scholarly journals Red blood cells modulate structure and dynamics of venous clot formation in sickle cell disease

Blood ◽  
2019 ◽  
Vol 133 (23) ◽  
pp. 2529-2541 ◽  
Author(s):  
Camille Faes ◽  
Anton Ilich ◽  
Amandine Sotiaux ◽  
Erica M. Sparkenbaugh ◽  
Michael W. Henderson ◽  
...  

Abstract Sickle cell disease (SCD) is associated with chronic activation of coagulation and an increased risk of venous thromboembolism. Erythrocyte sickling, the primary pathologic event in SCD, results in dramatic morphological changes in red blood cells (RBCs) because of polymerization of the abnormal hemoglobin. We used a mouse model of SCD and blood samples from sickle patients to determine if these changes affect the structure, properties, and dynamics of sickle clot formation. Sickling of RBCs and a significant increase in fibrin deposition were observed in venous thrombi formed in sickle mice. During ex vivo clot contraction, the number of RBCs extruded from sickle whole blood clots was significantly reduced compared with the number released from sickle cell trait and nonsickle clots in both mice and humans. Entrapment of sickled RBCs was largely factor XIIIa–independent and entirely mediated by the platelet-free cellular fraction of sickle blood. Inhibition of phosphatidylserine, but not administration of antisickling compounds, increased the number of RBCs released from sickle clots. Interestingly, whole blood, but not plasma clots from SCD patients, was more resistant to fibrinolysis, indicating that the cellular fraction of blood mediates resistance to tissue plasminogen activator. Sickle trait whole blood clots demonstrated an intermediate phenotype in response to tissue plasminogen activator. RBC exchange in SCD patients had a long-lasting effect on normalizing whole blood clot contraction. Furthermore, RBC exchange transiently reversed resistance of whole blood sickle clots to fibrinolysis, in part by decreasing platelet-derived PAI-1. These properties of sickle clots may explain the increased risk of venous thromboembolism observed in SCD.

Blood ◽  
2007 ◽  
Vol 110 (3) ◽  
pp. 908-912 ◽  
Author(s):  
Harland Austin ◽  
Nigel S. Key ◽  
Jane M. Benson ◽  
Cathy Lally ◽  
Nicole F. Dowling ◽  
...  

Abstract People with sickle cell disease have a chronically activated coagulation system and display hemostatic perturbations, but it is unknown whether they experience an increased risk of venous thromboembolism. We conducted a case–control study of venous thromboembolism that included 515 hospitalized black patients and 555 black controls obtained from medical clinics. All subjects were assayed for hemoglobin S and hemoglobin C genotypes. The prevalence of the S allele was 0.070 and 0.032 for case patients and controls, respectively (P < .001). The odds that a patient had sickle cell trait were approximately twice that of a control, indicating that the risk of venous thromboembolism is increased approximately 2-fold among blacks with sickle cell trait compared with those with the wild-type genotype (odds ratio = 1.8 with 95% confidence interval, 1.2-2.9). The odds ratio for pulmonary embolism and sickle cell trait was higher, 3.9 (2.2-6.9). The prevalence of sickle cell disease was also increased among case patients compared with controls. We conclude that sickle cell trait is a risk factor for venous thromboembolism and that the proportion of venous thromboembolism among blacks attributable to the mutation is approximately 7%.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3567-3567
Author(s):  
Celeste K. Kanne ◽  
Varun Reddy ◽  
Vivien A. Sheehan

