scholarly journals Development of Multi-Engineered iPSC-Derived CAR-NK Cells for the Treatment of B-Cell Malignancies

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1729-1729
Author(s):  
Luis Borges ◽  
Mark A Wallet ◽  
Chiamin-Liao Bullaughey ◽  
Michael F Naso ◽  
Buddha Gurung ◽  
...  

Abstract Induced-pluripotent stem cells (iPSCs) can be differentiated into various somatic cells, including different immune cell types. We have engineered iPSC-derived NK cells with multiple features to generate therapeutic candidates designed to eliminate cancer cells while avoiding recognition by the host immune system. The unlimited replication capacity of iPSCs facilitates the engineering of several genetic modifications without the risk of driving cells to exhaustion as in the case of cell products derived from fully differentiated immune cells. Once all edits are completed, our cells are single-cell cloned and each clone is genetically characterized to select clones without off-target insertions or deletions. Following the genetic characterization, selected clones are differentiated and tested in vitro and in vivo to identify the final clinical candidate. The use of a single-cell iPSC clone enables the generation of a master cell bank producing a highly uniform cell product that can be made available off-the-shelf at any clinical site. CNTY-101 is an iPSC-derived CAR-NK clinical candidate for the treatment of B-cell malignancies. It incorporates six gene edits designed to improve persistence and functionality as well as safety. These modifications include edits to reduce graft rejection due to alloreactivity, the expression of a homeostatic cytokine to improve functionality and persistence, the introduction of a chimeric antigen receptor (CAR) targeting CD19 to mediate tumor cell engagement and killing, as well a safety switch to eliminate the cells, if ever necessary. To prevent rejection by the patient's CD8 T cells, the beta-2-microbulin (ß2M) gene was disrupted with simultaneous insertion of a transgene encoding the HLA-E protein tethered with ß2M and a peptide. HLA-E was introduced to prevent NK cell cytotoxicity against the engineered cells, which lack HLA-I. For resistance to CD4 T cell-mediated allogenic immune rejection, the class II major histocompatibility complex transactivator (CIITA) gene was disrupted with simultaneous insertion of a transgene encoding the extra-cellular and transmembrane domains of EGFR, and the NK cell growth factor IL-15. EGFR provides an elimination tag that can be engaged by clinically approved anti-EGFR antibodies, such as cetuximab. Finally, the CAR transgene targeting the CD19 antigen was inserted into the AAVS1 safe harbor locus. Our data indicates that CNTY-101 iNK cells have strong antitumor activity against lymphoma cell lines both in vitro and in vivo. In vitro, CNTY-101 eliminates lymphoma cell lines through multiple rounds of killing without reaching exhaustion. Clones expressing higher levels of IL-15 tend to have better persistence and functionality, with some clones showing robust cytotoxicity for over fifteen rounds of serial killing. In vivo, the clones that demonstrated better in vitro serial killing tend to mediate the best anti-tumor activity in lymphoma xenograft models. Upon 3 weekly doses, the most active candidate clone demonstrated significant tumor growth inhibition after administration of fresh (91 % tumor growth inhibition) or cryopreserved cells (76 % tumor growth inhibition). The efficacy of the EGFR-safety switch was also investigated both in vitro and in vivo. In vitro, addition of cetuximab to co-cultures of IL-2-activated PBMC and cells mediated antibody-dependent cellular cytotoxicity (ADCC) in a concentration-dependent fashion, with an EC50 of 2 ng/ml. In vivo, there was a 96% reduction in the number of iPSC-derived CAR-NK cells in the lungs and a 95% reduction in the number of CAR-NK cells in the blood of mice that received cetuximab versus PBS-treated mice. In summary, CNTY-101 is a novel, multi-engineered, allogeneic CAR-iNK product candidate for the treatment of B-cell malignancies. It includes multiple immune evasion features to prevent recognition by the patient's immune system and expression of IL-15 to facilitate persistence and functionality. We have initiated GMP manufacturing of CNTY-101 and plan to enter clinical trials in 2022. Disclosures Borges: Century Therapeutics: Current Employment, Current equity holder in publicly-traded company. Wallet: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Bullaughey: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Naso: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Gurung: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Keating: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Carton: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Wheeler: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Campion: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Mendonca: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Jessup: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Beqiri: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Chin: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Millar Quinn: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Morse: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2360-2360
Author(s):  
Fariba Némati ◽  
Claire Mathiot ◽  
Isabelle Grandjean ◽  
Olivier Lantz ◽  
Vincent Bordier ◽  
...  

