Multiple Myeloma Oncogene 1 (MUM1)/Interferon Regulatory Factor 4 (IRF4) Upregulates Monokine Induced by Interferon-gamma (MIG) Gene Expression in B-Cell Malignancy.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1111-1111
Author(s):  
Shinsuke Iida ◽  
Miyuki Uranishi ◽  
Takaomi Sanda ◽  
Takashi Ishida ◽  
Emi Tajima ◽  
...  

Abstract MUM1(multiple myeloma oncogene 1)/IRF4(interferon regulatory factor 4) is a transcription regulatory factor that is activated as a result of t(6;14)(p25;q32) in multiple myeloma. MUM1 expression is seen in various B-cell lymphomas/leukemias and has been reported to predict an unfavorable outcome in some lymphoma subtypes including diffuse large B-cell lymphoma (DLBCL) and B-cell chronic lymphocytic leukemia (B-CLL). To elucidate its role in B-cell malignancies, we prepared stably MUM1-expressing Ba/F3 cells, which proliferated at a higher rate than the parental cells, and performed cDNA microarray analysis to identify genes whose expression is regulated by MUM1. We found that the expression of four genes including FK506-binding protein 3 (FKBP3), the Monokine induced by interferon-gamma (MIG), Fas apoptotic inhibitory molecule (Faim) and Zinc finger protein 94 was altered in the MUM1-expressing cells. We then focused on MIG since its expression was immediately upregulated by MUM1 in inducible MUM1 expressing system. In reporter assays, MUM1 activated the MIG promoter in cooperation with PU.1, and the interaction between MUM1 and the MIG promoter sequence was confirmed in chromatin immunoprecipitation assay. The expression of MIG was correlated with that of MUM1 in B-CLL cell lines, and its receptor CXCR3 was also coexpressed in B-CLL cell lines that were positive for MUM1. Interestingly, treatment with neutralizing antibodies against MIG and its receptor, CXCR3, partially inhibited the proliferation of two MUM1-expressing B-CLL cell lines. These results suggest that MUM1 plays certain roles in the progression of B-cell lymphomas/leukemias by regulating the expression of various genes including MIG.

2019 ◽  
Vol 28 (3) ◽  
pp. 330-335
Author(s):  
Mansoor M. Nasim ◽  
David J. Chalif ◽  
Alexis M. Demopoulos ◽  
Judith Brody ◽  
Rova Lee-Huang ◽  
...  

Low-grade B-cell lymphoma with immunoglobulin ( IG) and interferon regulatory factor 4 ( IRF4) gene rearrangement is extremely rare, with only 4 cases being previously reported. In this article, we report one additional case that arises from the skull and review the literature. The patient was a 69-year-old man who presented with recurrent and disabling vertigo and was found to have a 5.0 × 1.7 cm lesion within the left posterior parietal bone. Histological examination revealed a bone lesion with diffuse lymphoid infiltrate comprising of mostly small lymphocytes with scant cytoplasm, slightly irregular nuclei and inconspicuous nucleoli, and scattered larger cells resembling prolymphocytes and paraimmunoblasts. Immunohistochemical studies showed that the neoplastic cells were positive for CD20, CD79a, PAX5, CD23, CD43, BCL-2, BCL-6, MUM-1, LEF-1, and IgM and negative for CD5, CD10, cyclinD1, SOX11, and IgD. Flow cytometric analysis identified CD5 negative and CD10 negative monoclonal B cells with lambda light chain restriction. Fluorescence in situ hybridization analysis revealed del(13q) abnormality, but was negative for IGH/BCL2, IGH/CCND1, and BIRC3/MALT1 translocations. Next-generation sequencing identified IGK-IRF4 rearrangement and BRD4 E1113 del abnormalities. Given a low clinical stage (IE) of the disease, the patient did not receive additional treatments and was free of disease at 1 year after the diagnosis.


