scholarly journals Evidence of a Synergistic Cross-Talk between the B Cell Receptor (BCR) and Nicotinamide Phosphoribosyl Transferase (NAMPT) in Richter's Syndrome Patient-Derived Xenograft Models: Therapeutic Implications

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 250-250
Author(s):  
Vincenzo Gianluca Messana ◽  
Nicoletta Vitale ◽  
Matteo Rovere ◽  
Lucia Renzullo ◽  
Francesca Arruga ◽  
...  

Abstract Background: A rare complication of Chronic Lymphocytic Leukemia (CLL), Richter's Syndrome (RS) represents the transformation of a pre-existing CLL into a Diffuse Large B-cell Lymphoma (DLBCL), generally associated with poor prognosis. Current therapeutic approaches are limited and do not significantly reduce disease progression. For these reasons there is intense investigation to identify potentially druggable molecular circuits, opening the way to innovative combination therapies. Among the several oncogenic signalling pathways that may contribute to disease progression, the B Cell Receptor (BCR) is a main driver and an actionable target. We previously showed that BCR ligation in CLL cells increases expression of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the salvage NAD pathway starting from nicotinamide, a finding in line with the notion of oncogenic-driven metabolic reprogramming. In this context, increased NAMPT expression leading to heightened NAD+ levels could sustain proliferation through the modulation of the activity of several intracellular enzymes, including sirtuins (NAD-dependent deacetylases). Aim: This work explores the connections between BCR signalling and the NAMPT/NAD/sirtuin axis in RS cells, asking the question of whether BCR and NAMPT can be simultaneously targeted. Methods: RS-PDX cells were freshly purified from tumor masses grown in mice and immediately used for short ex-vivo experiments. For in vivo experiments, NSG mice were injected subcutaneously with RS-PDX cells, which were left to engraft until a palpable mass was evident. Mice were then randomized to receive duvelisib, OT82 or a combination of the two for two consecutive weeks. Control mice were similarly treated with vehicle only. Mice were under a niacin-free diet. Results: By using our 4 RS patient-derived xenografts (PDX) models, we invariably observed high levels of NAMPT expression. High levels of NAMPT expression were also observed in 15 primary RS lymph node biopsies analyzed by RNA sequencing. BCR engagement through αIgM polyclonal antibodies significantly up-regulated NAMPT expression, as determined by qRT-PCR and protein analysis, with a concomitant increase in intracellular NAD+ levels. We then asked whether RS cells are sensitive to NAMPT inhibition, alone or in combination with drugs that target the BCR pathway. As most RS patients would likely have been treated during the preceding CLL phase with a BTK inhibitor, possibly developing resistance, we turned to PI3K inhibitors, which are less commonly used for CLL therapy. As NAMPT inhibitors (NAMPTi) we used both FK866 and OT-82, which are validated small molecules. Results indicated that the combination of the dual PI3K-δ/γ inhibitor duvelisib, with either FK866 or OT-82 induces dramatic apoptosis in all 4 models tested, as confirmed by annexinV/PI staining, by caspase 3 activation and by a significant drop in ATP and NAD+ levels. Importantly, two RS-PDX models (RS9737 and RS1316) were fully resistant to NAMPTi used alone, likely due to high levels of nicotinate phosphoribosyltransferase (NAPRT), which is the rate-limiting enzyme in the NAD salvage pathway that starts from nicotinic acid. However, addition of duvelisib, which was mildly effective when used alone, was followed by marked apoptosis even in these two models. Molecular dissection of the pathway showed that the combination of duvelisib and NAMPTi was followed by complete inhibition of the PI3K pathway, which was only partially blocked by duvelisib alone, even at high doses. The connection between NAMPT and PI3K is represented by cytoplasmic sirtuins, particularly SIRT2, which activate AKT through de-acetylation. Immunoprecipitation and two-dimensional gel electrophoresis showed that in the presence of NAMPTi, the amount of acetylated, i.e., inactive, AKT increased considerably. Consistently, treatment of RS-PDX mice with a combination of duvelisib and OT-82 was followed by significantly higher responses and longer animal survival. Conclusions: These results highlight a crosstalk between BCR signalling and NAMPT/sirtuin axis in RS models, showing the increased efficacy of the dual targeting (i.e., PI3K-δ/γ and NAMPT), and supporting this novel and promising therapeutic strategy for the treatment of RS patients. Disclosures Deaglio: Heidelberg Pharma: Research Funding; Astra Zeneca: Research Funding.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 26-26
Author(s):  
Manishkumar S. Patel ◽  
Ellen K. Kendall ◽  
Sarah Ondrejka ◽  
Agrima Mian ◽  
Yazeed Sawalha ◽  
...  