Abstract We previously reported an increase of tumor growth inhibition following chemotherapy combined with concomitantly administration of imatinib mesylate [Decaudin D, et al. Int J Cancer2005;113:849–856; Decaudin D, et al. Anti-Cancer drugs2006;17:685–696; Decaudin D, et al. Impact of STI571 on the pharmacokinetics of etoposide and / or ifosfamide in mice. Cancer Res (AACR Annual Meeting) 2006;abstr:5154]. Inversely, combination of imatinib and rituximab was reported in very few cases of patients and remains controversial. In order to explore this particular combination of targeted therapies, we therefore investigated the in vivo impact of rituximab plus imatinib on a B-cell lymphoproliferation. Combination of the tyrosine kinase inhibitor imatinib mesylate (STI571) and the anti-CD20 monoclonal antibody rituximab was evaluated on an EBV-associated B-cell lymphoproliferative disorder xenografted into SCID or Rag2/gc −/− (B-, T-, and NK-) mice. Using SCID mice, we found that STI571 diminished the efficacy of rituximab to inhibit tumor growth in vivo (Figure 1A). Using alymphoid Rag2/gc −/− mice, we showed that the effect of STI571 was not dependent on the presence of NK cells (Figure 1B). In contrast, serum complement administered after STI571 treatment reversed this inhibitory effect. Finally, using non immunodeficient mice, we observed an in vivo decrease of CD4-positive T-cells and mature B-cell lymphocytes after imatinib administration. We found that STI571 decreased the in vivo efficacy of rituximab via serum protein components that could influence complement-dependent cytotoxicity. In contrast, this effect was not dependent on the presence of NK cells. Figure Figure


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 825-825
Author(s):  
Alex R. Shoemaker ◽  
Michael J. Mitten ◽  
Anatol Oleksijew ◽  
Jacqeuline M. O’Connor ◽  
Baole Wang ◽  
...  

Abstract ABT-263 is an orally bioavailable small molecule inhibitor of Bcl-2 family proteins with a Ki of ≤ 1 nM against Bcl-2, Bcl-XL, and Bcl-w. Non-Hodgkin’s B-cell lymphomas represent clinically relevant disease targets for this molecule due, in part, to strong expression of Bcl-2 often associated with various types of NHL (frequently involving a t(14;18) translocation including the Bcl-2 locus). ABT-263 exhibits sub-micromolar in vitro activity against a variety of NHL cell lines. DoHH-2 and WSU-DLCL2 are two B-cell NHL lines harboring the t(14;18) translocation that exhibit differential in vitro sensitivity to ABT-263. Granta-519 is a mantle cell lymphoma line with the characteristic t(11;14)(q13:q32) translocation resulting in overexpression of cyclin D1. ABT-263 has an EC50 of approximately 150 nM in the Granta-519 cell line. Here we present efficacy data evaluating the activity of ABT-263 in several NHL xenograft models. ABT-263 has significant in vivo anti-tumor efficacy in established flank tumor models both as monotherapy and in combination with cytotoxic agents. The efficacy of ABT-263 at 100 mg/kg/day, p.o., q.d. ×21 was evaluated as monotherapy and in combination with etoposide, vincristine, modified CHOP, R-CHOP, bortezomib, rapamycin, and rituximab. Results show that ABT-263 significantly inhibits tumor growth as a monotherapy (~50–60% tumor growth inhibition) and enhances the efficacy of these cytotoxic agents in combination therapy. Statistically significant enhancement of tumor growth inhibition was observed for each combination relative to monotherapy treatment. Efficacy was maintained even when therapy was initiated on larger (~500 mm3) tumors. Combinations of ABT-263 + rapamycin and ABT-263 + rituximab result in complete regression of a significant percentage of established B cell lymphoma tumors for a sustained period of time in vivo. The combination of ABT-263 + R-CHOP resulted in complete regression of 100% of the tumors in the mantle cell lymphoma model. The strong in vitro potency and tumor regressions seen in vivo suggest that ABT-263 has great potential for the oral treatment of NHL B-cell lymphomas.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1844-1844
Author(s):  
John Richards ◽  
Myriam N Bouchlaka ◽  
Robyn J Puro ◽  
Ben J Capoccia ◽  
Ronald R Hiebsch ◽  
...  

