scholarly journals Gene involved in the 3q27 translocation associated with B-cell lymphoma, BCL5, encodes a Kruppel-like zinc-finger protein

Blood ◽  
1994 ◽  
Vol 83 (1) ◽  
pp. 26-32 ◽  
Author(s):  
T Miki ◽  
N Kawamata ◽  
S Hirosawa ◽  
N Aoki

Abstract Chromosomal translocations involving band 3q27 are the recently described nonrandom cytogenetic abnormalities in B-cell malignancies. We have previously cloned the breakpoint region of 3q27, designated as the BCL5 locus, from the B-cell line carrying the t(3;22). The cDNA for the BCL5 gene was cloned from the human liver cDNA library. The nucleotide sequencing analysis showed that the BCL5 gene encodes a potential transcription factor containing six repeats of the Cys2-His2 zinc-finger motif resembling the Drosophila segmentation gene Kruppel. The calculated molecular weight was 78.8 kD, which was supported by an in vitro transcription and translation experiment. A part of the sequence was essentially identical to that of a genomic fragment, ZNF51, previously reported to be located at 3qter. The translocation occurred in the 5′ region of the BCL5 gene, and the protein-coding exons were fused to the Ig-lambda gene in a head-to-head configuration in the cell line carrying t(3;22). The BCL5 cDNA probe detected a major transcript of 3.8 kb in Burkitt's lymphoma cell lines and an aberrant transcript in the t(3;22) cell line, whereas no transcript was detected in myeloid, monocytoid, erythroid, T-lymphoid, and Epstein-Barr virus- immortalized B-lymphoblastoid cell lines.

Blood ◽  
1994 ◽  
Vol 83 (1) ◽  
pp. 26-32 ◽  
Author(s):  
T Miki ◽  
N Kawamata ◽  
S Hirosawa ◽  
N Aoki

Chromosomal translocations involving band 3q27 are the recently described nonrandom cytogenetic abnormalities in B-cell malignancies. We have previously cloned the breakpoint region of 3q27, designated as the BCL5 locus, from the B-cell line carrying the t(3;22). The cDNA for the BCL5 gene was cloned from the human liver cDNA library. The nucleotide sequencing analysis showed that the BCL5 gene encodes a potential transcription factor containing six repeats of the Cys2-His2 zinc-finger motif resembling the Drosophila segmentation gene Kruppel. The calculated molecular weight was 78.8 kD, which was supported by an in vitro transcription and translation experiment. A part of the sequence was essentially identical to that of a genomic fragment, ZNF51, previously reported to be located at 3qter. The translocation occurred in the 5′ region of the BCL5 gene, and the protein-coding exons were fused to the Ig-lambda gene in a head-to-head configuration in the cell line carrying t(3;22). The BCL5 cDNA probe detected a major transcript of 3.8 kb in Burkitt's lymphoma cell lines and an aberrant transcript in the t(3;22) cell line, whereas no transcript was detected in myeloid, monocytoid, erythroid, T-lymphoid, and Epstein-Barr virus- immortalized B-lymphoblastoid cell lines.


2003 ◽  
Vol 77 (3) ◽  
pp. 2134-2146 ◽  
Author(s):  
Vicky M.-H. Sung ◽  
Shigetaka Shimodaira ◽  
Alison L. Doughty ◽  
Gaston R. Picchio ◽  
Huong Can ◽  
...  

