Abstract 2050: Cell penetrating peptide, ST101, disrupts ATF5 regulation of anti-apoptotic Bcl-2 family proteins, resulting in induction of cancer cell death in vitro and tumor growth inhibition/regression in vivo

Author(s):  
Jim A. Rotolo ◽  
Rick Ramirez ◽  
Mark Koester ◽  
Siok Leong ◽  
Lila Ghamsari ◽  
...  
APOPTOSIS ◽  
2014 ◽  
Vol 19 (5) ◽  
pp. 871-882 ◽  
Author(s):  
Jian-guo Sun ◽  
Hua Li ◽  
Xia Li ◽  
Xueli Zeng ◽  
Ping Wu ◽  
...  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1844-1844
Author(s):  
John Richards ◽  
Myriam N Bouchlaka ◽  
Robyn J Puro ◽  
Ben J Capoccia ◽  
Ronald R Hiebsch ◽  
...  

AO-176 is a highly differentiated, humanized anti-CD47 IgG2 antibody that is unique among agents in this class of checkpoint inhibitors. AO-176 works by blocking the "don't eat me" signal, the standard mechanism of anti-CD47 antibodies, but also by directly killing tumor cells. Importantly, AO-176 binds preferentially to tumor cells, compared to normal cells, and binds even more potently to tumors in their acidic microenvironment (low pH). Hematological neoplasms are the fourth most frequently diagnosed cancers in both men and women and account for approximately 10% of all cancers. Here we describe AO-176, a highly differentiated anti-CD47 antibody that potently targets hematologic cancers in vitro and in vivo. As a single agent, AO-176 not only promotes phagocytosis (15-45%, EC50 = 0.33-4.1 µg/ml) of hematologic tumor cell lines (acute myeloid leukemia, non-Hodgkin's lymphoma, multiple myeloma, and T cell leukemia) but also directly targets and kills tumor cells (18-46% Annexin V positivity, EC50 = 0.63-10 µg/ml) in a non-ADCC manner. In combination with agents targeting CD20 (rituximab) or CD38 (daratumumab), AO-176 mediates enhanced phagocytosis of lymphoma and multiple myeloma cell lines, respectively. In vivo, AO-176 mediates potent monotherapy tumor growth inhibition of hematologic tumors including Raji B cell lymphoma and RPMI-8226 multiple myeloma xenograft models in a dose-dependent manner. Concomitant with tumor growth inhibition, immune cell infiltrates were observed with elevated numbers of macrophage and dendritic cells, along with increased pro-inflammatory cytokine levels in AO-176 treated animals. When combined with bortezomib, AO-176 was able to elicit complete tumor regression (100% CR in 10/10 animals treated with either 10 or 25 mg/kg AO-176 + 1 mg/kg bortezomib) with no detectable tumor out to 100 days at study termination. Overall survival was also greatly improved following combination therapy compared to animals treated with bortezomib or AO-176 alone. These data show that AO-176 exhibits promising monotherapy and combination therapy activity, both in vitro and in vivo, against hematologic cancers. These findings also add to the previously reported anti-tumor efficacy exhibited by AO-176 in solid tumor xenografts representing ovarian, gastric and breast cancer. With AO-176's highly differentiated MOA and binding characteristics, it may have the potential to improve upon the safety and efficacy profiles relative to other agents in this class. AO-176 is currently being evaluated in a Phase 1 clinical trial (NCT03834948) for the treatment of patients with select solid tumors. Disclosures Richards: Arch Oncology Inc.: Employment, Equity Ownership, Other: Salary. Bouchlaka:Arch Oncology Inc.: Consultancy, Equity Ownership. Puro:Arch Oncology Inc.: Employment, Equity Ownership. Capoccia:Arch Oncology Inc.: Employment, Equity Ownership. Hiebsch:Arch Oncology Inc.: Employment, Equity Ownership. Donio:Arch Oncology Inc.: Employment, Equity Ownership. Wilson:Arch Oncology Inc.: Employment, Equity Ownership. Chakraborty:Arch Oncology Inc.: Employment, Equity Ownership. Sung:Arch Oncology Inc.: Employment, Equity Ownership. Pereira:Arch Oncology Inc.: Employment, Equity Ownership.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1592-1592 ◽  
Author(s):  
Jessica J Huck ◽  
Mengkun Zhang ◽  
Marc L Hyer ◽  
Mark G Manfredi