AO-176 is a highly differentiated, humanized anti-CD47 IgG2 antibody that is unique among agents in this class of checkpoint inhibitors. AO-176 works by blocking the "don't eat me" signal, the standard mechanism of anti-CD47 antibodies, but also by directly killing tumor cells. Importantly, AO-176 binds preferentially to tumor cells, compared to normal cells, and binds even more potently to tumors in their acidic microenvironment (low pH). Hematological neoplasms are the fourth most frequently diagnosed cancers in both men and women and account for approximately 10% of all cancers. Here we describe AO-176, a highly differentiated anti-CD47 antibody that potently targets hematologic cancers in vitro and in vivo. As a single agent, AO-176 not only promotes phagocytosis (15-45%, EC50 = 0.33-4.1 µg/ml) of hematologic tumor cell lines (acute myeloid leukemia, non-Hodgkin's lymphoma, multiple myeloma, and T cell leukemia) but also directly targets and kills tumor cells (18-46% Annexin V positivity, EC50 = 0.63-10 µg/ml) in a non-ADCC manner. In combination with agents targeting CD20 (rituximab) or CD38 (daratumumab), AO-176 mediates enhanced phagocytosis of lymphoma and multiple myeloma cell lines, respectively. In vivo, AO-176 mediates potent monotherapy tumor growth inhibition of hematologic tumors including Raji B cell lymphoma and RPMI-8226 multiple myeloma xenograft models in a dose-dependent manner. Concomitant with tumor growth inhibition, immune cell infiltrates were observed with elevated numbers of macrophage and dendritic cells, along with increased pro-inflammatory cytokine levels in AO-176 treated animals. When combined with bortezomib, AO-176 was able to elicit complete tumor regression (100% CR in 10/10 animals treated with either 10 or 25 mg/kg AO-176 + 1 mg/kg bortezomib) with no detectable tumor out to 100 days at study termination. Overall survival was also greatly improved following combination therapy compared to animals treated with bortezomib or AO-176 alone. These data show that AO-176 exhibits promising monotherapy and combination therapy activity, both in vitro and in vivo, against hematologic cancers. These findings also add to the previously reported anti-tumor efficacy exhibited by AO-176 in solid tumor xenografts representing ovarian, gastric and breast cancer. With AO-176's highly differentiated MOA and binding characteristics, it may have the potential to improve upon the safety and efficacy profiles relative to other agents in this class. AO-176 is currently being evaluated in a Phase 1 clinical trial (NCT03834948) for the treatment of patients with select solid tumors. Disclosures Richards: Arch Oncology Inc.: Employment, Equity Ownership, Other: Salary. Bouchlaka:Arch Oncology Inc.: Consultancy, Equity Ownership. Puro:Arch Oncology Inc.: Employment, Equity Ownership. Capoccia:Arch Oncology Inc.: Employment, Equity Ownership. Hiebsch:Arch Oncology Inc.: Employment, Equity Ownership. Donio:Arch Oncology Inc.: Employment, Equity Ownership. Wilson:Arch Oncology Inc.: Employment, Equity Ownership. Chakraborty:Arch Oncology Inc.: Employment, Equity Ownership. Sung:Arch Oncology Inc.: Employment, Equity Ownership. Pereira:Arch Oncology Inc.: Employment, Equity Ownership.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1592-1592 ◽  
Author(s):  
Jessica J Huck ◽  
Mengkun Zhang ◽  
Marc L Hyer ◽  
Mark G Manfredi