ABSTRACT Hepatitis C virus (HCV) is a major cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Studies of HCV replication and pathogenesis have so far been hampered by the lack of an efficient tissue culture system for propagating HCV in vitro. Although HCV is primarily a hepatotropic virus, an increasing body of evidence suggests that HCV also replicates in extrahepatic tissues in natural infection. In this study, we established a B-cell line (SB) from an HCV-infected non-Hodgkin's B-cell lymphoma. HCV RNA and proteins were detectable by RNase protection assay and immunoblotting. The cell line continuously produces infectious HCV virions in culture. The virus particles produced from the culture had a buoyant density of 1.13 to 1.15 g/ml in sucrose and could infect primary human hepatocytes, peripheral blood mononuclear cells (PBMCs), and an established B-cell line (Raji cells) in vitro. The virus from SB cells belongs to genotype 2b. Single-stranded conformational polymorphism and sequence analysis of the viral RNA quasispecies indicated that the virus present in SB cells most likely originated from the patient's spleen and had an HCV RNA quasispecies pattern distinct from that in the serum. The virus production from the infected primary hepatocytes showed cyclic variations. In addition, we have succeeded in establishing several Epstein-Barr virus-immortalized B-cell lines from PBMCs of HCV-positive patients. Two of these cell lines are positive for HCV RNA as detected by reverse transcriptase PCR and for the nonstructural protein NS3 by immunofluorescence staining. These observations unequivocally establish that HCV infects B cells in vivo and in vitro. HCV-infected cell lines show significantly enhanced apoptosis. These B-cell lines provide a reproducible cell culture system for studying the complete replication cycle and biology of HCV infections.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1142-1142
Author(s):  
Jennifer Totman ◽  
Dorothy Brach ◽  
Vinny Motwani ◽  
Selene Howe ◽  
Emily Deutschman ◽  
...  

Abstract Introduction: SETD2 is the only known histone methyltransferase (HMT) capable of catalyzing H3K36 trimethylation (H3K36me3) in vivo. It plays an important role in several biological processes including B cell development and maturation, leading to the hypothesis that SETD2 inhibition in these settings could provide anti-tumor effects. The normal process of B cell development/maturation renders B cells susceptible to genetic vulnerabilities that can result in a dysregulated epigenome and tumorigenesis, including in multiple myeloma (MM) and diffuse large B-cell lymphoma (DLBCL). For example, 15%-20% of MM harbors the high risk (4;14) chromosomal translocation, resulting in high expression of the multiple myeloma SET domain (MMSET) gene. MMSET is an HMT that catalyzes H3K36me1 and H3K36me2 formation and extensive scientific work has established overexpressed MMSET as a key factor in t(4;14) myeloma pathogenesis. To the best of our knowledge MMSET has eluded drug discovery efforts, however, since t(4;14) results in high levels of the H3K36me2 substrate for SETD2, inhibiting SETD2 offers promise for targeting the underlying oncogenic mechanism driven by MMSET overexpression in t(4;14) MM patients. In addition, SETD2 loss of function mutations described to date in leukemia and DLBCL are always heterozygous, suggesting a haploinsufficient tumor suppressor role for SETD2. This observation points to a key role for SETD2 in leukemia and lymphoma biology and suggests that therapeutic potential of SETD2 inhibition may also exist in these or similar settings. EZM0414 is a first-in-class, potent, selective, orally bioavailable small molecule inhibitor of the enzymatic activity of SETD2. We explored the anti-tumor effects of SETD2 inhibition with EZM0414 in MM and DLBCL preclinical studies to validate its potential as a therapy in these tumor types. Methods: Cellular proliferation assays determined IC 50 values of EZM0414 in MM and DLBCL cell line panels. Cell line-derived xenograft preclinical models of MM and DLBCL were evaluated for tumor growth inhibition (TGI) in response to EZM0414. H3K36me3 levels were determined by western blot analysis to evaluate target engagement. Combinatorial potential of SETD2 inhibition with MM and DLBCL standard of care (SOC) agents was evaluated in 7-day cotreatment in vitro cellular assays. Results: Inhibition of SETD2 by EZM0414 results in potent anti-proliferative effects in a panel of MM and DLBCL cell lines. EZM0414 inhibited proliferation in both t(4;14) and non-t(4;14) MM cell lines, with higher anti-proliferative activity generally observed in the t(4;14) subset of MM cell lines. The median IC 50value for EZM0414 in t(4;14) cell lines was 0.24 μM as compared to 1.2 μM for non-t(4;14) MM cell lines. Additionally, inhibitory growth effects on DLBCL cell lines demonstrated a wide range of sensitivity with IC 50 values from 0.023 μM to >10 μM. EZM0414 resulted in statistically significant potent antitumor activity compared to the vehicle control in three MM and four DLBCL cell line-derived xenograft models. In the t(4;14) MM cell line-derived xenograft model, KMS-11, robust tumor growth regressions were observed at the top two doses with maximal TGI of 95%. In addition, two non-t(4;14) MM (RPMI-8226, MM.1S) and two DLBCL xenograft models (TMD8, KARPAS422) demonstrated > 75% TGI; with two additional DLBCL models (WSU-DLCL2, SU-DHL-10) exhibiting > 50% TGI in response to EZM0414. In all models tested, the antitumor effects observed correlated with reductions in intratumoral H3K36me3 levels demonstrating on-target inhibition of SETD2 methyltransferase activity in vivo. In vitro synergistic antiproliferative activity was also observed when EZM0414 was combined with certain SOC agents for MM and DLBCL. Conclusions: Targeting SETD2 with a small molecule inhibitor results in significantly reduced growth of t(4;14) MM, as well as non-t(4;14) MM and DLBCL cell lines, in both in vitro and in vivo preclinical studies. In addition, in vitro synergy was observed with EZM0414 and certain SOC agents commonly used in MM and DLBCL, supporting the combination of SETD2 inhibition with current MM and DLBCL therapies. This work provides the rationale for targeting SETD2 in B cell malignancies such as MM, especially t(4;14) MM, as well as DLBCL, and forms the basis for conducting Phase 1/1b clinical studies to evaluate the safety and activity of EZM0414 in patients with R/R MM and DLBCL. Disclosures Totman: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Brach: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Motwani: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Howe: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Deutschman: Epizyme, Inc.: Divested equity in a private or publicly-traded company in the past 24 months, Ended employment in the past 24 months. Lampe: Epizyme, Inc.: Divested equity in a private or publicly-traded company in the past 24 months, Ended employment in the past 24 months. Riera: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Tang: Epizyme, Inc.: Divested equity in a private or publicly-traded company in the past 24 months, Ended employment in the past 24 months. Eckley: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Alford: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Duncan: Epizyme, Inc.: Divested equity in a private or publicly-traded company in the past 24 months, Ended employment in the past 24 months. Farrow: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Dransfield: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Raimondi: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Thomeius: Foghorn Therapeutics: Current Employment, Current equity holder in publicly-traded company. Cosmopoulos: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Kutok: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4905-4905 ◽  
Author(s):  
Stefano Sacchi ◽  
Maria Cosenza ◽  
Monica Civallero ◽  
Giulia Grisendi ◽  
Erika Road ◽  
...  

