colorectal cancer cell line
Recently Published Documents


TOTAL DOCUMENTS

291
(FIVE YEARS 124)

H-INDEX

24
(FIVE YEARS 5)

eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Giulia Ambrosi ◽  
Oksana Voloshanenko ◽  
Antonia F Eckert ◽  
Dominique Kranz ◽  
G Ulrich Nienhaus ◽  
...  

Wnt signaling plays important roles in development, homeostasis, and tumorigenesis. Mutations in β-catenin that activate Wnt signaling have been found in colorectal and hepatocellular carcinomas. However, the dynamics of wild-type and mutant forms of β-catenin are not fully understood. Here, we genome-engineered fluorescently tagged alleles of endogenous β-catenin in a colorectal cancer cell line. Wild-type and oncogenic mutant alleles were tagged with different fluorescent proteins, enabling the analysis of both variants in the same cell. We analyzed the properties of both β-catenin alleles using immunoprecipitation, immunofluorescence, and fluorescence correlation spectroscopy approaches, revealing distinctly different biophysical properties. In addition, activation of Wnt signaling by treatment with a GSK3β inhibitor or a truncating APC mutation modulated the wild-type allele to mimic the properties of the mutant β-catenin allele. The one-step tagging strategy demonstrates how genome engineering can be employed for the parallel functional analysis of different genetic variants.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Hui Chen ◽  
Zhiying Xu ◽  
Hua Cai ◽  
Ya Peng ◽  
Li Yang ◽  
...  

Objectives. The epithelial-to-mesenchymal transition (EMT) is one key step for the invasion and metastasis of colorectal cancer (CRC). Up until now, the underlying mechanism of EMT in CRC is still unpromising. Thus, it is essential to have a better understanding of its carcinogenesis. The transfer RNA-derived small fragments (tsRNAs) are a new group of small noncoding RNAs (sncRNAs), including tRNA-derived stress-induced RNAs (tiRNAs) and tRNA-derived fragments (tRFs), which have been observed to play an important role in many cancers. However, the relationship between tRFs and EMT in CRC is still unknown. Herein, we aimed to investigate the involvement of tRFs in EMT and its contribution to CRC development. Methods. We identified the differentially expressed tsRNAs in colorectal cancer cell line HT29 treated with TGF-β compared with control cells by using high-throughput sequencing and quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). QRT-PCR was conducted to validate the differentially expressed fragments in 68 CRC tumor samples (22 women and 46 men) and adjacent nontumor samples. The association of the expression of tRFs with CRC metastasis and clinical stage was analyzed. Meanwhile, the correlation between tRF expression and overall survival (OS) was also analyzed. TargetScan and miRanda and multiple bioinformatic approaches were used to predict the possible target genes of tsRNAs and analyze possible functions of the tRFs. Results. A series of differentially expressed tsRNAs were identified in TGF-β-treated HT29 cells compared with control cells. tRF-phe-GAA-031 and tRF-VAL-TCA-002 were found to be significantly upregulated in CRC tissues compared to adjacent nontumor tissues. They were significantly correlated with distant metastasis and clinical stage. We compared the differences between tumor samples and nontumor tissues from the ROC curves. The area under the ROC curve (AUC) was up to 0.7554 (95% confidence interval: 0.6739 to 0.8369, p < 0.0001 ) for tRF-Phe-GAA-031 and up to 0.7313 (95% confidence interval: 0.6474 to 0.8151, p < 0.0001 ) for tRF-VAL-TCA-002. For OS analysis, higher tRF-phe-GAA-031 and tRF-VAL-TCA-002 expressions were associated with shorter survival for CRC patients. Conclusion. A series of differentially expressed tsRNAs are identified in the EMT process of CRC. And tRF-phe-GAA-031 and tRF-VAL-TCA-002 are higher expressed in CRC tissues, and they might play an important role in the metastasis of CRC. Meanwhile, they may be potential biomarkers and intervention targets in the clinical treatment of CRC.


ScienceAsia ◽  
2022 ◽  
Vol 48 (1) ◽  
pp. 32
Author(s):  
Suphaket Saenthaweesuk ◽  
Atcharaporn Thaeomor ◽  
Pornrut Rabintossaporn ◽  
Jarinyaporn Naowaboot ◽  
Nuntiya Somparn

2021 ◽  
Vol 26 (6) ◽  
pp. 3120-3128
Author(s):  
M. AYDIN AKBUDAK ◽  
TEVHIDE SUT ◽  
NURANIYE ERUYGUR ◽  
ERSIN AKINCI