Blood ◽  
2010 ◽  
Vol 116 (23) ◽  
pp. 4916-4925 ◽  
Author(s):  
German Ott ◽  
Marita Ziepert ◽  
Wolfram Klapper ◽  
Heike Horn ◽  
Monika Szczepanowski ◽  
...  

Abstract The survival of diffuse large B-cell lymphoma patients varies considerably, reflecting the molecular diversity of tumors. In view of the controversy whether cytologic features, immunohistochemical markers or gene expression signatures may capture this molecular diversity, we investigated which features provide prognostic information in a prospective trial in the R-CHOP treatment era. Within the cohort of DLBCLs patients treated in the RICOVER-60 trial of the German High-Grade Lymphoma Study Group (DSHNHL), we tested the prognostic impact of IB morphology in 949 patients. The expression of immunohistochemical markers CD5, CD10, BCL2, BCL6, human leukocyte antigen (HLA)–DR, interferon regulatory factor-4/multiple myeloma-1 (IRF4/MUM1), and Ki-67 was assessed in 506 patients. Expression of the immunohistochemical markers tested was of modest, if any, prognostic relevance. Moreover, the Hans algorithm using the expression patterns of CD10, BCL6, and interferon regulatory factor-4/multiple myeloma-1 failed to show prognostic significance in the entire cohort as well as in patient subgroups. IB morphology, however, emerged as a robust, significantly adverse prognostic factor in multivariate analysis, and its diagnosis showed a good reproducibility among expert hematopathologists. We conclude, therefore, that IB morphology in DLBCL is likely to capture some of the adverse molecular alterations that are currently not detectable in a routine diagnostic setting, and that its recognition has significant prognostic power.


2006 ◽  
Vol 6 ◽  
pp. 888-898 ◽  
Author(s):  
Eva Kovacs

Interleukin-6 (IL-6) affects the survival and proliferation of myeloma cells via autocrine and/or paracrine mechanisms. In this study, we investigated the effects of IL-6, IL-6 receptor antagonist (IL-6RA), and gp130 antagonist (gp130A) on the membrane expressions of IL-6R and gp130, on the viability, on the proliferation, on the DNA synthesis, and on the cell cycle phases in several multiple myeloma (MM) cell lines and B cell lymphoma cell lines. Our results showed that (1) all five MM cell lines (OPM-2, RPMI-8226, U-266, KMS-12-BM, MOLP-8) expressed surface IL-6R and gp130, the B cell lymphomas (WSU-1, DOHH-2, U-698) expressed only gp130; (2) exogenous IL-6 markedly up-regulated the expression of membrane IL-6R (up to 186%) and down-regulated the gp130 receptor (down to 4%) in MM cell lines, the membrane expression of gp130 in B cell lymphomas was not altered; (3) IL-6 markedly increased the spontaneous proliferation (up to 151%) in all MM cell lines, that of B cell lymphomas was not affected; (4) IL-6 increased the DNA synthesis in the S cell cycle phase of MM cells and arrested the stage G2/M, IL-6 was ineffective in any cell cycle phase of B cell lymphoma; (5) IL-6RA inhibited the membrane IL-6R partially, the proliferation was decreased only slightly; and (6) although gp130A inhibited the membrane gp130 completely, the proliferation was decreased 81—78% in MM and B cell lymphoma cell lines. This means that gp130 is not absolutely necessary for the cellular signalling cascade via JAK/STAT and RAS/MAPK pathways involved in proliferation and viability. Our results give an indication in the therapy of MM: IL-6 antibody (IL-6A) alone or in combination with IL-6RA. The latter could be more effective. This kind of therapy is not recommended for B cell lymphoma, as these cells have no IL-6R.