Abstract Aurora A kinase is a serine/threonine protein kinase that is essential for normal transit of cells through mitosis. In many tumor types the Aurora A gene is amplified and/or the protein is over-expressed. The Aurora A small-molecule inhibitor MLN8237 demonstrated robust tumor growth inhibition in xenograft models of solid tumors grown subcutaneously (S.C.) in immunocompromised mice. Here we explored the antitumor activity of MLN8237 in models of diffuse large B-cell lymphoma (DLBCL) both in vitro and in vivo. In vivo three established DLBCL xenograft models (OCI-Ly7, OCI-Ly19, and WSU-DLCL2; all cells expressing luciferase) and a primary DLBCL tumor model PHTX-22-06 were tested using MLN8237 at different doses. Rituximab, an anti-CD20 monoclonal antibody that is active against CD20+ malignant B cells and is a standard of care agent was used for comparison. Using these model systems, tumor cells were injected either I.V. (to evaluate disseminated disease), or S.C. in severe combined immunodeficient mice (SCID). Animals were dosed orally for 21 days with MLN8237 (QD or BID) at various doses, or Rituximab dosed at 10mg/kg IV (once/week) and tumor growth inhibition was monitored using either bioluminescent imaging for the disseminated models or vernier calipers for the S.C. models. Tumor growth inhibition by MLN8237 was dose dependent with 20 mg/kg bid being the most efficacious dose (TGI>100% in both disseminated OCI-Ly19 and WSU models). All animals in the OCI-Ly19 disseminated model 20 mg/kg BID treatment group demonstrated regressions and remained disease free until the end of the study, day 65. In this study the Rituximab treated animals were euthanized on day 31 due to a high level of tumor burden. In the primary tumor model, PHTX-22-06, MLN8237 dosed at 20 mg/kg BID was also the most efficacious with a TGI of 95%. Moreover, tumor growth inhibition was durable as determined by prolonged tumor growth delay (>50 days). Significant efficacy was achieved in all models tested, whether grown as disseminated or subcutaneous models. A noted increase in durability of response was observed with MLN8237 treatment when compared with previous data from solid tumor models. In vitro, MLN8237 treatment increased levels of apoptosis in the OCI-Ly19 cells in comparison to the solid tumor cell line HCT-116 (colon). Greater Annexin V positive cells and greater cleaved PARP and Caspase-3 signals were detected in the MLN8237 treated OCI-Ly19 cells when compared to HCT-116 cells. The demonstration of robust and durable anti-tumor activity in preclinical models treated with MLN8237 provides the basis for its clinical evaluation as a treatment option for DLBCL. MLN8237 is currently in multiple Phase I clinical trials.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3931-3931 ◽  
Author(s):  
Paul A. Algate ◽  
Jennifer Wiens ◽  
Christy Nilsson ◽  
Mien Sho ◽  
Debra T. Chao ◽  
...  