The Epilobium species, rich in various active phytochemicals, have been widely used in folk medicine to treat several diseases including benign prostatic hyperplasia. Despite being demonstrated on some type of cancer cells such as prostate cancer, their potential anti-cancerous role on colorectal adenocarcinoma cells has not been studied yet. According to the World Health Organization (WHO), colon cancer is the third most common form of cancer, resulting over 800 000 deaths every year worldwide. The present study demonstrates the anti-cancerous activity of aqueous and ethanolic Epilobium parviflorum extracts in colon cancer cell line HT-29 cells in vitro. The both type of extracts reduced the cell viability of HT-29 cells in a dose dependent manner. Gene expression analysis of HT-29 cells demonstrated an increase at apoptotic genes, caspase 3 and caspase 8. Nuclear fragmentation of apoptotic cells was also demonstrated through TUNEL assay as well as immunostaining experiments. On the other hand, same lethal concentrations of E. parviflorum extracts were not profound on non-cancerous human fibroblast cell line BJ cells. Our results indicate that E. parviflorum may also be used as a therapeutic agent against colon cancers.


Planta Medica ◽  
2021 ◽  
Author(s):  
Hanli Ruan ◽  
Ying Gao ◽  
Ruihua Mao ◽  
Ye Liu ◽  
Ming Zhou

Two new cytochalasans with a rare 6/6/5/5/7 pentacyclic ring system, named chaetoconvosins C−D (1−2), together with two known congeners (3−4), were isolated from the fermentation of an endophytic fungus, Chaetomium sp. SG-01, harbored in the fibrous roots of Schisandra glaucescens Diels. Their structures including the absolute configuration were elucidated by extensive spectroscopic (HRESIMS, NMR, and ECD) and X-ray crystallographic analyses. The TRAIL sensitivity of 1–4 in a TRAIL-resistant HT29 colorectal cancer cell line was evaluated, which revealed that co-treatment of 1–4 at 50 µM with TRAIL (150 ng/mL) reduced the HT29 cell viability by 19.0%, 24.1%, 17.9%, and 15.5%, respectively, compared to treatment with 1–4 alone.


2021 ◽  
Author(s):  
Sara Vanessa Bernhard ◽  
Katarzyna Seget-Trzensiok ◽  
Christian Kuffer ◽  
Dragomir B. Krastev ◽  
Lisa-Marie Stautmeister ◽  
...  

Abstract Background Whole genome doubling is a frequent event during cancer evolution and shapes the cancer genome due to the occurrence of chromosomal instability. Yet, erroneously arising human tetraploid cells usually do not proliferate due to p53 activation that leads to CDKN1A expression, cell cycle arrest, senescence and/or apoptosis. Methods To uncover the barriers that block the proliferation of tetraploids, we performed a RNAi mediated genome-wide screen in a human colorectal cancer cell line (HCT116). Results We identified 140 genes whose depletion improved the survival of tetraploid cells and characterized in depth two of them: SPINT2 and USP28. We found that SPINT2 is a general regulator of CDKN1A transcription via histone acetylation. Using mass spectrometry and immunoprecipitation, we found that USP28 interacts with NuMA1 and affects centrosome clustering. Tetraploid cells accumulate DNA damage and loss of USP28 reduces checkpoint activation, thus facilitating their proliferation. Conclusions Our results indicate three aspects that contribute to the survival of tetraploid cells: (i) increased mitogenic signaling and reduced expression of cell cycle inhibitors, (ii) the ability to establish functional bipolar spindles and (iii) reduced DNA damage signaling.


Author(s):  
Umair Ilyas ◽  
Shagufta Naaz ◽  
Syed Aun Muhammad ◽  
Humaira Nadeem ◽  
Reem Altaf ◽  
...  

Background: The development of resistance to available anticancer drugs is increasingly becoming a major challenge and new chemical entities could be unveiled to compensate for this therapeutic failure. Objectives: The current study demonstrated whether N-protected and deprotected amino acid derivatives of 2-aminopyridine could attenuate tumor development using colorectal cancer cell lines. Methods: Biological assays were performed to investigate the anticancer potential of synthesized compounds. The in silico ADME profiling and docking studies were also performed by docking the designed compounds against the active binding site of beta-catenin (CTNNB1) to analyze the binding mode of these compounds. Four derivatives 4a, 4b, 4c, and 4d were selected for investigation of in vitro anticancer potential using colorectal cancer cell line HCT 116. The anti-tumor activities of synthesized compounds were further validated by evaluating the inhibitory effects of these compounds on the target protein beta-catenin through in vitro enzyme inhibitory assay. Results: The docking analysis revealed favorable binding energies and interactions with the target proteins. The in vitro MTT assay on colorectal cancer cell line HCT 116 and HT29 revealed potential anti-tumor activities with an IC50 range of 3.7-8.1µM and 3.27-7.7 µM, respectively. The inhibitory properties of these compounds on the concentration of beta-catenin by ELISA revealed significant percent inhibition of target protein at 100 µg/ml. Conclusion: In conclusion, the synthesized compounds showed significant anti-tumor activities both in silico and in vitro, having potential for further investigating its role in colorectal cancer.