Blood ◽  
1994 ◽  
Vol 83 (1) ◽  
pp. 26-32 ◽  
Author(s):  
T Miki ◽  
N Kawamata ◽  
S Hirosawa ◽  
N Aoki

Abstract Chromosomal translocations involving band 3q27 are the recently described nonrandom cytogenetic abnormalities in B-cell malignancies. We have previously cloned the breakpoint region of 3q27, designated as the BCL5 locus, from the B-cell line carrying the t(3;22). The cDNA for the BCL5 gene was cloned from the human liver cDNA library. The nucleotide sequencing analysis showed that the BCL5 gene encodes a potential transcription factor containing six repeats of the Cys2-His2 zinc-finger motif resembling the Drosophila segmentation gene Kruppel. The calculated molecular weight was 78.8 kD, which was supported by an in vitro transcription and translation experiment. A part of the sequence was essentially identical to that of a genomic fragment, ZNF51, previously reported to be located at 3qter. The translocation occurred in the 5′ region of the BCL5 gene, and the protein-coding exons were fused to the Ig-lambda gene in a head-to-head configuration in the cell line carrying t(3;22). The BCL5 cDNA probe detected a major transcript of 3.8 kb in Burkitt's lymphoma cell lines and an aberrant transcript in the t(3;22) cell line, whereas no transcript was detected in myeloid, monocytoid, erythroid, T-lymphoid, and Epstein-Barr virus- immortalized B-lymphoblastoid cell lines.


2014 ◽  
Vol 289 (49) ◽  
pp. 34250-34257 ◽  
Author(s):  
Jeongheon Yoon ◽  
Xianxum Feng ◽  
Yong-Soo Kim ◽  
Dong-Mi Shin ◽  
Katerina Hatzi ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4630-4630
Author(s):  
Marion Travert ◽  
Patricia Ame-Thomas ◽  
Thierry Fest ◽  
Céline Pangault ◽  
Gilbert Semana ◽  
...  

Abstract Follicular lymphoma are characterized by the rearrangement of the bcl-2 gene, present in more than 90% of patients. Over-expression of the bcl-2 protein resulting from this translocation is associated with the inability to eradicate the lymphoma, by inhibiting apoptosis. Despite the median survival ranges from 8 to 15 years, leading to the designation of indolent lymphoma, patients with advanced-stage follicular lymphoma are not cured with current therapeutic options. Numerous reports have shown that Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) can induce apoptosis in a wide variety of transformed cell lines of diverse lineage, but does not appear to kill normal cells, even though TRAIL mRNA is expressed at significant levels in most normal tissues. As cell death induced by TRAIL occurs almost exclusively in tumor cells, it suggests that this drug is safe to use as an antitumor therapy. We therefore investigated the efficiency of this cytokine to induce apoptosis in germinal center derived B cell lymphoma, despite bcl-2 over-expression. Our study was also designed to evaluate the role of CD40L, one of the main differentiation signal involved in B cell maturation during the germinal center reaction, on the regulation of TRAIL-induced apoptosis. This study was performed on three germinal center derived tumor cell lines (BL2, VAL and RL), and on normal and tumor primary cells obtained from human tonsils and lymph nodes. Our data show that normal B lymphocytes obtained from tonsil biopsies are resistant to TRAIL-mediated apoptosis, when B lymphoma cells issued from lymph node of numerous patients are significantly sensitive to the cytokine. When we treat these lymphoma cells with trimeric huCD40L, we partly rescue these cells from spontaneous apoptosis which naturally occurs after few days of culture, and reverse by 50% TRAIL-mediated apoptosis when cells were co-treated with huCD40L for 16 hours. Similar results were reproduced on some germinal center derived cell lines. BL2 was indeed found highly sensitive to TRAIL-induced apoptosis following a 24 hour exposure. On the opposite, VAL and RL were almost insensitive. We have demonstrate that apoptosis is exclusively mediated by TRAIL-R1 in BL2. Analysis of signalling pathways revealed that the protection to TRAIL-induced apoptosis by CD40L is due to some specific anti-apoptotic molecules that will be described. Genes encoding these molecules are targets of the NFκB signalling pathway activated by CD40L. Our results suggest that activation of NFκB and induction of anti-apoptotic molecules by CD40L play an important role in the protection of germinal center derived B cell lymphomas against apoptosis. Then, NFκB inhibitors may be wise to use in clinical trials in conjunction with TRAIL against follicular lymphomas.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 786-786
Author(s):  
Bjoern Schneider ◽  
Stefan Nagel ◽  
Maren Kaufmann ◽  
Hans G. Drexler ◽  
Roderick A.F. MacLeod

