: Consultancy; Novartis: Consultancy.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 218-218
Author(s):  
Jil Rotterdam ◽  
Margot Thiaucourt ◽  
Juliana Schwaab ◽  
Andreas Reiter ◽  
Sebastian Kreil ◽  
...  

Abstract Background: In general, patients with hematological diseases are predisposed to develop infections. Severe COVID-19 infection associated with high mortality is more likely in these patient cohorts compared to the general population. Due to immune defects related to the primary disease and/or to immunosuppressive treatment regimes, vaccination efficacy may be reduced in patients with hematological diseases. So far, data on this area are limited. Aim: To evaluate vaccination-related antibody response to BNT162b2, mRNA-1273, and ChADOx1 in patients with hematological disorders. Patients and methods: In this interim analysis of a prospective, observational single-center study, we report antibody levels at least 2 weeks after COVID-19 vaccination. A FDA/CE approved electrochemiluminescent assay (ECLIA) (Elecsys®, Roche, Mannheim, Germany) was used to quantify antibodies, pan Ig (including IgG) against the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. The assay has a measurement range of 0.4 to 250 U/mL, with a concentration ≥0.8 U/ml considered as positive. Data were analyzed for patients without detection of anti-N (nucleocapsid) SARS-CoV-2 antibody (i.e., without having passed SARS-CoV-2 infection). All tests were performed according to the manufacturer's instructions in an accredited laboratory at the University Hospital Mannheim. Results: Between February 2021 and July 2021, a total of 175 patients with hematological diseases were included in this study. The median age was 66 years (range 21-90 years), and 81 (46.3%) were female. The antibody levels were measured at least 14 days (median, 58 days) after the 2 nd vaccination. The patients were vaccinated with BNT162b2 (BioNTech, n=134), mRNA-1273 (Moderna, n=19), ChADOx1 (AstraZeneca, n=12), or got the first vaccination with BNT162b2 and the second with ChADOx1 (n=10). Overall, 145/175 (82.9%) were diagnosed with a malignant hematological disease (myeloid neoplasms, n=108; lymphoid neoplasms, n=37) and 30/175 with a non-malignant hematological disease (autoimmune disease, n=24; benign, n=6). 124 patients (70.1%) were on active therapy, and 51 patients (29.1%) were previously treated or treatment naïve. Correlation to specific therapies is ongoing and will be presented. In general, vaccination-related antibody response was positive (≥0.8 U/mL) in 148/175 (84.6%) patients with a median level of 208.6 U/mL (range 0.8-250.00) and negative (&lt;0.8 U/mL) in 27/175 (15.4%) patients. The distribution of the negative cohort regarding the disease subgroups were as followed: myeloid neoplasms 7/27 (25.9%), lymphoid neoplasms 16/27 (59.3%), non-malignant hematological disease 4/27 (14.8%). Within the negative cohort, 21/27 (77.8%) were treated on active therapy, 6/27 (22.2%) were previously treated or treatment naïve. In myeloid neoplasms, patients with classical myeloproliferative neoplasm (MPN) had the highest negative result for antibodies with 4/7 (57.1%) followed by myelodysplastic syndrome (MDS) 2/7 (28.6%). Interestingly, all patients with chronic myeloid leukemia (CML) had a measurable immune response. In lymphoid neoplasms, patients with low-grade non-hodgkin lymphoma (NHL) (predominately chronic lymphocytic leukemia, CLL) had the highest negative antibody result 13/16 (81.3%) followed by high-grade NHL 4/8 (50%; predominately diffuse large b-cell lymphoma, DLBCL). In non-malignant hematological diseases, only patients with autoimmune diseases had a negative result. Conclusion: A remarkable group of patients with hematological disease were measured with no or low immune response after 2 nd COVID-vaccination, especially those with low-grade NHL, MDS and autoimmune disease. It seems that the percentage of patients with MPN and low response is less critical. No problems appeared in CML patients. Further explorations are needed with focus on potential risk of COVID infections despite full vaccination: The potential of 3 rd booster vaccination should be explored within clinical trials. Disclosures Reiter: AOP Orphan Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: travel support; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel expenses, Research Funding; Celgene/BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: travel support; Incyte: Membership on an entity's Board of Directors or advisory committees, Other: Travel expenses; Blueprint Medicines: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel expenses; Abbvie: Membership on an entity's Board of Directors or advisory committees; Deciphera: Membership on an entity's Board of Directors or advisory committees, Other: Travel expenses. Kreil: Novartis: Research Funding. Hofmann: Amgen: Honoraria; BMS: Honoraria; Novartis: Honoraria. Jawhar: Takeda: Honoraria, Other: Travel support; Blueprint Medicines: Honoraria; Stemline: Consultancy, Honoraria; Celgene: Other: Travel support; Novartis: Consultancy, Honoraria, Other: Travel support, Speakers Bureau. Saussele: Roche: Honoraria; Pfizer: Honoraria; Incyte: Honoraria, Research Funding; BMS: Honoraria, Research Funding; Novartis: Honoraria, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document