scholarly journals Phase 1 study of lenzilumab, a recombinant anti–human GM-CSF antibody, for chronic myelomonocytic leukemia

Blood ◽  
2020 ◽  
Vol 136 (7) ◽  
pp. 909-913 ◽  
Author(s):  
Mrinal M. Patnaik ◽  
David A. Sallman ◽  
Abhishek A. Mangaonkar ◽  
Rachel Heuer ◽  
Jeffery Hirvela ◽  
...  

In this phase 1 trial, inhibition of granulocyte-macrophage colony-stimulating factor (GM-CSF) was associated with clinically meaningful responses in 5 of 15 patients with relapsed or refractory chronic myelomonocytic leukemia (CMML). Preliminary data suggest that this approach may be tractable in CMML bearing activating NRAS mutations.

1996 ◽  
Vol 184 (4) ◽  
pp. 1377-1384 ◽  
Author(s):  
K Geissler ◽  
L Ohler ◽  
M Födinger ◽  
I Virgolini ◽  
M Leimer ◽  
...  

Autonomous release of hematopoietic growth factors may play a crucial role in the pathogenesis of certain hematological malignancies. Because of its cytokine synthesis-inhibiting action, interleukin 10 (IL-10) could be a potentially useful molecule to affect leukemic cell growth in such disorders. Chronic myelomonocytic leukemia (CMML) cells spontaneously form myeloid colonies (colony-forming units-granulocyte/macrophage) in methylcellulose, suggesting an autocrine growth factor-mediated mechanism. We studied the effect of recombinant human IL-10 (rhIL-10) on the in vitro growth of mononuclear cells obtained from peripheral blood or bone marrow of patients with CMML. IL-10 specifically binding to leukemic cells had a profound and dose-dependent inhibitory effect on autonomous in vitro growth of CMML cells. IL-10 significantly inhibited the spontaneous growth of myeloid colonies in methylcellulose in 10/11 patients, and autonomous CMML cell growth in suspension in 5/5 patients tested. Spontaneous colony growth from CMML cells was also markedly reduced by addition of antigranulocyte/macrophage colony-stimulating factor (GM-CSF) antibodies, but not by addition of antibodies against G-CSF, IL-3, or IL-6, IL-10-induced suppression of CMML cell growth was reversed by the addition of exogenous GM-CSF and correlated with a substantial decrease in GM-CSF production by leukemic cells, both at the mRNA and protein levels. Our data indicate that IL-10 profoundly inhibits the autonomous growth of CMML cells in vitro most likely through suppression of endogenous GM-CSF release. This observation suggests therapeutic evaluation of rhIL-10 in patients with CMML.


Blood ◽  
1997 ◽  
Vol 90 (12) ◽  
pp. 4910-4917 ◽  
Author(s):  
Per O. Iversen ◽  
Ian D. Lewis ◽  
Suzanne Turczynowicz ◽  
Henrik Hasle ◽  
Charlotte Niemeyer ◽  
...  

Abstract Granulocyte-macrophage colony-stimulating factor (GM-CSF ) and tumor necrosis factor α (TNFα) have been implicated in the pathogenesis of the fatal childhood disease termed juvenile myelomonocytic leukemia (JMML). We used a severe combined immunodeficient/nonobese diabetic (SCID/NOD) mouse model of JMML and examined the effect of inhibiting these cytokines in vivo with the human GM-CSF antagonist and apoptotic agent E21R and the anti-TNFα monoclonal antibody (MoAb) cA2 on JMML cell growth and dissemination in vivo. We show here that JMML cells repopulated to high levels in the absence of exogeneous growth factors. Administration of E21R at the time of transplantation or 4 weeks after profoundly reduced JMML cell load in the mouse bone marrow. In contrast, MoAb cA2 had no effect on its own, but synergized with E21R in virtually eliminating JMML cells from the mouse bone marrow. In the spleen and peripheral blood, E21R eliminated JMML cells, while MoAb cA2 had no effect. Importantly, studies of mice engrafted simultaneously with cells from both normal donors and from JMML patients showed that E21R preferentially eliminated leukemic cells. This is the first time a specific GM-CSF inhibitor has been used in vivo, and the results suggest that GM-CSF plays a major role in the pathogenesis of JMML. E21R might offer a novel and specific approach for the treatment of this aggressive leukemia in man.


Blood ◽  
1997 ◽  
Vol 90 (12) ◽  
pp. 4910-4917 ◽  
Author(s):  
Per O. Iversen ◽  
Ian D. Lewis ◽  
Suzanne Turczynowicz ◽  
Henrik Hasle ◽  
Charlotte Niemeyer ◽  
...  

Granulocyte-macrophage colony-stimulating factor (GM-CSF ) and tumor necrosis factor α (TNFα) have been implicated in the pathogenesis of the fatal childhood disease termed juvenile myelomonocytic leukemia (JMML). We used a severe combined immunodeficient/nonobese diabetic (SCID/NOD) mouse model of JMML and examined the effect of inhibiting these cytokines in vivo with the human GM-CSF antagonist and apoptotic agent E21R and the anti-TNFα monoclonal antibody (MoAb) cA2 on JMML cell growth and dissemination in vivo. We show here that JMML cells repopulated to high levels in the absence of exogeneous growth factors. Administration of E21R at the time of transplantation or 4 weeks after profoundly reduced JMML cell load in the mouse bone marrow. In contrast, MoAb cA2 had no effect on its own, but synergized with E21R in virtually eliminating JMML cells from the mouse bone marrow. In the spleen and peripheral blood, E21R eliminated JMML cells, while MoAb cA2 had no effect. Importantly, studies of mice engrafted simultaneously with cells from both normal donors and from JMML patients showed that E21R preferentially eliminated leukemic cells. This is the first time a specific GM-CSF inhibitor has been used in vivo, and the results suggest that GM-CSF plays a major role in the pathogenesis of JMML. E21R might offer a novel and specific approach for the treatment of this aggressive leukemia in man.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jani Lappalainen ◽  
Nicolas Yeung ◽  
Su D. Nguyen ◽  
Matti Jauhiainen ◽  
Petri T. Kovanen ◽  
...  