Background: ENDARITM (oral pharmaceutical L-glutamine powder) received FDA approval in 2017 as a treatment for sickle cell disease (SCD). A pivotal phase 3 clinical study conducted by Emmaus Medical, Inc. showed that L-glutamine resulted in a lower incidence of vaso-occlusive crises (VOC) as well as a lower rate of hospitalizations and shorter hospital stays. No changes in standard clinical laboratory values were noted. The clinical improvements associated with sickle cell complications are believed to be due to an increase in the proportion of the reduced form of nicotinamide adenine dinucleotides in the red blood cells (RBC) of patients with SCD, reducing the oxidative stress. While the endpoints in the phase 3 study are clinically important, it is essential that we identify biomarkers or measurable laboratory changes that can serve as endpoints for future clinical trials assessing dose optimization and the efficacy and safety of L-glutamine in SCD individuals, including those with hepatic and renal dysfunction. RBC rheology is markedly abnormal in SCD; blood is more viscous for a given hematocrit than normal individuals, dense red blood cells (DRBC) are packed with HbS, potentiating sickling, and RBCs are less deformable than those of HbAA or HbAS individuals. High whole blood viscosity, high DRBCs, and poor RBC deformability are associated with higher rates of VOC. Given the demonstrated reduction in pain events, we hypothesized that L-glutamine might improve RBC rheology and sought to test this in vitro and in vivo using a battery of rheological tests. Methods: For the in vitro study, 6 mL of whole blood was drawn into an EDTA vacutainer from ten pediatric patients with sickle cell anemia (HbSS or HbSβ0) during routine clinical checkups under an IRB approved protocol. The cohort included 3 female and 7 male patients, ages 2-19 years old. All patients were on a steady dose of hydroxyurea and did not receive a transfusion within the 3 months prior to sample collection. A 200 mM stock solution of L-glutamine and water was mixed and filtered under light-protected conditions. Aliquots were stored at -20°C to avoid multiple freeze/thaw cycles. L-glutamine was added to 3 mL of whole blood for a final concentration of 1 mM (average in vivo L-glutamine plasma concentration in patients with SCD treated with L-glutamine); 3 mL of the same patient sample with water added served as a control. After a 24-hour incubation period at 4°C, whole blood viscosity was measured using a cone and plate viscometer at 37°C (DV3T Rheometer, AMETEK Brookfield, USA), %DRBCs were measured on an ADVIA 120 Hematology System (Siemens Healthcare Diagnostics, Inc., USA), and deformability measured using a Laser Optical Rotational Red Cell Analyzer (Lorrca®) (RR Mechatronics, the Netherlands) with the Oxygenscan module. The Oxygenscan measures RBC deformability at normoxia (Elmax), deformability upon deoxygenation (EImin), and point of sickling (PoS), the oxygen tension at which deformability begins to decline, reflecting the patient-specific pO2 at which sickling begins. Paired samples (with and without added L-glutamine) were analyzed using Student's t-test. For the in vivo study, rheological tests were performed on peripheral blood from one patient (18-year-old male on hydroxyurea) at baseline and treated with L-glutamine as part of his routine clinical care. Results and conclusions: Addition of L-glutamine in vitro significantly reduced the PoS, meaning RBCs incubated with L-glutamine could tolerate a lower pO2 before sickling compared to the control. RBCs incubated with L-glutamine also had significantly higher EImin, meaning deoxygenated RBCs were more flexible and deformable. Whole blood viscosity at 45s-1 and 225s-1 did not change significantly following incubation with L-glutamine; %DRBCs also did not change significantly (Table 1). The in vivo patient sample tested exhibited a similar improvement in PoS and EImin (Figure 1). We therefore propose to further test the performance of the PoS and EImin as possible biomarkers of response to L-glutamine in vivo. If validated, these biomarkers may also help further elucidate the mechanisms of action of L-glutamine in SCD. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Michael R Chua ◽  
Jerome V Giovinazzo ◽  
Richard I Kaplan ◽  
Thomas Connor ◽  
Christopher Kellner ◽  
...  

Haematologica ◽  
2020 ◽  
Vol 105 (10) ◽  
pp. 2368-2379
Author(s):  
Arun S. Shet ◽  
Maria A. Lizarralde-Iragorri ◽  
Rakhi P. Naik