Abstract Abstract 4905 A curative treatment does not exist for indolent lymphoma and eventually patients die for progression and complications related to their disease. Thus, there is a need of new less toxic and more active treatment. Enzastaurin, a novel targeted agent, inhibits PKC-β by interacting competitively as its ATP-binding site. Several studies have shown that enzastaurin exhibits growth inhibiting effects on a wide array of cultured human tumour cells. Revlimid ® (lenalidomide), an oral immunomodulatory drug, have shown antineoplastic activity in various tumours, including multiple myeloma (MM), myelodysplastic syndrome (MDS), B-CLL, renal-cell carcinoma and prostate cancer and it is approved for the treatment of patients with MM and MDS bearing a deletion 5q. In the present research, we demonstrate that Revlimid ® alone induce G0/G1 arrest in WSU-NHL cell line, but not apoptosis. This would suggest that, in vitro, Revlimid ® has more a cytostatic than a cytotoxic effect in this cell line. Further, we have demonstrated that the combination of doses as low as 1 mM of Enzastaurin and Revlimid ® exerts, in vitro, a strong synergistic anti lymphoma activity. We also have showed that the combination decreases viability and induce apoptosis in B-cell lymphoma cell lines and peripheral blood mononuclear cells (PBMCs) from follicular lymphoma (FL) patients. The combination has no effect on normal PBMC and suppresses cell proliferation of B-cell lymphoma cell lines when co-cultured with bone marrow stromal cells (BMSCs) in a system that mimics the BM microenvironment. The combination induces a significantly higher rate of apoptosis in comparison with these caused by each agents utilized alone, as showed by flow cytometry. The combination activates both the extrinsic and intrinsic pathways of apoptosis resulting in caspase-8, caspase-9, caspase-3 and PARP cleavage. Furthermore, we have evaluated whether the combination has the ability to trigger apoptosis through BAD and we have showed its ability to activate BAD. Further, we have demonstrated that the combination decreases the expression of phosphorylated AKT and of some AKT downstream targets such as GSK-3β, m-TOR and p70S6. In addition, we have found that the combination reduces the activation of phosphorylated MAPK and of the downstream effector p90RSK. The MAPK signaling pathways have a multiple roles in natural processes such as cell growth, differentiation, and apoptosis. Taken together, these observations suggest that interrupting the PI3K/AKT and MAPK pathways is a promising therapeutic strategy against B-cell lymphoma cell lines. Therefore, these preclinical data, together with promising results obtained with Revlimid ® in the treatment of non-Hodgkin lymphoma, provide the rationale for evaluating the combination of Enzastaurin and Revlimid ® in the treatment of indolent lymphoma. These compounds, with a favourable toxicity profile, are not classic chemotherapeutic agents causing severe side effects and could be considered an example of a new innovative attempt of an anti-cancer “soft treatment”. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2296-2296 ◽  
Author(s):  
Jun Chen ◽  
Jason Ramos ◽  
Mint Sirisawad ◽  
Richard A. Miller ◽  
Louie Naumovski

