scholarly journals Bortezomib Is Effective in Treating T-ALL, Inducting G2/M Cell Cycle Arrest and WEE1 Downregulation

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4360-4360
Author(s):  
SIN Chun-fung ◽  
Timothy Ming-hun Wan ◽  
Aarmann Anil Mohinani Mohan ◽  
Yinxia Qiu ◽  
Anan Jiao

Abstract T lymphoblastic leukaemia (T-ALL) is an aggressive haematological malignancy with poor outcome, especially for relapse/refractory disease. Early T- cell precursor acute lymphoblastic leukaemia (ETP-ALL) is a recently identified subtype of T-ALL with worse treatment outcome compared with other subtypes of T-ALL and treatment options are limited. T-ALL frequently harbors genetic aberrations leading to cell cycle dysregulation and it is one of the major molecular pathogenesis of T-ALL. WEE1 is a protein kinase that is responsible for inhibiting mitosis with unrepaired damaged DNA via inactivating CDK1. WEE1 is highly express in adult T-ALL and its overexpression is associated with adverse prognosis in various cancers. Inhibiting WEE1 expression is a novel approach of therapy. Bortezomib is a 26S proteosome inhibitor and it is FDA approved for treating plasma cell myeloma and mantle cell lymphoma. Bortezomib had been demonstrated therapeutic efficacy in clinical setting for relapse/refractory paediatric T-ALL and B-ALL when combined with chemotherapy. Despite its therapeutic efficacy in clinical studies, the mechanism of action of Bortezomib in T-ALL remain uncertain. The role of Bortezomib in cell cycle modulation had not been established in T-ALL. Moreover, it had not been demonstrated that the effect of Bortezomib in WEE1 expression in T-ALL. Here, we present our study that demonstrated the therapeutic efficacy of Bortezomib in treating T-ALL via cell cycle modulation and downregulation of WEE1 by Bortezomib. T-ALL cell lines including MOLT16, MOLT4, LOUCY and CEM were used in the study. Cell viability was measured by trypan blue. Apoptosis and cell cycle analysis were measured by flow cytometry. Western blot of WEE1, p53, cyclin B1, p21 and p27 were performed. Our result showed that Bortezomib reduce the cell viability of T-ALL cell lines in dose and time-dependent manner. Bortezomib was also sensitive towards LOUCY, a T-ALL cell line with ETP-ALL phenotype. It implied that Bortezomib could be a promising therapy for ETP-ALL. Bortezomib also triggered apoptosis in various T-ALL and the effect of apoptosis was more pronounced after 72 hours of treatment when compared with 24-hour. Again, Bortezomib was able to induce apoptosis in LOUCY cell line. G2/M cell cycle arrest was observed in various T-ALL upon treatment of Bortezomib. The effect on cell cycle modulation was also observed in LOUCY cell line. The protein expression of p21 and p27 were increased after the treatment of Bortezomib. The level of cyclin B1 was increased also. There was upregulation of p53 after Bortezomib treatment. Strikingly, the protein expression level of WEE1 was reduced. The findings of WEE1 downregulation by Bortezomib is a novel findings. We also showed that Bortezomib downregulate WEE1 mRNA expression by quantitative PCR. Our study showed that Bortezomib is active against T-ALL cell lines, including ETP-ALL cell line, LOUCY and modulates cell cycle with G2/M arrest. Bortezomib had been shown to increase the level of p21, p27 and cyclin B1 and induced G2/M cell cycle arrest in glioblastoma cells. However, studies on cell cycle modulation by Bortezomib in T-ALL are scarce. Here, we demonstrated Bortezomib stabilized p21, p27 and upregulation of cyclin B1 in T-ALL as well, which could account for the G2/M cell cycle arrest. We first showed that downregulation of WEE1 after treatment with Bortezomib, in protein level as well as in mRNA level. Recent study showed that inhibition of WEE1 is a novel target of therapy in T-ALL. WEE1 is upregulated in T-ALL to prevent entry of mitosis with unrepaired damaged DNA. The downregulation of WEE1 by Bortezomib as showed by our study could reverse its effect and leads to apoptosis of leukaemic cells. In summary, our study provides the insight on mechanism of action of Bortezomib in modulating cell cycle in T-ALL. Moreover, it is the first study to demonstrate WEE1 downregulation by Bortezomib in T-ALL. These findings not only enhance our understanding of mechanism of action of Bortezomib in T-ALL, but also rationalized the use of certain synergistics combination therapy with Bortezomib in treating T-ALL, e.g., chemotherapeutic agents, PARP inhibitors which could damage DNA of leukaemic cells. Further research is needed to explore those combination therapy in T-ALL and molecular mechanism of downregulation of WEE1 by Bortezomib in T-ALL. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.