The genetic and molecular basis of sickle cell disease (SCD) has long since been characterized but the pathophysiological basis is not entirely defined. How a red cell hemolytic disorder initiates inflammation, endothelial dysfunction, coagulation activation and eventually leads to vascular thrombosis, is yet to be elucidated. Recent evidence has demonstrated a high frequency of unprovoked/recurrent venous thromboembolism (VTE) in SCD, with an increased risk of mortality among patients with a history of VTE. Here, we thoroughly review the molecular basis for the prothrombotic state in SCD, specifically highlighting emerging evidence for activation of overlapping inflammation and coagulation pathways, that predispose to venous thromboembolism. We share perspectives in managing venous thrombosis in SCD, highlighting innovative therapies with the potential to influence the clinical course of disease and reduce thrombotic risk, while maintaining an acceptable safety profile.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2330-2330
Author(s):  
Julia E. Brittain ◽  
Shantres C. Clark ◽  
Kenneth I. Ataga ◽  
Eugene P. Orringer ◽  
Leslie V. Parise

Abstract Leukocyte and platelets are understudied contributors to the overall pathology of sickle cell disease (SCD). Elevated leukocyte counts are common in these patients and correlate inversely with patient lifespan and overall disease severity. For example, a drop in neutrophil count typically predicts a patient’s response to hydroxyurea, while increased monocyte counts correlate directly with increased reporting of pain crises. Moreover, both RBCs and WBCs have been detected as components in vaso-occlusive blockages in mouse models, where adhesive RBCs appear to interact directly with WBCs at the vaso-occlusive site. Platelets are activated in SCD and are thought to promote the hypercoagulability in these patients. Despite the potential contribution of all blood cells to the pathology of sickle cell disease, neither a mechanism of adhesion between the WBC and RBC nor a role for soluble matrix proteins in this interaction has been elucidated in humans. To detect potential adhesive interactions between the blood cells in SCD, we collected whole blood into anticoagulants that spare divalent cations (PPACK or factor Xa inhibitor) and assayed for heterotypic cell associations by two and three color flow cytometry. Our results indicate that RBCs, WBCs and platelets exist in heterotypic, multi-cellular aggregates in blood from SCD patients but not unaffected (AA) individuals. By detecting monocyte specific markers, we determined that the primary WBC component of these aggregates was the monocyte, and the primary RBC was the young SS “stress” reticulocyte. Using both in vitro RBC/monocyte adhesion studies and whole blood samples, we demonstrate that α4-containing integrins on both SS RBCs and WBCs mediate this interaction by interacting directly with endogenous plasma fibronectin. Furthermore, we show that the α4 integrin on SS RBCs binds to the RGDS site in fibronectin, whereas the α4 integrin on monocytes binds to the CS-1 site in the molecule, suggesting a novel mechanism of interaction between SS RBCs and monocytes via a fibronectin bridge. Antibodies against the CS-1 binding site in fibronectin substantially disrupt the monocyte/RBC interaction in whole blood, further underscoring the role of fibronectin as a linker between the two cell types. However, platelet incorporation in the aggregate was insensitive to inhibition of the α4 integrin, but was sensitive to inhibition of PSGL-1, suggesting that platelet inclusion likely occurs via a P-selectin/PSGL-1-mediated interaction between the platelet and the monocyte. Interestingly, similar aggregates were also detected in two patients with chronic hemolysis and brisk reticulocytosis, potentially extending the relevance of such aggregates beyond SCD. Taken together our results suggest a new adhesive paradigm for SS RBCs and monocytes as central components of heterotypic blood cell aggregates that include platelets and that are present in whole blood of patients with SCD. Our data therefore illustrate a potentially pathological interaction of all major blood cell types in SCD patients that may impact vaso-occlusion and contribute to other erythrocyte disorders.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4755-4755
Author(s):  
Joshua Taylor ◽  
Alexandra Anghel ◽  
Daniel J Corsi ◽  
Marc Carrier ◽  
Alan Tinmouth ◽  
...  