Abstract Motexafin gadolinium (MGd, Xcytrin®) is a tumor selective redox active drug that is cytotoxic to many hematolymphoid cell lines and chronic lymphocytic leukemia cells. Previous studies have shown that MGd oxidizes various cellular reducing metabolites and produces reactive oxygen species (ROS), which can induce apoptosis. Rituximab, an anti-CD20 antibody, is used widely in the treatment of B-cell malignancies; however, its precise mechanism of action is uncertain. Some studies have demonstrated that rituximab induces the generation of ROS in sensitive cells. We evaluated the effects of combining rituximab and MGd in the in vitro treatment of HF-1, a cell line derived from a patient with follicular lymphoma. Increases in both apoptosis and cell growth inhibition were seen with MGd plus rituximab compared to each agent used separately. Apoptosis was demonstrated by both annexin-V positivity and caspase-3 activity. Loss of mitochondrial membrane potential and PARP cleavage were also greater when the two drugs were used together than when used separately. Data analysis with CalcuSyn software showed that, with the combination, the Dose Reduction Index (DRI) was more than 1.5 for MGd and 2 to 6 for rituximab regarding both apoptotic effect and growth inhibition. Consistent with MGd as a redox active agent, peroxiredoxin oxidation was higher when MGd and rituximab were used together. Further experiments revealed no increase in uptake of MGd by rituximab treatment, nor a change in the amount of CD20 antigen on the surface of MGd treated cells. We investigated another B-cell lymphoma cell line, DHL-4 for similar cooperative activity of MGd and rituximab. While MGd alone has no substantial apoptotic effect on DHL-4 cells, it enhanced the activity of rituximab in inducing apoptosis. These in vitro findings support the combined use of MGd and rituximab in the treatment of B cell lymphoma.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4000-4000
Author(s):  
Joseph M. Gozgit ◽  
Youngchul Song ◽  
Scott Wardwell ◽  
Sara Nadworny ◽  
Yaoyu Ning ◽  
...  