Abstract Abstract 3931 Background: CD37 is a 50–55 kDa heavily glycosylated member of the tetraspanin superfamily of molecules. This cell surface protein is expressed on normal and transformed B-cells, and has been implicated in diverse processes including cellular activation and proliferation, cell motility, and cell-cell adhesion. TRU-016 is a novel humanized anti-CD37 SMIP™ protein. Pre-clinical studies have demonstrated that anti-CD37 SMIP™ protein mediates caspase-independent direct killing of normal and malignant B-cells, a mechanism of action that appears to be different than CD20 therapies. In addition, TRU-016 results in indirect killing through NK cell mediated SMIP-protein directed cellular cytotoxicity (SDCC). The therapeutic potential of TRU-016 against several subsets of B-cell malignancies is currently being investigated in the clinic. Methods: The ability of TRU-016 to interact and increase cell killing with established therapeutics rituximab (anti-CD20 antibody), bendamustine (bi-functional alkylating agent/nucleoside analog), LY294002 (PI3K inhibitor) and temsirolimus (mTOR inhibitor) was investigated in vitro using the Rec-1 (mantle cell lymphoma) and SU-DHL-6 (diffuse large B cell lymphoma) cell lines. Individual drugs were tested in combination with TRU-016 as well as in a multiple drug cocktail. Combination index analyses were performed for drug combinations over the 20–90% effect levels. To determine whether in vitro synergy could be recapitulated in vivo, DoHH-2 (follicular lymphoma) xenografts were treated with TRU-016, bendamustine, and the combination of TRU-016 and bendamustine with or without rituximab. Furthermore, the effect of the dosing schedule with the combination of TRU-016 and rituximab was explored by comparing the treatment over a short time period to an extended (maintenance) dosing regimen. CD37 expression on the tumor xenografts was evaluated post different treatment by immunohistochemistry. Results: Combination index analyses determined that the killing effects of TRU-016 was synergistic with rituximab, bendamustine and temsirolimus in NHL models. Furthermore, TRU-016 provided additional efficacy when added to the combination of rituximab and bendamustine. In vivo results demonstrated that the in vitro synergy results were applicable to a more complex in vivo disease model. The combination of TRU-016 with bendamustine or rituximab resulted in increased tumor growth delay compared to that attained with the individual drugs. The addition of TRU-016 to the combination of bendamustine and rituximab resulted in increased tumor growth delay compared to the two drugs alone. The observed efficacy of the combination of TRU-016 and rituximab could be extended with repeated (maintenance) dosing with tumor free survival being observed beyond the 35 days of dosing. The combination of TRU-016 with temsirolimus also resulted in a reduction of tumor growth compared to either molecule alone. CD37 target expression was detected in the xenograft tumors post-treatment with all drugs tested. Conclusions: TRU-016 in combination with rituximab, bendamustine or temsirolimus increased cell killing of NHL cells in vitro over that observed for each agent alone. Furthermore, the triple combination of TRU-016 with rituximab, bendamustine or temsirolimus displayed greater anti-tumor activity in vivo than each of the agents alone against a follicular lymphoma tumor model. The addition of TRU-016 to a combination of rituximab and bendamustine resulted in increased killing in vitro and in vivo. The combinatorial activity of TRU-016 and rituximab in vivo was increased when the drugs were administered over a longer period. These results provide preclinical rationale for the potential different combinations of TRU-016 with several established therapeutics for the treatment of NHL and related B-cell malignancies. Disclosures: Algate: Trubion Pharmaceuticals: Employment. Wiens:Trubion Pharmaceuticals: Employment. Nilsson:Trubion Pharmaceuticals: Employment. Sho:Facet/Abbott: Employment. Chao:Facet/Abbott: Employment. Starling:Facet/Abbott: Employment. Gordon:Trubion Pharmaceuticals: Employment.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 135-135 ◽  
Author(s):  
Xiaobin B. Zhao ◽  
Joshi Trupti ◽  
Rosa Lapalombella ◽  
Carolyn Cheney ◽  
Aruna Gowda ◽  
...  