Abstract Background: Patients with sickle cell disease (SCD) are at an increased risk of developing venous thromboembolism (VTE). However, the underlying risk of VTE complication during hospitalization is unclear in this patient population. We sought to report the incidence of VTE and its associated risk factors in hospitalized SCD patients. Patients/Methods: A retrospective cohort study of SCD patients requiring hospitalization was undertaken at a tertiary care center. Incidence ratios of VTE per hospitalization for different risk factors (Thromboprophylaxis use, central venous catheter (CVC), past history of VTE, surgery during hospitalization) were assessed. Univariate, age adjusted and multivariate Poisson models were estimated accounting for the repeated hospitalizations per patients. Results: A total of 101 patients with at least one hospitalization were included in the study. The mean of number of admissions per patients was 8.9. Overall, 17 out of 896 (1.9%) admissions were complicated by VTE. The incidence of VTE varied by risk factors, from 0.8% in patient without CVC to 6.7% among patients admitted with previous history of VTE. Age adjusted and multivariate Poisson models for incidence rate ratios of VTE per hospitalization among patients with SCD for different risk factors are depicted in Table 1. Conclusion: The risk of VTE seems low in hospitalized SCD. A prior history of VTE and a hospitalization for surgery might be associated with higher risk of VTE complication. Future studies assessing these risk factors to tailor thromboprophylaxis regimens are needed. Disclosures No relevant conflicts of interest to declare.


1996 ◽  
Vol 76 (03) ◽  
pp. 322-327 ◽  
Author(s):  
Dominique Helley ◽  
Amiram Eldor ◽  
Robert Girot ◽  
Rolande Ducrocq ◽  
Marie-Claude Guillin ◽  
...  

SummaryIt has recently been proved that, in vitro, red blood cells (RBCs) from patients with homozygous β-thalassemia behave as procoagulant cells. The procoagulant activity of β-thalassemia RBCs might be the result of an increased exposure of procoagulant phospholipids (i. e. phosphatidylserine) in the outer leaflet of the membrane. In order to test this hypothesis, we compared the catalytic properties of RBCs of patients with β-thalassemia and homozygous sickle cell disease (SS-RBCs) with that of controls. The catalytic parameters (Km, kcat) of prothrombin activation by factor Xa were determined both in the absence and in the presence of RBCs. The turn-over number (kcat) of the reaction was not modified by normal, SS- or (3-thalassemia RBCs. The Km was lower in the presence of normal RBCs (mean value: 9.1 µM) than in the absence of cells (26 µM). The Km measured in the presence of either SS-RBCs (mean value: 1.6 µM) or β-thalassemia RBCs (mean value: 1.5 pM) was significantly lower compared to normal RBCs (p <0.001). No significant difference was observed between SS-RBCs and p-thalassemia RBCs. Annexin V, a protein with high affinity and specificity for anionic phospholipids, inhibited the procoagulant activity of both SS-RBCs and (3-thalassemia RBCs, in a dose-dependent manner. More than 95% inhibition was achieved at nanomolar concentrations of annexin V. These results indicate that the procoagulant activity of both β-thalassemia RBCs and SS-RBCs may be fully ascribed to an abnormal exposure of phosphatidylserine at the outer surface of the red cells.


1970 ◽  
Vol 24 (01/02) ◽  
pp. 010-016 ◽  
Author(s):  
D Green ◽  
H. C Kwaan ◽  
G Ruiz

SummaryCoagulation studies were performed in 52 patients with sickle cell disease during asymptomatic periods and during episodes of crisis and infection. Platelet counts averaged 473,000, 469,000, and 461,000 per mm3 in these 3 groups, and factor VIII concentrations were elevated in all. Fibrinogen was increased to the same extent in both sickle cell and non-sickle cell patients with infection. Fibrinolytic activity, as measured by euglobulin lysis times and zones of lysis on fibrin plates, was markedly reduced during periods of infection in sickle cell patients but not in non-sickle patients. Impairment of fibrinolysis in most patients was not on the basis of overutilization or consumption, since no decrease in the levels of clotting factors or plasminogen was observed. It was suggested that generalized intravascular sickling in these patients may have caused widespread endothelial damage, resulting in decreased production of plasminogen activator.In addition, several sickle cell patients with infection were found to possess elevated levels of an inhibitor directed against urokinase.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Yuncheng Man ◽  
Debnath Maji ◽  
Ran An ◽  
Sanjay Ahuja ◽  
Jane A Little ◽  
...  

Alterations in the deformability of red blood cells (RBCs), occurring in hemolytic blood disorders such as sickle cell disease (SCD), contributes to vaso-occlusion and disease pathophysiology. However, there are few...


Sign in / Sign up

Export Citation Format

Share Document