Background Diffuse large B cell lymphoma (DLBCL) is curable in ~60-70% of patients using standard chemoimmunotherapy, but the prognosis is poor for relapsed/refractory (R/R) DLBCL. Therefore, understanding the underlying molecular mechanisms will facilitate early prediction and effective management of resistance to therapy. Recent studies of paired diagnostic-relapse biopsies from patients have relied on a single "omics" approach, examining either gene expression or epigenetic evolution. Here we present a combined analysis of gene expression and DNA methylation profiles of paired diagnostic-relapse DLBCL biopsies to identify changes responsible for relapse after R-CHOP. Methods Biopsies from 23 DLBCL patients were obtained at the time of diagnosis and relapse following frontline R-CHOP chemoimmunotherapy. The cohort had 18 (78.3%) male patients with median age of 62 (range, 35-86) years and median IPI of 2.5 (range, 1-5). The median time from diagnosis to relapse was 7 (range, 0-57) months. DNA and RNA were extracted simultaneously from formalin-fixed paraffin embedded (FFPE) biopsy samples. DNA methylation levels were measured through Illumina 850k Methylation Array for 22 pairs of diagnostic-relapse biopsies. RNA from diagnostic-relapse paired biopsies from 6 patients was sequenced using Illumina HiSeq4000. Differentially methylated probes were identified using the DMRcate package, and differentially expressed genes were identified using the DESeq2 package. Gene set enrichment analysis was performed using canonical pathway gene sets from MSigDB. Pearson's correlation with a Bonferroni correction to the p-value was used to calculate the correlation between regularized log transformed gene expression counts and methylation beta values. Results In a pairwise comparison of gene expression between diagnostic and R/R biopsy pairs, we found 14 differentially expressed genes (FDR<0.1 & Log2FC>|1|) consistent across all pairs. Compared to gene expression at diagnosis, five genes (CYP1B1, LGR4, ATXN1, CTSC, ZMAT3) were downregulated, and eight genes (ERBB3, CD19, CARD11, MT-RNR2, IGHG3, CCDC88C, ATP2A3, CENPE, and PCNT) were up-regulated in the R/R samples. Many of these genes have been previously implicated in oncogenesis, such as ERBB3, a member of the epidermal growth receptor family. Importantly, some of these genes have known roles in DLBCL biology, such as CD19, a member of the B-cell receptor complex, and CARD11, a gene in which several oncogenic mutations have been identified in DLBCL as a mediator of NF-KB activation. Gene set enrichment analysis revealed overexpression of immune signatures such as cytokine-cytokine receptor interaction, chemokine receptor-chemokine binding, and the IL-12-STAT4 pathway at diagnosis. At relapse, cell cycle, B-cell receptor, and NOTCH signaling pathways were overexpressed. Interestingly, in a pairwise comparison of methylation between diagnostic and R/R biopsy pairs, there were no differentially methylated probes (FDR<0.05), suggesting no coordinated epigenetic evolution between diagnostic and R/R pairs. For biopsy pairs that had both gene expression and methylation data (5 pairs), we correlated gene expression and methylation values. We found that none of the differentially expressed genes between the diagnostic and R/R biopsies were significantly correlated with methylation status (adjusted p-value<0.05). Conclusions By analyzing paired diagnostic and relapse DLBCL biopsies, we found that at the time of relapse, there are significant transcriptomic changes but no significant epigenetic changes when compared to diagnostic biopsies. Activation of B-cell receptor and NOTCH signaling, as well as the loss of immune signaling at relapse, cannot be attributed to coordinated epigenetic changes in methylation. As the epigenetic profile of the biopsies did not consistently evolve, these data emphasize the need for better understanding of the baseline methylation profiles at the time of diagnosis, as well as acquired somatic mutations that may contribute to the emergence of therapeutic resistance. Future studies are needed to focus on how activation of signaling pathways triggered by genomic alterations can be targeted in relapsed/refractory DLBCL. Disclosures Hsi: Seattle Genetics: Consultancy, Honoraria; Miltenyi: Consultancy, Honoraria; Abbvie: Research Funding; Eli Lilly: Research Funding; CytomX: Consultancy, Honoraria. Hill:Takeda: Research Funding; Genentech: Consultancy, Honoraria, Research Funding; Karyopharm: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Abbvie: Consultancy, Honoraria, Research Funding; Pharmacyclics: Consultancy, Honoraria, Research Funding; Beigene: Consultancy, Honoraria, Research Funding; AstraZenica: Consultancy, Honoraria, Research Funding; Kite, a Gilead Company: Consultancy, Honoraria, Research Funding; Novartis: Consultancy, Honoraria; BMS: Consultancy, Honoraria, Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 29-29
Author(s):  
Elana Thieme ◽  
Vi Lam ◽  
Nur Bruss ◽  
Fei Xu ◽  
Stephen E Kurtz ◽  
...  