Abstract Aurora A kinase is a serine/threonine protein kinase that is essential for normal transit of cells through mitosis. In many tumor types the Aurora A gene is amplified and/or the protein is over-expressed. The Aurora A small-molecule inhibitor MLN8237 demonstrated robust tumor growth inhibition in xenograft models of solid tumors grown subcutaneously (S.C.) in immunocompromised mice. Here we explored the antitumor activity of MLN8237 in models of diffuse large B-cell lymphoma (DLBCL) both in vitro and in vivo. In vivo three established DLBCL xenograft models (OCI-Ly7, OCI-Ly19, and WSU-DLCL2; all cells expressing luciferase) and a primary DLBCL tumor model PHTX-22-06 were tested using MLN8237 at different doses. Rituximab, an anti-CD20 monoclonal antibody that is active against CD20+ malignant B cells and is a standard of care agent was used for comparison. Using these model systems, tumor cells were injected either I.V. (to evaluate disseminated disease), or S.C. in severe combined immunodeficient mice (SCID). Animals were dosed orally for 21 days with MLN8237 (QD or BID) at various doses, or Rituximab dosed at 10mg/kg IV (once/week) and tumor growth inhibition was monitored using either bioluminescent imaging for the disseminated models or vernier calipers for the S.C. models. Tumor growth inhibition by MLN8237 was dose dependent with 20 mg/kg bid being the most efficacious dose (TGI>100% in both disseminated OCI-Ly19 and WSU models). All animals in the OCI-Ly19 disseminated model 20 mg/kg BID treatment group demonstrated regressions and remained disease free until the end of the study, day 65. In this study the Rituximab treated animals were euthanized on day 31 due to a high level of tumor burden. In the primary tumor model, PHTX-22-06, MLN8237 dosed at 20 mg/kg BID was also the most efficacious with a TGI of 95%. Moreover, tumor growth inhibition was durable as determined by prolonged tumor growth delay (>50 days). Significant efficacy was achieved in all models tested, whether grown as disseminated or subcutaneous models. A noted increase in durability of response was observed with MLN8237 treatment when compared with previous data from solid tumor models. In vitro, MLN8237 treatment increased levels of apoptosis in the OCI-Ly19 cells in comparison to the solid tumor cell line HCT-116 (colon). Greater Annexin V positive cells and greater cleaved PARP and Caspase-3 signals were detected in the MLN8237 treated OCI-Ly19 cells when compared to HCT-116 cells. The demonstration of robust and durable anti-tumor activity in preclinical models treated with MLN8237 provides the basis for its clinical evaluation as a treatment option for DLBCL. MLN8237 is currently in multiple Phase I clinical trials.


2015 ◽  
Vol 26 (6) ◽  
pp. 1044-1057 ◽  
Author(s):  
Chen Wei ◽  
Ma Lin ◽  
Bian Jinjun ◽  
Feng Su ◽  
Cao Dan ◽  
...  

General control nonderepressible kinase 2 (GCN2) is a promising target for cancer therapy. However, the role of GCN2 in cancer cell survival or death is elusive; further, small molecules targeting GCN2 signaling are not available. By using a GCN2 level-based drug screening assay, we found that GCN2 protein level critically determined the sensitivity of the cancer cells toward Na+,K+-ATPase ligand–induced apoptosis both in vitro and in vivo, and this effect was largely dependent on C/EBP homologous protein (CHOP) induction. Further analysis revealed that GCN2 is a short-lived protein. In A549 lung carcinoma cells, cellular β-arrestin1/2 associated with GCN2 and maintained the GCN2 protein level at a low level by recruiting the E3 ligase NEDD4L and facilitating consequent proteasomal degradation. However, Na+,K+-ATPase ligand treatment triggered the phosphorylation of GCN2 at threonine 899, which increased the GCN2 protein level by disrupting the formation of GCN2–β-arrestin–NEDD4L ternary complex. The enhanced GCN2 level, in turn, aggravated Na+,K+-ATPase ligand–induced cancer cell apoptosis. Our findings reveal that GCN2 can exert its proapoptotic function in cancer cell death by posttranslational mechanisms. Moreover, Na+,K+-ATPase ligands emerge as the first identified small-molecule drugs that can trigger cancer cell death by modulating GCN2 signaling.


2015 ◽  
Vol 3 (48) ◽  
pp. 9383-9396 ◽  
Author(s):  
Xin Liang ◽  
Ying Yang ◽  
Lijun Wang ◽  
Xianbing Zhu ◽  
Xiaowei Zeng ◽  
...  

Rapamycin–NaHCO3-loaded HMs combined CQ–NaHCO3-loaded HMs could efficiently induce cancer cell death through apoptosis with autophagosome both in vitro and in vivo.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1729-1729
Author(s):  
Luis Borges ◽  
Mark A Wallet ◽  
Chiamin-Liao Bullaughey ◽  
Michael F Naso ◽  
Buddha Gurung ◽  
...  