Abstract Introduction Diffuse large B-cell lymphoma (DLBCL), the most common type of Non-Hodgkin lymphoma (NHL), comprises 2 major molecular subtypes: germinal center B-cell-like (GCB) and activated B cell-like (ABC). Although standard therapy (rituximab+ chemotherapy [R-CHOP]) is effective in most patients (pts), a significant proportion do not achieve durable remissions. Treatment of relapsed and refractory DLBCL pts with targeted therapy, such as the BTK inhibitor ibrutinib, has shown some promise; however, responses are mostly restricted to the ABC subtype. Treatment options for pts with relapsed/refractory GCB, outside of stem cell transplantation, are especially limited. Ponatinib is a potent pan-BCR-ABL inhibitor approved for pts with refractory or T315I+ chronic myeloid leukemia or Ph+ acute lymphoblastic leukemia. Initial characterization of the in vitro kinase activity of ponatinib demonstrated substantial activity against a number of additional oncogenic kinases, including KIT, RET, FLT3, and members of the FGFR, PDGFR, and SRC families. To obtain a broad, unbiased, assessment of the anti-proliferative effects of ponatinib, we screened a panel of 246 human tumor cell lines. Based on the novel finding that a GCB-DLBCL cell line was amongst those inhibited most potently by ponatinib, we conducted studies to further characterize the activity of ponatinib in NHL, and GCB-DLBCL in particular. Results A broad cell-based screen identified a small subset of cell lines (18/246; 7%) whose growth was potently inhibited by ponatinib (GI50<42 nM). A majority of these lines express activated variants of previously validated targets of ponatinib: ABL (N=5, GI50 <0.3 nM), FLT3 (N=1, GI50 1 nM), FGFR2 (N=2, GI50s 5-29 nM), and PDGFRα (N=1, 14 nM). In addition, ponatinib potently inhibited growth of the GCB-DLBCL cell line DoHH2 (GI50 8 nM). The cellular activity of ponatinib was next examined in a larger set of NHL cell lines enriched for the GCB subtype (Table 1). Ponatinib only exhibited modest activity (GI50 46-119 nM) against 2 mantle cell lymphoma (MCL) lines, but potently inhibited growth (GI50≤10 nM) of the one Burkitt's lymphoma (BL) line tested (Daudi). Most notably, ponatinib also potently inhibited growth of 5/9 GCB cell lines. In contrast, none of the GCB lines showed sensitivity to ibrutinib (GI50s >100 nM). Finally, we evaluated the in vivo potency of ponatinib in mice implanted with the GCB cell lines exhibiting the greatest (SU-DHL-4) and weakest (SU-DHL-10) in vitro sensitivity to ponatinib, using dosing regimens previously shown to be active in BCR-ABL models predictive of efficacy in patients. Once-daily oral administration of ponatinib resulted in a dose-dependent inhibition of SU-DHL-4 tumor growth, with 10 mg/kg inducing 78% tumor regression, and 30 mg/kg rapidly inducing complete regression that was maintained in all mice for an additional 2 weeks after ponatinib dosing was stopped. In contrast, ponatinib had much more modest effects on SU-DHL-10 tumors with 30 mg/kg only inhibiting tumor growth by 39%. Conclusion Ponatinib has promising in vitro and in vivo activity against a substantial subset of GCB-DLBCL models tested, with potency similar to that observed in BCR-ABL models. These results provide support for evaluating ponatinib in GCB-DLBCL pts who have failed prior therapy. Studies to further characterize the molecular basis for the activity of ponatinib in NHL are ongoing. Table 1. In vitro drug activity in 12 NHL cell lines Cell line Type Ponatinib GI50 (nM) Ibrutinib GI50 (nM) SU-DHL-4 GCB DLBCL 1.3 313 DoHH2 GCB DLBCL 2.5 114 Pfeiffer GCB DLBCL 6 2,074 SU-DHL-6 GCB DLBCL 9.8 1,041 WSU-NHL GCB DLBCL 10 1,672 Farage GCB DLBCL 51 1,409 U-2932 GCB DLBCL 79 >10,000 RL GCB DLBCL 212 6,939 SU-DHL-10 GCB DLBCL 238 2,827 Daudi BL 2.9 4,319 Mino MCL 46 >10,000 Jeko-1 MCL 119 4,781 GI50: the concentration that causes 50% growth inhibition. Disclosures Gozgit: ARIAD Pharmaceuticals Inc.: Employment, Other: Full-time Employee & Shareholder (self-managed). Song:ARIAD Pharmaceuticals Inc.: Employment, Other: Full-time Employee & Shareholder (self-managed). Wardwell:ARIAD Pharmaceuticals Inc.: Employment, Other: Full-time Employee & Shareholder (self-managed). Nadworny:ARIAD Pharmaceuticals Inc.: Employment, Other: Full-time Employee & Shareholder (self-managed). Ning:ARIAD Pharmaceuticals Inc.: Employment, Other: Full-time Employee & Shareholder (self-managed). Rivera:ARIAD Pharmaceuticals Inc.: Employment, Other: Full-time Employee & Shareholder (self-managed).