Introduction: Activated B cell receptor (BCR) signaling is a hallmark of NHL. BCR-associated kinases LYN, SYK, BTK and PI3K activate pro-survival signaling pathways including MEK/ERK, AKT/mTOR, and NFκB. While targeting BTK (ibrutinib, acalabrutinib) and PI3K (idelalisib, duvelisib) has shown efficacy in CLL, clinical responses fall short in aggressive NHL, necessitating the development of novel approaches to suppress BCR signaling. CG-806 is a BTK/cluster-selective kinase inhibitor currently under investigation in phase 1 clinical trials for patients with hematological malignancies. CG-806 targets both WT BTK (IC50 ~ 8 nM) and the BTKC481S (IC50 ~ 2.5 nM; www.aptose.com). Here we investigate the anti-tumor effects of CG-806 in mantle cell lymphoma (MCL) and diffuse large B cell lymphoma (DLBCL). Methods: CG-806 was provided by Aptose Biosciences, Inc. (San Diego, CA). DLBCL and MCL cell lines were assayed for apoptosis/proliferation, metabolic phenotype (Seahorse), mitochondrial mass and mitophagy. Ibrutinib (ibr) resistance was induced by exposure over 6 months. Primary peripheral blood mononuclear cells were incubated for 24 h in media conditioned by stromal cells engineered to express CD40L or BAFF prior to drug treatment. Two MCL PDX models were used (chemo-resistant and ibr-resistant). MCL cells were injected into the tail vein of NSG mice and tracked weekly by flow cytometry (CD5+ CD19+ CD45+). Upon MCL detection in the peripheral blood, mice began daily treatment with 30.8 or 308 mg/kg CG-806 or vehicle control via oral gavage until moribund. Splenocytes were harvested 1 h after the final drug treatment. Results: CG-806 potently inhibited proliferation of both parental and ibr-resistant MCL cell lines (Mino, JeKo-1) with IC50<0.01 μM at 72 h. DLBCL cell lines (U2932, OCI-LY3 OCI-LY19) demonstrated moderate sensitivity to CG-806 (IC50 0.3-1 μM), while SU-DHL10 was highly sensitive (IC50<0.01 µM). Treatment with CG-806, but not ibrutinib, induced apoptosis of primary MCL cells in CD40L- or BAFF-expressing stromal co-cultures. Following anti-IgM crosslinking of primary cells, treatment with CG-806 decreased phosphorylation of SYK, BTK, AKT and ERK, indicating disrupted BCR signaling. Treatment with CG-806 increased respiratory reserve capacity but did not impact the basal oxygen consumption rate in both parental and ibr-resistant MCL cell lines. Basal extracellular acidification rate (ECAR) was increased following CG-806 treatment, indicating heightened glycolytic