Abstract Micro-RNA (miR) genes posttranscriptionally modulate target gene expression via imperfect 3′-UTR matching sequences and play key roles in development, homeostasis and cancer. Little is known how miR genes are themselves regulated, or deregulated in cancer. Chief paradigm for neoplastic miR deregulation concerns miR-17/92 cluster members subject to genomic amplification in B-cell lymphoma. While the repeated occurrence of oncogenic miR genes at or near chromosomal breakpoints in cancer links chromosome fragility to oncogenic miR deregulation, direct evidence of a causal connection remains tenuous. We found that t(3;7)(q27;q32) in a B-cell lymphoma cell line joins 5′-BCL6 to a noncoding region of chromosome 7 inside a common chromosomal fragile site (FRA7H). In these cells hybrid mRNA was absent, unlike canonical BCL6 translocations which involve promoter exchange yielding hybrid mRNA. Affected cells instead showed downregulation of miR-29b-1, the only gene located within FRA7H - a recurrent transcriptional feature of B-cell lymphoma subsets. In another BCL6 translocation, t(3;13)(q27;q31)t(13;12)(q31;p11), which 5′-RACE also showed to be non-fusogenic, long distance inverse (LDI)-PCR revealed junction of 5′-BCL6 to chromosome 13 sequences inside the miR-17/92 host gene MIRH1 (alias c13orf25). FISH using a sensitive tyramide amplification protocol with c13orf25 clones confirmed the presence of a cryptic BCL6-MIRH1 rearrangement. Surprisingly, reverse transcriptase quantitative (q) PCR assay revealed weak MIRH1 expression using 3′-primers. In contrast, repeating the assay using more central primers covering the miR-17/92 coding region showed massive upregulation. 3′-RACE confirmed a novel high level MIRH1 transcript truncated by 3.1 kbp. Quantitative genomic PCR and FISH excluded miR-17/92 genomic copy number alteration, while LDI-PCR analysis showed that formation of truncated MIRH1 involved multiple DNA cuts at 3q27 (x1), 12p11 (x1), and 13q31 (x5) – the last including a complex excision/inversion/insertion rearrangement. Stress induced DNA duplex destabilization (SIDD) analysis revealed that 6 of 7 breaks precisely coincided with fragility peaks. Taken together, these data suggest a novel role for BCL6 translocations in the deregulation of miR genes near sites of chromosome or DNA instability. BCL6 has been shown to suppress p53 in germinal center B-cells thus protecting B-cells from apoptosis induced by DNA damage, offering a possible explanation for chromosome rearrangements associated with genomic fragility therein. Chromosomal MIRH1 dysregulation is not limited to BCL6 expressing lymphomas, however: cytogenetic investigations performed on diverse leukemia-lymphoma cell lines, including those derived from multiple myeloma and plasma cell leukemia, showed 11/50 with cytogenetic rearrangements at or near MIRH1. In sister cell lines sequentially established at diagnosis and relapse of multiple myeloma, only the latter showed miR-17/92 chromosomal rearrangement and upregulation. Interestingly miR overexpression was limited to miR-92, while miR-17/18 were barely expressed. FISH analysis and qPCR showed that discrepant expression was associated with rearrangement upstream of MIRH1. In brief, our data show that like other cancer genes, oncogenic miRs are subject to dysregulation mediated by structural chromosome rearrangements.


Sign in / Sign up

Export Citation Format

Share Document