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 704-704
Author(s):  
Marco Ruella ◽  
Saad S Kenderian ◽  
Olga Shestova ◽  
Joseph A. Fraietta ◽  
Sohail Qayyum ◽  
...  

Abstract Introduction: The bruton tyrosine kinase (BTK) inhibitor ibrutinib demonstrates considerable activity in mantle cell lymphoma (MCL). However, approximately 30% of patients do not respond to this treatment and the therapy invariably leads to drug resistance with a median response of 17.5 months. Infusion of autologous T cells transduced with chimeric antigen receptors (CAR) against the B-cell specific CD19 antigen (CART19) leads to dramatic clinical responses in the majority of patients with acute lymphoblastic leukemia and the activity in B cell lymphoma is currently being evaluated in clinical trials. Bulky disease, as sometimes seen in MCL, may impair T cell infiltration. The features of ibrutinib that make it an interesting addition to CART19 include its efficacy in reducing tumor masses and its ability to mobilize neoplastic B cells into the peripheral blood, thereby potentially exposing them to the killing activity of CART19. Therefore, we sought to investigate the combination of the two novel targeted therapies, ibrutinib and CART19 in MCL. Results: In vitro studies with established MCL cell lines and with a novel cell line (MCL-RL) showed a range of responses to ibrutinib with an IC50 ranging from 10 nM to 10 µM; MCL-RL was the most sensitive cell line evaluated with an IC50 of 10nM, similar to primary MCL. Both ibrutinib-sensitive and ibrutinib-resistant cell lines strongly activated CART19 in an antigen-specific manner as detected by CD107a degranulation, cytokine production and CFSE proliferation assays. Importantly, in vitro assays with MCL cell lines co-cultured with increasing doses of CART19 (E:T= 2:1, 1:1, 0.5:1, 0.25:1) combined with increasing concentrations of ibrutinib (0, 10, 100, 1000 nM) demonstrated strong additive tumor killing (Figure 1). Notably, supra-therapeutic doses of Ibrutinib (>/=1 uM) impaired cytokine production and T cell proliferation in vitro. In order to test this combination in vivo we established a novel MCL model, injecting i.v. luciferase-positive MCL-RL cells into NSG mice. This resulted in 100% MCL engraftment in liver and spleen, with eventual dissemination into lymph nodes and bone marrow. Treatment with three different doses of CART19 (0.5, 1 and 2 million cells/mouse) led to a dose dependent anti-tumor effect. A similar dose response to CART19 was also observed in the ibrutinib-resistant Jeko-1 cell line. We also treated MCL-RL xenografts with different doses (0, 25 and 125 mg/Kg/day) of ibrutinib, with a median overall survival respectively of 70, 81 and 100 days (p<0.001). Importantly, a direct in vivo comparison of the highest ibrutinib dose (125 mg/kg) and CART19 showed a significantly improved tumor control for mice treated with CART19. However, treatment with either CART19 or ibrutinib as single agents invariably led to late relapse. Therefore we sought to treat MCL-RL xenografts with the combination of CART19 and ibrutinib and compare it to the single agent activity. The combination resulted in significant improvement in tumor control compared to mice treated with the single agents with 80% of mice achieving long-term disease-free survival ( p=0.007 at day 110, representative mice shown in Figure 2A). Intriguingly, we found that mice treated with ibrutinib had higher numbers of circulating CART19 cells (Figure 2B). Conclusions: Combining CART19 with ibrutinib represents a rational way to incorporate two of the most recent therapies in MCL. Our findings pave the way to a two-pronged therapeutic strategy in patients with MCL and other types of B-cell lymphoma. Figure 1. Figure 1. Figure 2. Figure 2. Disclosures Ruella: Novartis: Patents & Royalties, Research Funding. Kenderian:Novartis: Patents & Royalties, Research Funding. Maus:Novartis: Consultancy, Patents & Royalties, Research Funding. Milone:Novartis: Patents & Royalties, Research Funding. Lacey:Novartis: Patents & Royalties, Research Funding. Mato:Genentech: Consultancy; Pronai Pharmaceuticals: Research Funding; Celgene Corporation: Consultancy, Research Funding; Pharmacyclics: Consultancy, Research Funding; Gilead: Consultancy, Research Funding; TG Therapeutics: Research Funding; AbbVie: Consultancy, Research Funding; Janssen: Consultancy. Schuster:Genentech: Consultancy; Pharmacyclics: Consultancy, Research Funding; Celgene: Consultancy, Research Funding; Hoffman-LaRoche: Research Funding; Janssen: Research Funding; Gilead: Research Funding; Nordic Nanovector: Membership on an entity's Board of Directors or advisory committees; Novartis: Research Funding. Kalos:Novartis: Patents & Royalties, Research Funding. June:Novartis: Research Funding; University of Pennsylvania: Patents & Royalties: financial interests due to intellectual property and patents in the field of cell and gene therapy. Conflicts of interest are managed in accordance with University of Pennsylvania policy and oversight. Gill:Novartis: Patents & Royalties, Research Funding. Wasik:Janseen and Novartis: Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 28-29
Author(s):  
Jie Wang ◽  
Katarzyna Urbanska ◽  
Prannda Sharma ◽  
Mathilde Poussin ◽  
Reza Nejati ◽  
...  