activity. Furthermore, CG-806-treated cells demonstrated potent induction of mitophagy accompanied by a reduction in mitochondrial mass. CG-806 slowed expansion of circulating MCL cells and reduced proliferation of spleen-resident MCL cells in both chemo- and ibr-resistant MCL PDX models. CG-806 and ibrutinib extended survival of chemoresistant PDX mice without evidence of toxic events. Treatment with CG-806 led to decreased phosphorylation of SYK, BTK, and AKT but also upregulated expression of BCL2 and BCLX. RNA-seq analysis of spleen-resident cells revealed downregulation of NFκB targets and JAK/STAT signaling in ibr-resistant PDX mice treated with CG-806. This was accompanied by enrichment of metabolic pathways (oxidative phosphorylation, fatty acid metabolism) and MYC targets. Next, we evaluated CG-806 for synthetic lethality in a functional in vitro screening assay using a panel of 189 small molecule inhibitors that target a variety of distinct signaling pathways activated in cancer (Tyner et al, 2018). Consistent with the above observations, synergy was observed between CG-806 and inhibitors of metabolic enzymes (teleglenastat, perhexiline maleate) and BH3-mimetics targeting BCL2/X proteins (venetoclax, AZD4320). Conclusions: Our data demonstrate preliminary efficacy of CG-806 in MCL and DLBCL in vitro and in MCL DPX models. CG-806 treatment led to metabolic reprograming towards glycolysis and induced mitophagy. BCL2 family proteins may be implicated in resistance to CG-806. These results provide rationale for further investigation of CG-806 in aggressive NHL. Disclosures Tyner: Array: Research Funding; AstraZeneca: Research Funding; Constellation: Research Funding; Genentech: Research Funding; Incyte: Research Funding; Janssen: Research Funding; Petra: Research Funding; Seattle Genetics: Research Funding; Syros: Research Funding; Takeda: Research Funding; Gilead: Research Funding; Agios: Research Funding; Aptose: Research Funding. Danilov:Pharmacyclics: Consultancy; Astra Zeneca: Consultancy, Research Funding; Verastem Oncology: Consultancy, Research Funding; Takeda Oncology: Research Funding; Gilead Sciences: Research Funding; Bayer Oncology: Consultancy, Research Funding; Genentech: Consultancy, Research Funding; TG Therapeutics: Consultancy; Nurix: Consultancy; Celgene: Consultancy; Aptose Biosciences: Research Funding; Bristol-Myers Squibb: Research Funding; Rigel Pharmaceuticals: Consultancy; Karyopharm: Consultancy; BeiGene: Consultancy; Abbvie: Consultancy.