2018 ◽  
Vol 61 (11) ◽  
pp. 837-846 ◽  
Author(s):  
Chandan Kumar ◽  
Rohit Sharma ◽  
Tapas Das ◽  
Aruna Korde ◽  
Haladhar Sarma ◽  
...  

2018 ◽  
Vol 36 (4_suppl) ◽  
pp. 284-284
Author(s):  
Yu Bin Tan ◽  
Timothy Shuen ◽  
Han Chong Toh

284 Background: Hepatocellular carcinoma (HCC) is the 2nd leading global cause of cancer death. Recently, we have discovered previously undescribed deletion and germline mutation of GATA4 and showed that GATA4 is a key differentiation driver and metabolic regulator in HCC. However, as GATA4 is mostly deleted in HCC, targeting GATA4-downstream molecules is ideal. In this study, proof-of-concept experiments were conducted to show that introduction of HNF4A, which is a GATA4-regulated downstream target, could partially rescue the impaired phenotypes in GATA4-deficient HCC cell line. Methods: Correlation analysis using gene expression microarray of human HCC samples was conducted to identify the genes that are positively correlated with GATA4. A transgenic mouse model with a liver-specific conditional GATA4 knockout was designed to identify liver morphology and gene expression changes which are correlated with the loss of Gata4 in the mouse liver. CRISPR-mediated knockout of GATA4 and lentiviral HNF4A overexpression was carried out in a GATA4-deficient HCC cell lines, PLC/PRF/5 and Hep3B, followed by proliferation, apoptosis, cell cycle and senescence functional assays. Results: Pearson correlation analysis from human HCC samples showed that expression of HNF4A is positively correlated with that of GATA4. Livers from conditional Gata4 knockout mice had lower Hnf4a gene expression when compared to age-matched control mice. Loss of function analysis by CRISPR-mediated GATA4 knockout further showed downregulation of HNF4A in GATA4-deficient PLC/PRF/5 cell line. Lentiviral HNF4A overexpression in PLC/PRF/5 and Hep3B demonstrated reduced proliferation and increased apoptosis while PLC/PRF/5 also showed cell cycle arrest at G2/M phase when compared to control. However, no senescence induction was detected in HNF4A-overexpressing cells. Conclusions: Transgenic mouse data, CRISPR-mediated knockout and analysis of HCC samples showed that HNF4A is a key GATA4-downstream target. HNF4A overexpression decreases proliferation, increases apoptosis and cell cycle arrest in GATA4-deficient HCC cell lines, thus representing a possible therapeutic target for HCC.


2020 ◽  
Author(s):  
Kim Fey Leu ◽  
Menaga Subramaniam ◽  
Xinghua Wang ◽  
Zao Yang ◽  
Lee Fah Yap ◽  
...  

Abstract Background Nasopharyngeal carcinoma (NPC) is among the most common head and neck malignancies seen among adults in Malaysia. Therefore, discovery of novel anti-cancer herbal drugs is of importance. In this study, the cytotoxic effect was conducted on a traditional Chinese herbal prescription (Xiao Xian Xiong Decoction (XXXD) that is made up of 3 Chinese herbal medicines, namely Huanglian (Coptidis Rhizome), Banxia (Pinellia Rhizome), Gualuo (Fructus Trichosanthis).Methods The cytotoxic effect of the individual herb and in combination of two and three herbs was studied on 8 nasopharyngeal cancer cell lines. Global gene expression analysis was carried on extracted RNA using nCounter XT Gene Expression Assay.Results TWO-1, TWO-4, HONE-1, SUNE-1, CNE-2, HK-1, CNE-1 and C666-1 treated with Huanglian, the IC50 values obtained were 24.48, 11.77, 4.48, 10.72 6.32, 11.10, 6.77 and 27.30 µg/ml, respectively. For combination of Huanglian and Banxia, the IC50 values obtained were 74.09 µg/ml (TWO-1), 25.80 µg/ml (TWO-4), 38.10 µg/ml (HONE-1), 29.46 µg/ml (SUNE-1), 19.0 µg/ml (CNE-2) and 20.12 µg/ml (HK-1) but did not exert 50% cell killing in CNE-1 and C666-1 cell lines. The IC50 value attained for the combination of Huanglian and Gualuo was 40.70 µg/ml in HONE-1 cell line. The IC50 values obtained for XXXD (triple combination of Huanglian, Banxia and Gualuo)-treated in HONE-1 and CNE-2 cell lines were 88.55 and 92.42 µg/ml, respectively. Out of all these 7 groups of herbal samples, Huanglian showed the highest cytotoxicity against 8 NPC cell lines with the lowest IC50 value of 4.48 µg/ml recorded in HONE-1. Global gene expression showed Huanglian significantly downregulated genes associated with cell cycle arrest and apoptosis, and thus inhibit HONE-1 cell growth.Conclusions This study suggest that Huanglian could be a potent anticancer herb targeting HONE-1 cancer cell line.


Sign in / Sign up

Export Citation Format

Share Document