Background: Peripheral T-cell lymphomas (PTCL) encompass a highly heterogeneous group of T-cell malignancies and are generally associated with a poor prognosis. Combination chemotherapy results in consistently poorer outcomes for T-cell lymphomas compared with B-cell lymphomas.1 There is an urgent clinical need to develop novel approaches to treatment of PTCL. While CD19- and CD20-directed immunotherapies have been successful in the treatment of B-cell malignancies, T-cell malignancies lack suitable immunotherapeutic targets. Brentuximab Vedotin, a CD30 antibody-drug conjugate, is not applicable to PTCL subtypes which do not express CD30.2 Broadly targeting pan-T cell markers is predicted to result in extensive T-cell depletion and clinically significant immune deficiency; therefore, a more tumor-specific antigen that primarily targets the malignant T-cell clone is needed. We reasoned that since malignant T cells are clonal and express the same T-cell receptor (TCR) in a given patient, and since the TCR β chain in human α/β TCRs can be grouped into 24 functional Vβ families targetable by monoclonal antibodies, immunotherapeutic targeting of TCR Vβ families would be an attractive strategy for the treatment of T-cell malignancies. Methods: We developed a flexible approach for targeting TCR Vβ families by engineering T cells to express a CD64 chimeric immune receptor (CD64-CIR), comprising a CD3ζ T cell signaling endodomain, CD28 costimulatory domain, and the high-affinity Fc gamma receptor I, CD64. T cells expressing CD64-CIR are predicted to be directed to tumor cells by Vβ-specific monoclonal antibodies that target tumor cell TCR, leading to T cell activation and induction of tumor cell death by T cell-mediated cytotoxicity. Results: This concept was first evaluated in vitro using cell lines. SupT1 T-cell lymphoblasts, which do not express a native functioning TCR, were stably transduced to express a Vβ12+ MART-1 specific TCR, resulting in a Vβ12 TCR expressing target T cell line.3 Vβ family specific cytolysis was confirmed by chromium release assays using co-culture of CD64 CIR transduced T cells with the engineered SupT1-Vβ12 cell line in the presence of Vβ12 monoclonal antibody. Percent specific lysis was calculated as (experimental - spontaneous lysis / maximal - spontaneous lysis) x 100. Controls using no antibody, Vβ8 antibody, and untransduced T cells did not show significant cytolysis (figure A). Next, the Jurkat T cell leukemic cell line, which expresses a native Vβ8 TCR, was used as targets in co-culture. Again, Vβ family target specific cytolysis was achieved in the presence of CD64 CIR T cells and Vβ8, but not Vβ12 control antibody. Having demonstrated Vβ family specific cytolysis in vitro using target T cell lines, we next evaluated TCR Vβ family targeting in vivo. Immunodeficient mice were injected with SupT1-Vβ12 or Jurkat T cells with the appropriate targeting Vβ antibody, and either CD64 CIR T cells or control untransduced T cells. The cell lines were transfected with firefly luciferase and tumor growth was measured by bioluminescence. The CD64 CIR T cells, but not untransduced T cells, in conjunction with the appropriate Vβ antibody, successfully controlled tumor growth (figure B). Our results provide proof-of-concept that TCR Vβ family specific T cell-mediated cytolysis is feasible, and informs the development of novel immunotherapies that target TCR Vβ families in T-cell malignancies. Unlike approaches that target pan-T cell antigens, this approach is not expected to cause substantial immune deficiency and could lead to a significant advance in the treatment of T-cell malignancies including PTCL. References 1. Coiffier B, Brousse N, Peuchmaur M, et al. Peripheral T-cell lymphomas have a worse prognosis than B-cell lymphomas: a prospective study of 361 immunophenotyped patients treated with the LNH-84 regimen. The GELA (Groupe d'Etude des Lymphomes Agressives). Ann Oncol Off J Eur Soc Med Oncol. 1990;1(1):45-50. 2. Horwitz SM, Advani RH, Bartlett NL, et al. Objective responses in relapsed T-cell lymphomas with single agent brentuximab vedotin. Blood. 2014;123(20):3095-3100. 3. Hughes MS, Yu YYL, Dudley ME, et al. Transfer of a TCR Gene Derived from a Patient with a Marked Antitumor Response Conveys Highly Active T-Cell Effector Functions. Hum Gene Ther. 2005;16(4):457-472. Figure Disclosures Schuster: Novartis, Genentech, Inc./ F. Hoffmann-La Roche: Research Funding; AlloGene, AstraZeneca, BeiGene, Genentech, Inc./ F. Hoffmann-La Roche, Juno/Celgene, Loxo Oncology, Nordic Nanovector, Novartis, Tessa Therapeutics: Consultancy, Honoraria.