Blood ◽  
2021 ◽  
Author(s):  
Wendan Xu ◽  
Philipp Berning ◽  
Georg Lenz

Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous diagnostic category comprising distinct molecular subtypes characterized by diverse genetic aberrations that dictate patient outcome. As roughly one-third of DLBCL patients are not cured by current standard chemo-immunotherapy a better understanding of the molecular pathogenesis is warranted to improve outcome. B-cell receptor (BCR) signaling is crucial for the development, growth and survival of both normal and a substantial fraction of malignant B-cells. Various analyses revealed genetic alterations of central components of the BCR or its downstream signaling effectors in some subtypes of DLBCL. Thus, BCR signaling and the downstream NF-κB and PI3K cascades have been proposed as potential targets for the treatment of DLBCL patients. As one of the main effectors of BCR activation, PI3K mediated signals play a crucial role in the pathogenesis and survival of DLBCL. In this review, we summarize our current understanding of BCR signaling with a special focus on the PI3K pathway in DLBCL and how to utilize this knowledge therapeutically.


2019 ◽  
Vol 72 (9) ◽  
pp. 630-635 ◽  
Author(s):  
Noraidah Masir ◽  
Ariz Akhter ◽  
Tariq M Roshan ◽  
Chandramaya Sabrina Florence ◽  
Faridah Abdul-Rahman ◽  
...  

AimsHeightened B-cell receptor (BCR) activity in diffuse large B-cell lymphoma (DLBCL) is well established, and a subset of patients with relapsed DLBCL can benefit from BCR-targeted therapies. Universal outreach of such emerging therapies mandates forming a global landscape of BCR molecular signalling in DLBCL, including Southeast Asia.Methods79 patients with DLBCL (nodal, 59% and extranodal, 41%) treated with rituximab combined with cyclophosphamide, doxorubicin, vincristine and prednisone (R-CHOP) therapy were selected. Expression levels of BCR and linked signalling pathway molecules were inter-related with Lymph2Cx-based cell of origin (COO) types and overall survival (OS).ResultsActivated B-cell (ABC) type DLBCL constituted 49% (39/79) compared with germinal centre B-cell (GCB) type DLBCL (29/79; 37%) and revealed poor prognosis (p=0.013). In ABC-DLBCL, high BTK expression exerted poor response to R-CHOP, while OS in ABC-DLBCL with low BTK expression was similar to GCB-DLBCL subtype (p=0.004). High LYN expression coupled with a poor OS for ABC-DLBCL as well as GCB-DLBCL subtypes (p=0.001). Furthermore, high coexpression of BTK/LYN (BTKhigh/LYNhigh) showed poor OS (p=0.019), which linked with upregulation of several genes associated with BCR repertoire and nuclear factor-kappa B pathway (p<0.01). In multivariate analysis, high BTK and LYN expression retained prognostic significance against established clinical predictive factors such as age, International Prognostic Index and COO (p<0.05).ConclusionsOur data provide a clear association between high BCR activity in DLBCL and response to therapy in a distinct population. Molecular data provided here will pave the pathway for the provision of promising novel-targeted therapies to patients with DLBCL in Southeast Asia.


2015 ◽  
Vol 15 (1) ◽  
Author(s):  
Nunzia Migliaccio ◽  
Camillo Palmieri ◽  
Immacolata Ruggiero ◽  
Giuseppe Fiume ◽  
Nicola M Martucci ◽  
...  

2015 ◽  
Vol 112 (44) ◽  
pp. 13447-13454 ◽  
Author(s):  
Ryan M. Young ◽  
Tianyi Wu ◽  
Roland Schmitz ◽  
Moez Dawood ◽  
Wenming Xiao ◽  
...  

The activated B-cell–like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) relies on chronic active B-cell receptor (BCR) signaling. BCR pathway inhibitors induce remissions in a subset of ABC DLBCL patients. BCR microclusters on the surface of ABC cells resemble those generated following antigen engagement of normal B cells. We speculated that binding of lymphoma BCRs to self-antigens initiates and maintains chronic active BCR signaling in ABC DLBCL. To assess whether antigenic engagement of the BCR is required for the ongoing survival of ABC cells, we developed isogenic ABC cells that differed solely with respect to the IgH V region of their BCRs. In competitive assays with wild-type cells, substitution of a heterologous V region impaired the survival of three ABC lines. The viability of one VH4-34+ ABC line and the ability of its BCR to bind to its own cell surface depended on V region residues that mediate the intrinsic autoreactivity of VH4-34 to self-glycoproteins. The BCR of another ABC line reacted with self-antigens in apoptotic debris, and the survival of a third ABC line was sustained by reactivity of its BCR to an idiotypic epitope in its own V region. Hence, a diverse set of self-antigens is responsible for maintaining the malignant survival of ABC DLBCL cells. IgH V regions used by the BCRs of ABC DLBCL biopsy samples varied in their ability to sustain survival of these ABC lines, suggesting a screening procedure to identify patients who might benefit from BCR pathway inhibition.


Sign in / Sign up

Export Citation Format

Share Document