Abstract Induced-pluripotent stem cells (iPSCs) can be differentiated into various somatic cells, including different immune cell types. We have engineered iPSC-derived NK cells with multiple features to generate therapeutic candidates designed to eliminate cancer cells while avoiding recognition by the host immune system. The unlimited replication capacity of iPSCs facilitates the engineering of several genetic modifications without the risk of driving cells to exhaustion as in the case of cell products derived from fully differentiated immune cells. Once all edits are completed, our cells are single-cell cloned and each clone is genetically characterized to select clones without off-target insertions or deletions. Following the genetic characterization, selected clones are differentiated and tested in vitro and in vivo to identify the final clinical candidate. The use of a single-cell iPSC clone enables the generation of a master cell bank producing a highly uniform cell product that can be made available off-the-shelf at any clinical site. CNTY-101 is an iPSC-derived CAR-NK clinical candidate for the treatment of B-cell malignancies. It incorporates six gene edits designed to improve persistence and functionality as well as safety. These modifications include edits to reduce graft rejection due to alloreactivity, the expression of a homeostatic cytokine to improve functionality and persistence, the introduction of a chimeric antigen receptor (CAR) targeting CD19 to mediate tumor cell engagement and killing, as well a safety switch to eliminate the cells, if ever necessary. To prevent rejection by the patient's CD8 T cells, the beta-2-microbulin (ß2M) gene was disrupted with simultaneous insertion of a transgene encoding the HLA-E protein tethered with ß2M and a peptide. HLA-E was introduced to prevent NK cell cytotoxicity against the engineered cells, which lack HLA-I. For resistance to CD4 T cell-mediated allogenic immune rejection, the class II major histocompatibility complex transactivator (CIITA) gene was disrupted with simultaneous insertion of a transgene encoding the extra-cellular and transmembrane domains of EGFR, and the NK cell growth factor IL-15. EGFR provides an elimination tag that can be engaged by clinically approved anti-EGFR antibodies, such as cetuximab. Finally, the CAR transgene targeting the CD19 antigen was inserted into the AAVS1 safe harbor locus. Our data indicates that CNTY-101 iNK cells have strong antitumor activity against lymphoma cell lines both in vitro and in vivo. In vitro, CNTY-101 eliminates lymphoma cell lines through multiple rounds of killing without reaching exhaustion. Clones expressing higher levels of IL-15 tend to have better persistence and functionality, with some clones showing robust cytotoxicity for over fifteen rounds of serial killing. In vivo, the clones that demonstrated better in vitro serial killing tend to mediate the best anti-tumor activity in lymphoma xenograft models. Upon 3 weekly doses, the most active candidate clone demonstrated significant tumor growth inhibition after administration of fresh (91 % tumor growth inhibition) or cryopreserved cells (76 % tumor growth inhibition). The efficacy of the EGFR-safety switch was also investigated both in vitro and in vivo. In vitro, addition of cetuximab to co-cultures of IL-2-activated PBMC and cells mediated antibody-dependent cellular cytotoxicity (ADCC) in a concentration-dependent fashion, with an EC50 of 2 ng/ml. In vivo, there was a 96% reduction in the number of iPSC-derived CAR-NK cells in the lungs and a 95% reduction in the number of CAR-NK cells in the blood of mice that received cetuximab versus PBS-treated mice. In summary, CNTY-101 is a novel, multi-engineered, allogeneic CAR-iNK product candidate for the treatment of B-cell malignancies. It includes multiple immune evasion features to prevent recognition by the patient's immune system and expression of IL-15 to facilitate persistence and functionality. We have initiated GMP manufacturing of CNTY-101 and plan to enter clinical trials in 2022. Disclosures Borges: Century Therapeutics: Current Employment, Current equity holder in publicly-traded company. Wallet: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Bullaughey: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Naso: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Gurung: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Keating: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Carton: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Wheeler: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Campion: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Mendonca: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Jessup: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Beqiri: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Chin: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Millar Quinn: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Morse: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company.


2018 ◽  
Vol 9 ◽  
Author(s):  
Vanessa Kaplum ◽  
Anelise C. Ramos ◽  
Marcia E. L. Consolaro ◽  
Maria A. Fernandez ◽  
Tânia Ueda-Nakamura ◽  
...  

2012 ◽  
Vol 29 (2) ◽  
pp. 515-522 ◽  
Author(s):  
HONG LUAN MAO ◽  
YINGXIN PANG ◽  
XIAOLEI ZHANG ◽  
FANG YANG ◽  
JINGFANG ZHENG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document