Abstract CD37 is a lineage-specific B-cell antigen that represents an attractive target for immunotherapy in B-cell malignancies, especially in chronic lymphocytic leukemia (CLL) and non-Hodgkin’s lymphoma (NHL). CD37-specific small modular immuno pharmaceutical (CD37-SMIP™) drug is an engineered protein therapeutic directed to the CD37 antigen using a single chain variable region (scFv) linked to a modified human IgG1 hinge, CH2, and CH3 domains. We have previously presented that CD37-SMIP™ drug induces both ADCC and apoptosis against primary CLL cells and B-cell lymphoma cells and therapeutic efficacy was observed in a Raji cell disseminated leukemia xenograft model. Herein, we sought to determine the effector cell type(s) mediating ADCC and explore if agents that deplete NK cell inhibitory T-regulatory cells influence CD37-SMIP™ efficacy. Immunostaining of human peripheral blood mononuclear cells (PBMCs) from CLL patients demonstrated no expression of CD37 on CD3+ T cells, CD16+ or CD56+ NK cells, or CD64+ monocytes whereas CD37 was highly expressed on CD19+ B cells. Using purified human PBMCs as effector cells and Cr-51 labelled CLL B cells as targets, we found the CD37-SMIP™ dependent ADCC was predominantly mediated by NK cells, but not naïve or activated monocytes. Consistent with these in-vitro results, the in-vivo therapeutic efficacy of CD37-SMIP™ drug was significantly compromised by depletion of NK cells in the Raji cell disseminated leukemia xenograft SCID mouse model. The median survival time of CD37-SMIP™ treated mice decreased from 51 days (95% CI: 38, 78) to 27 days (95% CI: 25, 37) (p=0.017) with the depletion of NK cells. Consistent with previous studies, ADCC is not diminished by fludarabine, an agent that may deplete T-regulatory cells, suggesting that the anti-CD37 protein and fludarabine might combine for increased efficacy in-vivo. We therefore examined the effect of fludarabine on CD37-SMIP™ in-vitro apoptotic activity. These data demonstrate that direct cell death mediated by CD37-SMIP™ drug (5 ug/mL) synergizes with fludarabine-induced caspase-dependent apoptosis, as measured by both the MTT assay and annexin V/PI staining of CLL cells (combination index, CI=0.44). Overall, these data suggest that the CD37-SMIP™ is a promising therapeutic agent against CD37+ B-cell malignancies as either monotherapy or in combination with fludarabine. Further clinical development is warranted to investigate the effect of CD37-SMIP™ drug in CLL and NHL. (SMIP trademark is owned by Trubion Pharmaceuticals).


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2779-2779
Author(s):  
Marina Gergues ◽  
Irene Raitman ◽  
Joseph Gleason ◽  
Valentina Rousseva ◽  
Shuyang He ◽  
...  