2018 ◽  
Vol 60 (4) ◽  
pp. 1043-1052
Author(s):  
Marie-Sophie Dheur ◽  
Hélène A. Poirel ◽  
Geneviève Ameye ◽  
Gaëlle Tilman ◽  
Pascale Saussoy ◽  
...  

2019 ◽  
Vol 116 (34) ◽  
pp. 16981-16986 ◽  
Author(s):  
Claudio Scuoppo ◽  
Jiguang Wang ◽  
Mirjana Persaud ◽  
Sandeep K. Mittan ◽  
Katia Basso ◽  
...  

To repurpose compounds for diffuse large B cell lymphoma (DLBCL), we screened a library of drugs and other targeted compounds approved by the US Food and Drug Administration on 9 cell lines and validated the results on a panel of 32 genetically characterized DLBCL cell lines. Dasatinib, a multikinase inhibitor, was effective against 50% of DLBCL cell lines, as well as against in vivo xenografts. Dasatinib was more broadly active than the Bruton kinase inhibitor ibrutinib and overcame ibrutinib resistance. Tumors exhibiting dasatinib resistance were commonly characterized by activation of the PI3K pathway and loss of PTEN expression as a specific biomarker. PI3K suppression by mTORC2 inhibition synergized with dasatinib and abolished resistance in vitro and in vivo. These results provide a proof of concept for the repurposing approach in DLBCL, and point to dasatinib as an attractive strategy for further clinical development in lymphomas.


Sign in / Sign up

Export Citation Format

Share Document