AbstractIn atherosclerotic lesions, blood-derived monocytes differentiate into distinct macrophage subpopulations, and further into cholesterol-filled foam cells under a complex milieu of cytokines, which also contains macrophage-colony stimulating factor (M-CSF) and granulocyte–macrophage-colony stimulating factor (GM-CSF). Here we generated human macrophages in the presence of either M-CSF or GM-CSF to obtain M-MØ and GM-MØ, respectively. The macrophages were converted into cholesterol-loaded foam cells by incubating them with acetyl-LDL, and their atheroinflammatory gene expression profiles were then assessed. Compared with GM-MØ, the M-MØ expressed higher levels of CD36, SRA1, and ACAT1, and also exhibited a greater ability to take up acetyl-LDL, esterify cholesterol, and become converted to foam cells. M-MØ foam cells expressed higher levels of ABCA1 and ABCG1, and, correspondingly, exhibited higher rates of cholesterol efflux to apoA-I and HDL2. Cholesterol loading of M-MØ strongly suppressed the high baseline expression of CCL2, whereas in GM-MØ the low baseline expression CCL2 remained unchanged during cholesterol loading. The expression of TNFA, IL1B, and CXCL8 were reduced in LPS-activated macrophage foam cells of either subtype. In summary, cholesterol loading converged the CSF-dependent expression of key genes related to intracellular cholesterol balance and inflammation. These findings suggest that transformation of CSF-polarized macrophages into foam cells may reduce their atheroinflammatory potential in atherogenesis.


Neonatology ◽  
2021 ◽  
pp. 1-7
Author(s):  
Verena Schulte ◽  
Alexandra Sipol ◽  
Stefan Burdach ◽  
Esther Rieger-Fackeldey

<b><i>Background:</i></b> The granulocyte-macrophage-colony-stimulating factor (GM-CSF) plays an important role in surfactant homeostasis. β<sub>C</sub> is a subunit of the GM-CSF receptor (GM-CSF-R), and its activation mediates surfactant catabolism in the lung. β<sub>IT</sub> is a physiological, truncated isoform of β<sub>C</sub> and is known to act as physiological inhibitor of β<sub>C</sub>. <b><i>Objective:</i></b> The aim of this study was to determine the ratio of β<sub>IT</sub> and β<sub>C</sub> in the peripheral blood of newborns and its association with the degree of respiratory failure at birth. <b><i>Methods:</i></b> We conducted a prospective cohort study in newborns with various degrees of respiratory impairment at birth. Respiratory status was assessed by a score ranging from no respiratory impairment (0) to invasive respiratory support (3). β<sub>IT</sub> and β<sub>C</sub> expression were determined in peripheral blood cells by real-time PCR. β<sub>IT</sub> expression, defined as the ratio of β<sub>IT</sub> and β<sub>C</sub>, was correlated with the respiratory score. <b><i>Results:</i></b> β<sub>IT</sub> expression was found in all 59 recruited newborns with a trend toward higher β<sub>IT</sub> in respiratory ill (score 2, 3) newborns than respiratory healthy newborns ([score 0, 1]; <i>p</i> = 0.066). Seriously ill newborns (score 3) had significantly higher β<sub>IT</sub> than healthy newborns ([score 0], <i>p</i> = 0.010). Healthy preterm infants had significantly higher β<sub>IT</sub> expression than healthy term infants (<i>p</i> = 0.019). <b><i>Conclusions:</i></b> β<sub>IT</sub> is expressed in newborns with higher expression in respiratory ill than respiratory healthy newborns. We hypothesize that β<sub>IT</sub> may have a protective effect in postnatal pulmonary adaptation acting as a physiological inhibitor of β<sub>C</sub> and, therefore, maintaining surfactant in respiratory ill newborns.


Blood ◽  
1989 ◽  
Vol 74 (8) ◽  
pp. 2652-2656 ◽  
Author(s):  
T Gesner ◽  
RA Mufson ◽  
KJ Turner ◽  
SC Clark

Abstract Granulocyte/macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3) each bind specifically to a small number of high- affinity receptors present on the surface of the cells of the acute myelogenous leukemia line, KG-1. Through chemical cross-linking of IL-3 and GM-CSF to KG-1 cells, we identified distinct binding proteins for each of these cytokines with approximate molecular masses of 69 and 93 Kd, respectively. Although these two binding proteins are distinct, GM- CSF and IL-3 compete with each other for binding to KG-1 cells. Other cell lines, which express receptors for either factor but not for both do not display this cross-competition for binding with IL-3 and GM-CSF. These findings imply that distinct IL-3 and GM-CSF binding proteins are expressed on the cell surface and that an association exists between these proteins on KG-1 cells.


Sign in / Sign up

Export Citation Format

Share Document