Abstract Background: Natural killer (NK) cells exhibit anti-tumor activity in a non-antigen-specific manner without causing graft-versus-host disease. T cell and cord blood NK cells expressing chimeric antigen receptor (CAR) targeting CD19 have demonstrated remarkable clinical efficacies against B cell lymphomas (Maude et al, N Engl J Med 2018; Neelapu et al, N Engl J Med 2017; Liu et al, N Engl J Med 2020). Celularity has developed a platform for the expansion and differentiation of human placental CD34 + stem cells towards NK cells. The introduction of CD19 CAR enables generation of CAR19-CYNK cells that can be used as an off-the-shelf, cryopreserved, allogeneic cell therapy for CD19 + B cell malignancies. Reported here are the in vitro and in vivo results evaluating anti-tumor activity of CAR19-CYNK against CD19 + B cell malignancies. Methods: CAR19-CYNK cells were generated by retroviral transduction of human placental CD34 + cells with an anti-CD19 CAR (CD19scFv-CD28CD3ζ, Sorrento Therapeutics), followed by culture expansion in the presence of cytokines. CD19 CAR expression and phenotype of CAR19-CYNK cells were characterized by flow cytometry using the following surface markers: CD56, CD3, CD226, CD16, CD11a, CD94, NKG2D, NKp30, NKp44, NKp46. The in vitro anti-tumor activity of CAR19-CYNK against the B cell lymphoma cell lines, Daudi and Nalm-6, was assessed at various effector to target (E:T) ratios using a flow cytometry-based cytotoxicity assay and multiplex Luminex analysis for cytokine profiling. Non-transduced (NT) NK cells were used as control. In vivo efficacy of CAR19-CYNK was assessed using a disseminated B-cell lymphoma xenograft model in B-NDG-hIL15 mice. B-NDG-hIL15 mice lack T, B, and NK cells and are transgenic for human IL-15 to support CAR19-CYNK persistence and maturation. Luciferase expressing Daudi cells (3×10 6) were intravenously (IV) injected on Day 0 three days after the mice were preconditioned with a myeloablative dose of busulfan to allow for better tumor cell engraftment. CAR19-CYNK cells (1x10 7) were IV injected on Day 7. Tumor burden was assessed weekly by bioluminescence imaging (BLI) and the mice were followed for assessment of their survival (n=5 mice per group). Results: Placental CD34 + cells were genetically modified using a retroviral vector and achieved an average of 29.2% ± 12.4% (range 17.5% to 50.1%; n=5 donor lots) CD19 CAR expression on CAR19-CYNK cells at the end of 35-day culture. The average fold expansion of CAR19-CYNK was 6186 ± 2847 with the range of 2692 to 10626 (n=5 donor lots). Post-thaw evaluation of CAR19-CYNK (n=5 donor lots) revealed 93.8 ± 3.9% of CD56 +CD3 - NK cells, and transduction of CD19 CAR on CYNK did not significantly alter NK cell phenotype based on various activation and lineage markers (CD226, CD16, CD11a, CD94, NKG2D, NKp30, NKp44, NKp46). CAR19-CYNK displayed enhanced in vitro cytotoxicity against lymphoma cell lines, Daudi and Nalm-6, compared to that of NT NK cells. At the E:T ratio of 10:1, CAR19-CYNK (n=5 donor lots) elicited significant increased cytotoxicity against Nalm-6 compared to that of NT NK cells, with 75.9 ± 14.8% vs. 0.00 ± 0.00% at 24h (p<0.005). Under the same condition, CAR19-CYNK (n=4 donor lots) showed higher cytotoxicity against Daudi compared to that of NT NK cells with 23.6 ± 18.9% vs. 4.9 ± 4.0%. When cocultured with tumor cell lines, CAR19-CYNK showed increased secretion of the proinflammatory cytokines GM-CSF (p<0.05 for both Nalm-6 and Daudi), IFN-g (p<0.05 for Nalm-6), and TNF-a compared to that of NT NK cells at an E:T ratio of 1:1 for 24h. To evaluate the in vivo efficacy of CAR19-CYNK, a disseminated Daudi xenograft B-NDG-hIL15 model was used. CAR19-CYNK treated mice demonstrated a significant survival benefit with a median survival of 39 days versus a median survival of 28 days for the vehicle treated group (p<0.05). Conclusions: In summary, we have successfully established a process for generating CAR19-CYNK cells from human placental CD34 + cells. CAR19-CYNK demonstrated enhanced in vitro cytotoxicity against CD19 + B cell malignancies and in vivo survival benefit in a disseminated lymphoma xenograft B-NDG-hIL15 model. Further development of CAR19-CYNK for CD19 + B cell malignancies is warranted. Disclosures Gergues: Celularity Inc: Current Employment, Current equity holder in publicly-traded company. Raitman: Celularity Inc.: Current Employment, Current equity holder in publicly-traded company. Gleason: Celularity Inc.: Current Employment, Current equity holder in publicly-traded company. Rousseva: Celularity Inc.: Current Employment, Current equity holder in publicly-traded company. He: Celularity Inc.: Current Employment, Current equity holder in publicly-traded company. Van Der Touw: Celularity Inc.: Current Employment, Current equity holder in publicly-traded company. Ye: Celularity Inc.: Current Employment, Current equity holder in publicly-traded company. Kang: Celularity Inc.: Current Employment, Current equity holder in publicly-traded company. Zhang: Sorrento Therapeutics Inc.: Current Employment, Current equity holder in publicly-traded company. Pai: Sorrento Therapeutics Inc.: Current Employment, Current equity holder in publicly-traded company. Guo: Sorrento Therapeutics Inc.: Current Employment, Current equity holder in publicly-traded company. Ji: Sorrento Therapeutics Inc.: Current Employment, Current equity holder in publicly-traded company. Hariri: Celularity Inc.: Current Employment, Current equity holder in publicly-traded company. Zhang: Celularity Inc.: Current equity holder in publicly-traded company, Ended employment in the past 24 months.


Sign in / Sign up

Export Citation Format

Share Document