2021 ◽  
Vol 23 (1) ◽  
pp. 225
Author(s):  
Ruiko Ogata ◽  
Shiori Mori ◽  
Shingo Kishi ◽  
Rika Sasaki ◽  
Naoya Iwata ◽  
...  

Cancer dormancy is a state characterized by the quiescence of disseminated cancer cells, and tumor recurrence occurs when such cells re-proliferate after a long incubation period. These cancer cells tend to be treatment resistant and one of the barriers to successful therapeutic intervention. We have previously reported that long-term treatment of cancer cells with linoleic acid (LA) induces a dormancy-like phenotype. However, the mechanism underpinning this effect has not yet been clarified. Here, we investigate the mechanism of LA-induced quiescence in cancer cells. We first confirmed that long-term treatment of the mouse colorectal cancer cell line CT26 with LA induced quiescence. When these cells were inoculated subcutaneously into a syngeneic mouse and fed with an LA diet, the inoculated cancer cells maintained the quiescent state and exhibited markers of dormancy. LA-treated CT26 cells showed reduced oxidative phosphorylation, glycolysis, and energy production as well as reduced expression of the regulatory factors Pgc1α and MycC. MicroRNA expression profiling revealed that LA induced an upregulation in miR-494. The expression of Pgc1α and MycC were both induced by an miR-494 mimic, and the LA-induced decrease in gene expression was abrogated by an miR-494 inhibitor. The expression of miR-494 was enhanced by the mitochondrial oxidative stress produced by LA. In a syngeneic mouse subcutaneous tumor model, growth suppression by an LA diet and growth delay by LA pretreatment + LA diet were found to have similar effects as administration of an miR-494 mimic. In contrast, the effects of LA were abrogated by an miR-494 inhibitor. Analysis of human colorectal cancer tissue revealed that miR-494 was present at low levels in non-metastatic cases and cases with simultaneous liver metastases but was expressed at high levels in cases with delayed liver metastases, which also exhibited reduced expression of PGC1α and MYCC. These results suggest that miR-494 is involved in cancer dormancy induced by high levels of LA intake and that this microRNA may be valuable in targeting dormant cancer cells.


Author(s):  
Andréa Felinto Moura ◽  
Mirian Rita Carrilho de Castro ◽  
Raquel Ferreira Naves ◽  
Ana Jérsia Araújo ◽  
Maria Claudia Luciano dos Santos ◽  
...  

Background: New chalcones have been developed from the insertion of organic groups, among them sulfonamides, presenting varied biological activity. Objective: The aim of this work was to determine the antitumor potential of a new synthetic sulfonamide chalcone (SSC185) against a colorectal metastatic lymph node-derived colorectal cancer cell line (SW-620). Method: Synthesis and characterization, including crystallography, of SSC185 were performed. SSC185 showed a selective cytotoxic effect against colorectal cancer cell lines. Therefore, the cytotoxic effect of SSC185 against SW-620 was further investigated. We used optical and fluorescence microscopy, flow cytometry and Western blot to determine the antitumor effects of SSC185. Results: SSC185 induced cytotoxicity in SW-620 cells in a time and concentration-dependent manner. Cell cycle progression was disrupted, with increased G2/M cell number and consequent cell death, with morphological alterations associated with apoptosis and necrosis. Cell death was associated with the activation and cleavage of PARP, and with reduced expression of the pro-apoptotic Bax protein and caspase 8, depending on the SSC185 concentration tested. Expression of the necroptosis pathway proteins RIP and MLKL was also reduced. These proteins are phosphorylated during the process of necroptosis. Conclusion: We suggest that the mechanism involved in the cytotoxic effect of SSC185 against SW-620 in vitro may be related to the induction of cell cycle arrest in the G2/M phase and cell death by apoptosis or necroptosis, depending on the concentration used.


2021 ◽  
Vol 12 (2) ◽  
pp. 179-184
Author(s):  
Apaydin Yildirim Betul

HCT116 cells are adherent epithelial cells derived from the human colorectal carcinoma cell line commonly used to study inflammatory responses in colonic epithelial cells. In this study, it was aimed to evaluate the effects of active anionic H2O8 oxygen solution, which is a very strong antiviral and antimicrobial agent, on HCT-116 human colorectal cancer cell line. Cell viability was determined by MTT analysis. Antiproliferative activity of the anionic H2O8 was investigated on HCT 116 (human colorectal carcinoma) cancer cells. Anionic H2O8 displayed the outstanding activities for MTT test, IC50= 9.44 for 24th hour was calculated as IC50= 11.73 for 48th hour on HCT 116 cell line. It is thought that it can serve as an agent with strong potential to be used in treatment.


Sign in / Sign up

Export Citation Format

Share Document